
Proceedings of the 5th International Conference of Control, Dynamic Systems, and Robotics (CDSR'18) 

Niagara Falls, Canada – June 7 – 9, 2018 

Paper No. 112 

DOI: 10.11159/cdsr18.112 

112-1 

 

Model-Free Sliding Mode Control Algorithms including Application to a 
Real-World Quadrotor 

 

Eric Schulken, Agamemnon Crassidis 
Rochester Institute of Technology 

1 Lomb Memorial Drive, Rochester, New York, 14623, USA 

ems1552@rit.edu; alceme@rit.edu 

 

 
Abstract - Sliding mode control is a robust nonlinear control algorithm that has been used to implement tracking controllers for 

unmanned aircraft systems that are robust to modeling uncertainty and exogenous disturbances, thereby providing excellent 

performance for autonomous operation.  A significant advance in the application of sliding mode control for unmanned aircraft systems 

would be adaptation of a model-free sliding mode control algorithm, since the most complex and time-consuming aspect of 

implementation of sliding mode control is the derivation of the control law with incorporation of the system model, a process required 

to be performed for each individual application of sliding mode control.  The performance of various model-free sliding mode control 

algorithms was compared in simulation using a variety of aerial system models and real-world disturbances (e.g. the effects of 

discretization and state estimation).  The two best performing algorithms were shown to exhibit very similar behavior.  These two 

algorithms were implemented on a quadrotor (both in simulation and using real-world hardware) and the performance was compared to 

a traditional PID based controller using the same state estimation algorithm and control setup.  Simulation results show the model-free 

sliding mode control algorithms exhibit similar performance to PID controllers without the tedious tuning process.  Comparison 

between the two model-free sliding mode control algorithms showed very similar performance as measured by the quadratic means of 

tracking errors.  Flight testing showed that while a model-free sliding mode control algorithm can control real-world hardware, further 

characterization and significant improvements are required before it is a viable alternative to conventional control algorithms.  Large 

tracking errors were observed for both the model-free sliding mode control and PID based flight controllers and the performance was 

characterized as unacceptable for most applications.  The poor performance of both controllers suggests tracking errors can be 

attributed to errors in state estimation.  Further testing with improved state estimation would allow for more conclusions to be drawn. 
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1. Introduction 
As the ubiquity of mobile robots and autonomous systems increases, so does the need for reliable automatic control 

with relaxed methods for tuning and implementation.  A frequent requirement of a nonlinear control scheme is that it be 

robust to unknown perturbations.  A popular and relatively simple form of robust nonlinear control is Sliding Mode 

Control (SMC) [1, 2-6].  Another method of compensating for unknown model parameters or disturbances is the family of 

adaptive control [1].  Adaptive control can be a good alternative to robust control in certain cases [7].  A popular topic for 

research is the combination of robust and adaptive control methods [3, 7-10], though the methods proposed are often 

highly complex and unique to the intended applications.  Another area of active research is that of model-free robust 

control [3, 11-18], since one of the main drawbacks of sliding mode control and other methods is the time-consuming 

control law derivation process that is required for each implementation [11-13]. 

A Model-Free SMC (MFSMC) based flight controller would serve as a useful tool for the rapid deployment of new 

configurations or iterations of Unmanned Aircraft Systems (UASs).  The advanced control law would allow for accurate 

and robust tracking control to become an easily attainable goal for practitioners who lack the time or expertise to 

implement robust nonlinear control using current methods.  Reduced development time and reduced cost could be realized 

during the development of autonomous systems for critical tasks such as search and rescue, transportation, or site 

surveying, thereby allowing more people to be served and freeing up capital to be invested in other advances in the field of 

control systems engineering. 
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2. Background 
 Sliding mode control is a form of robust nonlinear control that can provide, theoretically, “perfect” performance in the 

face of modeling imprecision for certain classes of systems [1].  In order to implement SMC, an engineer needs to have a 

nominal or “best guess” plant model, all uncertainties must be matched, and the uncertainties must have known bounds.  In 

its simplest form, a SMC control law can be expressed as: 

 

 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑐𝑜𝑟 (1) 

 

where 𝑢𝑒𝑞 is the equivalent control calculated from the nominal model, and 𝑢𝑐𝑜𝑟 is a control correction based on tracking 

errors and the bounds of uncertainties [2].  With this distinction in mind, there are two general approaches to MFSMC.  

The first is to neglect the equivalent control since it is based on the system model and to try and find a form of 𝑢𝑐𝑜𝑟 that 

results in the desired tracking while remaining stable and feasible [3, 14-16, 18].  The other approach is to estimate 𝑢𝑒𝑞 

based only on system inputs and outputs, and then to derive 𝑢𝑐𝑜𝑟 with conventional SMC methods [11-13, 17]. 

Concepts of SMC were first proposed in the 1970s by Utkin, among others, as a significant result of the study of 

Variable Structure Systems (VSS) [19].  SMC making use of first-order sliding surfaces is referred to as conventional SMC 

[20].  Conventional SMC is based on the idea of a sliding surface in the state plane defined by: 

 

 
𝑆 = (

𝑑

𝑑𝑡
+ 𝜆)

𝑛−1

𝑥̃ (2) 

 

where 𝑛 is the order of the system being controlled, 𝜆 is a positive constant that is inversely proportional to the reaching 

time, and 𝑥̃ is the error state.  Young, Utkin, and Ozguner [4] presented a thorough guide to SMC from the perspective of a 

control engineer.  Issues addressed include continuous-time sliding modes, discrete-time sliding modes, and acceptable and 

realizable chattering mitigation strategies. 

 
2.1. Developments in Sliding Mode Control 

Fridman [3] gives a concise history of SMC and reviews the main developments in the field after 1990 when SMC 

began to attract significant interest in the controls community.  The main disadvantages of conventional SMC listed as 

motivations for the development of alternative SMC schemes include chattering induced by the discontinuous control law 

or by parasitic dynamics, sensitivity (i.e., not robust) to mismatched disturbances, non-finite time (only asymptotic) 

convergence of states, sensitivity to noise, difficulty in discretization for implementation on a digital computer, and the 

requirement of higher-order derivatives for calculation of the sliding variable.  Much of the past and current research 

related to SMC has been targeted at one or more of the aforementioned issues.  Some of the results of SMC research 

include Second-Order Sliding Modes (SOSM) which resulted in the twisting algorithm, the super twisting algorithm, and 

the sub-optimal algorithm.  Villanueva et al. [5] used the super twisting algorithm to derive a multi-mode control system 

for a quadrotor.  Derafa, Benallegue, and Fridman [23] also implemented super twisting on a quadrotor platform and 

included real-world testing in their results.  The super twisting algorithm was conceived as a way to provide the same 

tracking performance as conventional SMC but with continuous control effort. 

The concepts of SOSM were extended to arbitrary order sliding modes, also known as High Order Sliding Mode 

(HOSM), which is often purported to offer several advantages over conventional SMC, namely a theoretical guarantee of 

finite time convergence of the states to their desired values, the removal of the requirement that the relative degree be equal 

to one, and attenuation of chattering [20].  The concept of HOSM was first introduced by Levant, who proposed the 

second-order sliding mode [3] and later went on to publish many works on HOSM and its applications.  Utkin explored 

these claims by comparing the performance of HOSM based controllers to conventional SMC controllers for the same 

worst-case conditions [20].  An important point is that SMC often causes chattering in the control effort due to the 

discontinuous term in the control law; chattering can also occur as a result of unmodeled dynamics such as actuator or 

sensor delays.  These so-called parasitic dynamics can lead to relatively high frequency oscillations in the control effort 

even if it is smooth, as is guaranteed for HOSM.  The assurance of finite time convergence provided by HOSM theory is 

shown to lose some meaning and actually have adverse effects in the presence of unmodeled actuator dynamics where the 
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magnitude of chattering is actually greater for HOSM than for conventional SMC with smoothing.  Similar criticisms of 

super twisting control were presented, although HOSM algorithms do have significant value in the right applications. 

Levant [18] presented a unique method of MFSMC based on HOSM theory.  The controller form is based on the 

extension of the trivial (and usually unstable) relay controller 𝑢 =  −𝐾 sgn(𝑆) with 𝑆 = 𝑥 − 𝑥𝑑 to satisfy higher-order 

sliding modes.  Since the sliding surface 𝑆 and its derivatives are only based on the states and their desired values and 

parameters able to be generalized for each order 𝑟, no information about the plant other than its relative degree is required 

for the controller.  Levant [18] found that, in the case of 𝑟 = 4, the HOSM control law yielded satisfactory results in 

simulation.  Though this method (and most HOSM methods) would eliminate chattering in the ideal scenario, chattering or 

even instability may still occur in practice due to the excitation of parasitic dynamics [20]. 

 

2.2. Model-Free Sliding Mode Control Algorithms to Investigate 

To control variability, the same sliding variable design (Eq. 2) was used for all MFSMC algorithms.  Simulations of 

the MFSMC algorithm proposed by Levant [18] showed that instability occurs even for relatively minor feedback delays or 

state estimation errors, thus it was discounted as a candidate for implementation.  A unique form of MFSMC based on 

previous control inputs was proposed in [11].  This approach was improved in [12] and extended to multi-input multi-

output (MIMO) systems in [13]. The MFSMC algorithm proposed by Reis [12] along with the first MFSMC algorithm 

presented by Precup et al. [17] both use expressions that serve the same purpose as the system model.  The ‘system model’ 

expression are generated using measurements of the state and control input.  The algorithm proposed by Reis [12] is input-

based, while that proposed by Precup et al. [17] is state-based.  The input-based ‘system model’ takes the form of: 

 

 𝑥(𝑛) = 𝑥(𝑛) + 𝑏[𝑢𝑘 − 𝑢𝑘−1 − 𝜀(𝑢)] (3) 

 

where 𝜀(𝑢) = 𝑢𝑘 − 𝑢𝑘−1 and is estimated as: 

 

  𝜀̂(𝑢) = 𝑢𝑘−1 − 𝑢𝑘−2 (4) 

 

and where the estimate of 𝜀(𝑢) is bounded according to: 

 

 |𝜀(𝑢)| ≤ (1 + 𝜎)|𝜀̂(𝑢)| (5) 

 

with 𝜎 = 0.5.  Using Eqs. (3), (4), and (5) and the derivation method for conventional SMC (see [1]) along with a time 

varying smoothing boundary layer to mitigate chattering. The input-based MFSMC algorithm takes the form: 

 

 𝑢 = 𝑏̂−1[−𝑆̇ − (𝐾 − 𝜑̇)sat(𝑆, 𝜑)] + 2𝑢𝑘−1 − 𝑢𝑘−2 (6) 

 

with the switching gain is defined by: 

 

 𝐾 = |(1 − 𝛽)𝑆̇| + |𝑏̂𝜎(𝑢𝑘−2 − 𝑢𝑘−1)| + 𝛽𝜂 (7) 

 

where 𝑏̂ = √𝑏𝑢𝑏𝑙 and 𝛽 = √𝑏𝑢/𝑏𝑙 are calculated from known upper and lower input gain bounds, the small positive 

constant 𝜂 = 0.15, and time varying boundary layer, 𝜑 is defined as: 

 

 𝜑̇ = 𝐾 − 𝜆𝜑  (8) 

 

An interesting notational difference between the input-based MFSMC law, as expressed in Eqs. (6) and (7) and as 

expressed in [12] and [13], is the expression of 𝑆̇ in the control law rather than its constituent terms.  The notational 

difference means that the control law is now arbitrary order, provided that the sliding variable and its derivative are 

properly constructed for the given system order. 

The state-based MFSMC algorithm is based on the MFSMC algorithms proposed by Precup et al. [17], though the 

derivation process (and thus end result) described herein are different.  The system model for the state-based MFSMC is: 
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 𝑥(𝑛) = 𝑓(𝑥⃑) + 𝑏𝑢  (9) 

 

The instantaneous value of the unknown nonlinear function, 𝑓, can be estimated as: 

 

 𝑓(𝑥⃑) = 𝑥(𝑛) + 𝑏̂𝑢 (10) 

 

where the estimate 𝑓(𝑥⃑) is bounded according to: 

 

 |𝑓(𝑥⃑)| ≤ (1 + 𝜎)|𝑓(𝑥⃑)|` (11) 

 

with the tuneable parameter 𝜎 again conservatively set to 𝜎 = 0.5.  The system model can be estimated as: 

 

 𝑥(𝑛) = 𝑓(𝑥⃑) + 𝑏̂𝑢  (12) 

 

Using the estimated system model, state-based MFSMC laws can be derived for specific orders of systems.  For a second-

order system and using a time varying smoothing boundary layer, the control law is: 

 

 𝑢 = 𝑏̂−1[−𝑓(𝑥⃑) + 𝑥̈𝑑 − 𝜆𝑥̃ − (𝐾 − 𝜑̇)sat(𝑆, 𝜑)]  (13) 

 

where 𝑏̂ = √𝑏𝑢𝑏𝑙, 𝛽 = √𝑏𝑢/𝑏𝑙, and 𝜑̇ is defined by Eq. (8).  The switching gain, 𝐾, is defined as: 

 

 𝐾 = |𝛽 − 1||𝑓(𝑥⃑) − 𝑥̈𝑑 + 𝜆𝑥̃| + |𝛽𝜎𝑓(𝑥⃑)| + |𝛽𝜂| (14) 

 

3. Methodology 
 The goal of this work is to drive the state-of-the-art towards the reality of having a model-free robust nonlinear control 

algorithm capable of being applied to real-world hardware with high performance and minimal tuning.  There have not 

been any comparisons, direct or otherwise, of MFSMC algorithms to each other or to established methods of control (e.g. 

PID).  In addition, no work (to data) has yet been performed to examine the effects of realization on the performance of 

MFSMC algorithms.  These issues were addressed through carefully designed simulation studies and real-world hardware 

testing on a quadrotor UAS.  Issues addressed in the simulation studies include: actuator dynamics, sensor dynamics, 

measurement noise, filtering, zero-order-holds, transport delays, state estimation, controller sampling frequency, and 

disturbance rejection.  In simulation and hardware testing, the performance of MFSMC flight controllers was compared to 

same controller architecture implemented with PID. 

 

4. Quadrotor Implementation 

 The selected hardware platform is the Parrot® AR.Drone 2.0, which is a consumer grade quadrotor originally intended 

to be controlled remotely via a mobile device.  A Simulink Embedded Coder target for the AR.Drone 2.0 allows for 

Simulink block diagrams to be compiled into executable code for the hardware board, and for data to be logged in 

Simulink [22].  Onboard sensors include a 3-axis accelerometer, 3-axis rate gyroscope, 3-axis magnetometer, a downward 

facing ultrasonic transducer, a barometer, a forward-facing camera, a downward-facing camera, and a USB port to which a 

GPS module can be connected.  The AR.Drone 2.0 runs embedded Linux 2.6.32 on a 1 GHz ARM Cortex A8 processor 

and connects to other hardware via Wi-Fi.  Each of the 4 rotors is driven by 15 Watt high RPM brushless DC motors. 

 

4.1. System Model and State Estimation 
The 6 DOF (x, y, z, φ, θ, ψ) quadrotor model used was adapted from [5, 23]. The model consists of 6 second-order 

nonlinear differential equations.  Position is described in earth referenced cartesian coordinates and orientation in earth 

referenced Euler angles.  The four inputs (Ui) to the system are defined by the reaction forces and moments of the four 
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rotors and represent: vertical lift (in the body reference frame), rolling moment, pitching moment, and yawing moment.  

The system is underactuated since lateral or longitudinal forces cannot be generated on the vehicle.  The system model is: 

 

 
𝑥̈ =

𝑈1

𝑚
[sin(𝜑) sin(𝜓) + cos(𝜑) sin(𝜃) cos(𝜓)] − 𝐴𝑥;  𝑦̈ =

𝑈1

𝑚
[−sin (𝜑)cos (𝜓) + cos (𝜑)sin (𝜃)sin (𝜓)] − 𝐴𝑦 

𝑧̈ =
𝑈1

𝑚
[cos(𝜑) cos(𝜃)] − 𝑔 − 𝐴𝑦 

 

(15) 

 

 
𝜑̈ =

1

𝐼𝑥
[𝑈2 + (𝐼𝑦 − 𝐼𝑧)𝜃̇𝜓̇] − 𝐴𝑝;  𝜃̈ =

1

𝐼𝑦
[𝑈3 + (𝐼𝑧 − 𝐼𝑥)𝜑̇𝜓̇] − 𝐴𝑞;  𝜓̈ =

1

𝐼𝑧
[𝑈4 + (𝐼𝑥 − 𝐼𝑦)𝜑̇𝜃̇] − 𝐴𝑟 (16) 

 

 Because the system is underactuated, only four degrees-of-freedom can be controlled directly and independently.  

Horizontal positional control could be achieved with a guidance algorithm to specify desired roll and pitch trajectories, 

though this is outside the scope of the current work.  Estimations of the four independently controllable states of altitude 

and the three Euler angles relied on measurements from the ultrasonic transducer, magnetometer, accelerometer, and 

gyroscope.  An altitude estimate was obtained by passing the output of the ultrasonic transducer through a first-order 

discrete lowpass filter with a time constant of 0.1 sec.  The assumption is the ground beneath the quadrotor is flat and 

provides accurate returns and the quadrotor remains level throughout its flight. 

 Under the assumption that the quadrotor is not undergoing any linear accelerations, the roll and pitch angles can be 

calculated from accelerometer data.  Since the yaw axis is parallel with the gravity vector, it cannot be calculated in the 

same way as roll and pitch.  Yaw angle is instead calculated using the magnetometer. 

 Final estimates of the three Euler angles were obtained using a fixed frequency complimentary filter of the form: 

 

 𝜑∗ =
𝜏𝜑̇𝑔𝑦𝑟𝑜

𝜏𝑠+1
+

𝜑𝑎𝑐𝑐

𝜏𝑠+1
 (17) 

 

where 𝜑̇𝑔𝑦𝑟𝑜 is taken directly from the gyroscope and 𝜑𝑎𝑐𝑐 is calculated according to Eq. (16). The time constant, , for 

this filter was taken as 1 sec and the same form was used to generate the estimates 𝜃∗ and 𝜓∗. 

The estimation process for altitude and Euler angles remains the same for the MFSMC algorithm as for PID.  The key 

difference is that the MFSMC algorithm requires full state feedback, meaning that estimates of the linear and angular 

velocities and accelerations are also required.  Angular acceleration is estimated using the outputs of the gyroscope passed 

through a first-order discrete lowpass filter with a time constant of 0.1 sec.  The remaining estimates needed to be 

differentiated from existing signals with minimal phase lag and noise.  For this purpose, sliding mode differentiators [24] 

were employed for providing estimates of the differentiated signals. 

 

4.2. Controller Design 
Control inputs were translated into motor inputs using algebraic motor mixing functions.  The PID flight controller 

design uses four discrete PID controllers (one for each independently controllable degree-of-freedom) operating at 400 Hz. 

The two MFSMC algorithms, i.e., Eqs. (6), (7), (13), and (14) require feedback of control inputs, and thus estimates of 

actuator dynamics since the outputs of the actuators cannot be measured directly.  The actuator dynamics were modelled as 

first-order with a time constant of 0.3 sec (compared to an actuator time constant of 0.25 sec used in the system model).  

The input gain bounds required for the MFSMC algorithms were estimates of the mass and moments of inertia of the 

quadrotor.  Similar to the PID-based controller, the MFSMC controllers operated at a discrete frequency of 400 Hz. 

 

4.3. Simulations 
 For simulation, sensor models were developed to replicate expected state estimation errors.  The dynamic responses of 

the sensors are assumed to be negligible, with errors arising from zero-order-holds, random (assumed Gaussian) noise, and 

imperfect state estimation.  The AR.Drone 2.0 sensors update at 200 Hz.  The accelerometer and magnetometer signals are 

taken from the Bosch BMC150 module.  The accelerometer is said to have a typical noise variance of 150 g while the 

magnetometer has a typical noise variance of 1 𝜇𝑇 with a measurement range of  ±1300 𝜇𝑇 [25].  The gyroscope in the 

AR.Drone 2.0 is an InvenSense IMU-3000 with a noise variance of 0.2 °/sec [26].  The state estimation algorithm for yaw 
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angle was modelled by applying a 200 Hz zero-order-hold and adding random noise to the yaw (ψ) signal.  A noise 

variance of 0.001 rad was approximated from the measurement range and variance specified on the data sheet for the 

magnetometer [25].  The gyroscope was modelled by taking the signals for angular rates (𝜑̇, 𝜃̇, 𝜓̇), applying a 200 Hz zero-

order-hold, and adding noise (3.49e-3 rad/sec variance) with a bias of 0.01 rad/sec to reflect the fact that the gyroscope 

calibration tends to drift over time.  Since the accelerometer is aligned with the body axes of the quadrotor, the acceleration 

signals (𝑥̈, 𝑦̈, 𝑧̈) must be rotated by the Euler angles.  The influence of gravity (+1 g aligned with the 𝑧 axis) is added to the 

acceleration signals before they are rotated.  After the rotation, random noise with a variance of 1.5e-4 g is added to the 

signals.  Since the ultrasonic transducer measures distance to the ground below the AR.Drone 2.0 (assumed to be a smooth 

horizontal plane) and is aligned with the vertical body-axis of the quadrotor, the roll and pitch angles (𝜑, 𝜃) of the vehicle 

will influence this measurement and cause it to deviate from the true value of height above the ground.  Prior to the 

addition of random noise, the signal 𝑧 is divided by the cosines of 𝜑 and 𝜃, thus calculating the distance to a horizontal 

plane along the vertical body axis of the quadrotor. No information could be found regarding the accuracy or measurement 

noise of the ultrasonic transducer, though the update rate is known to be 25 Hz.  The arbitrarily chosen variance used in the 

model corresponds to a 3𝜎 accuracy of 1.2 cm. 

 For the PID controller, the initial condition of the integrator for the altitude controller was set to compensate for 

gravity.  For all simulations, a 3ms input delay was applied between the controller and the system model.  For the results of 

the PID controller (Fig. 1), the three Euler angles settle to -0.01 rad due to the bias of 0.01 rad that was added to the 

gyroscope model.  State estimation results (Fig. 1) show that the estimated values for the Euler angles are driven to zero, 

which confirms that the controllers are acting as intended and the observed tracking errors are primarily due to state 

estimation errors.  Both quantitatively and qualitatively, the simulated performance of the input-based MFSMC algorithm 

(Fig. 2) and the state-based MFSMC algorithm (Fig. 1) are very similar, and are thus addressed collectively.  Like the PID 

results, the three Euler angles settle to nonzero values for the MFSMC simulation results.  Unlike the PID results, however, 

this cannot be directly attributed to errors in state estimation since Fig. 1 shows that the controllers do not drive the 

estimated trajectories to zero as was the case with PID.  When the simulation was run with the gyroscope bias set to zero, 

steady-state error for the Euler angles was reduced but still present.  A possible solution is to make the controller more 

aggressive by increasing the parameter 𝜆 from its current value of 1.  Further simulations showed that the system becomes 

marginally stable with unacceptable oscillations for a value of 𝜆 = 2 and completely unstable for larger values. 

 

 
Fig. 1: Overlay of simulation results for the PID-based, input-based MFSMC, and state-based MFSMC flight controllers.  The left four 

plots show the tracking of system states with desired trajectories. The right four plots show the performance of the state estimation 

algorithm and therefore the feedback data to the controllers. 
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4.4. Flight Testing 
 With simulation results indicating that the performance of both the input-based and state-based MFSMC algorithms 

was essentially equal, the state-based algorithm was (arbitrarily) selected for hardware implementation.  Testing (including 

final tuning of the controllers) was conducted outdoors inside a netted enclosure.  Most flights exhibited significant 

instability.  Data from the best flights using each controller are shown in Fig. 2.  For these flights, the quadratic means of 

the tracking errors are significantly worse than the same values from the simulations outlined in Section 4.3.  It is of 

significant note that the tracking errors for the simulations were calculated from the true values of the states, rather than 

from the estimated values as is the case for the hardware results.  As was seen with the results of the simulated state 

estimation algorithm, the estimated values of the states can exhibit significant error in certain conditions.  Comparing the 

performance of the MFSMC controller to the PID controller, the MFSMC controller does a better job tracking the desired 

altitude trajectory, while the PID controller performs better at tracking roll and pitch angles.  Regardless of the quantitative 

performance metrics, neither controller yielded satisfactory tracking, though that does not mean they could not be tuned to 

improve performance. 

 The instability observed in the performance of the MFSMC flight controller (Fig. 2) cannot be fully explained or 

attenuated since the system has not been fully characterized.  With knowledge of the dynamics at play, it may be possible 

to elucidate the interactions causing the observed oscillations and instability, and to design methods for their elimination.  

A critical oversight is the lack of validation for the state estimation algorithm.  The simulated performance of the state 

estimation algorithm shows that significant errors are possible, most notably in the estimated roll and pitch angles.  If these 

or other state estimates are significantly disparate from their true values, then the state estimation algorithm has the 

unintended effect of adding unknown dynamics in the feedback loop of the system.  Since simulations using the same state 

estimation algorithm as the hardware implementation showed significantly better performance than the hardware results, it 

may well be the case that additional factors are adversely affecting the performance of the controller.  These factors could 

include measurement delay, input delay, missed samples, poor sensor calibration, unmodeled sensor or system dynamics, 

or exogenous disturbances.  Future development of MFSMC algorithms should focus on proper tuning and disturbance 

mitigation techniques, while future work for the quadrotor application should focus on the design of state estimation and 

guidance algorithms. 

 

 
Fig. 2: Comparison of tracking performance achieved by the PID-based and state-based MFSMC flight controllers running on the 

AR.Drone 2.0. 

 

In the light of the work presented herein, the continued development of practical MFSMC algorithms has a clear path 

forward.  The state-based MFSMC algorithm, shown by Eqs. (13) and (14), has been shown to be realizable and capable of 

controlling a quadrotor.  Simulations have indicated that with improved state estimation and guidance algorithms, the 

performance of a MFSMC flight controller can approach or exceed that of a PID-based flight controller without the tedious 
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tuning process.  Another significant result is that the input-based MFSMC algorithm and the state-based MFSMC 

algorithm have been shown to provide nearly identical performance in simulation. 

 

5. Conclusion 
Model-Free Sliding Mode Control (MFSMC) algorithms have been shown to be realizable despite the effects of 

discretization, delay, measurement noise, actuator dynamics, and imperfect state estimation.  Application of MFSMC 

algorithms to the control of a quadrotor was selected for study not because of a need for the high performance or 

disturbance rejection often touted of SMC algorithms, but because of the supposed ease of implementation compared to 

conventional control algorithms (e.g., PID).  Indeed, real-world testing of the quadrotor flight controllers confirmed that 

MFSMC is realizable and requires very little tuning compared to PID, but underscored the need for accurate state 

estimation as well as complete characterization of the behavior and tunability of MFSMC algorithms.  While both PID and 

MFSMC based flight controllers did allow the quadrotor to fly autonomously, their performance was marginal at best, and 

likely unsuitable for most applications. 
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