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Abstract - This paper describes a multiscale time-domain technique for evaluation of gait status of patients who are suffering from 

diseases such as stroke. This technique is based on variance fractal dimension trajectory (VFDT) algorithm that is applied to a shank 

acceleration signal. The signal is collected via an inertial measurement unit (IMU). However, its sampling frequency is not constant, 

and therefore interpolation is employed. Next frame size and step size are chosen properly to guarantee that the signals within all 

frames are stationarity. Next in order to avoid aliasing phenomenon, Nyquist theorem is checked. Finally VFDT is calculated and error 

is estimated. Results show that paralyzed legs have higher dimension values than healthy ones. 
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1. Introduction 
Stroke, as one of the most severe diseases, could cause patients chronic disability. With the help of automatic training 

systems such as robotic exoskeleton, patients could recover partial or even full walking ability. Therefore, it is necessary to 

monitor and evaluate their gait status continuously in order to make sure that whether further treatments could be 

employed. However, to carry out such evaluation is always inconvenient because the injured patients have to move 

between their houses and hospitals. Recently, inertial measurement units (IMUs) are commonly used to solve the problem 

because they are portable and data could be collected remotely.  

After obtaining data, several evaluation methods have been studied on healthy subjects considering walking speed [1, 

2], stride frequency [3], human kinematic [4], and age differences [5]. The gait evaluation on paralyzed patients has also 

been further conducted [5-8].  

The features used for classification could be extracted from time domain, frequency domain or time-frequency 

domain. Frequency features, such as mean frequency, median frequency and power spectrum deformation, are not strong 

enough to distinguish healthy lags with paralyzed ones because human could walk at variable speed with changing 

frequency even a person is paralyzed. In time domain, most of features such as statistical parameters are calculated based 

on single scale. Fractals, on the other hand, employ multi-scale measures and poly-scale analysis, and therefore could 

extract more useful features for classification. Morphological-based dimensions are suitable if distribution of a measure is 

uniform because it treats each intersection equally without considering the structure of the object itself. The spectrum-

based dimension is calculated in frequency domain and may introduce artifacts due to Fourier transform. The variance 

fractal dimension (VFD) was introduced by Kinsner [9] as a polyscale measure of the long-range dependencies in a signal. 

The VFD ignores the signal power while measuring the signal complexity, and is calculated in a stationary frame within 

collected data. By shifting the frame along the recorded data, a trajectory of VFD (VFDT) can be obtained. 

The VFDT algorithm has been applied to various fields for classification. For example, Kinsner and Grieder [10, 11] 

used the VFDT to detect external boundaries and internal pauses in speech, and identify internal phonemes of an utterance.  

Jiao et al. [12] used this technique to distinguish various seismic refraction signals from noise. Barry and Kinsner [13] 

applied the VFDT for classification of telecommunications traffic. 

This paper calculates VFDT of a shank acceleration signal to evaluate human walking ability. The remainder of this 

paper is organized as follows. Section II tests the signal stationarity. Section III examines Nyquist theorem. Section IV 

calculates VFDT. Conclusions are provided in Section V. 
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2. Stationary Test Using Moving Window Technique 
As shown in Fig. 1, the shank acceleration is collected by an IMU. And the sampling interval of the signal is 

shown in Fig. 2. It is seen that the internal is changing from 0.013 to 0.5 seconds. Because cubic spline interpolation 

could produce the smoothest results and has been applied to many cases [14, 15], it is implemented to get a constant 

sampling frequency (fs =10 kilo samples per second, kSps). The interpolated signal is shown in Fig. 3. It includes 

many processes such as background noise (region A), healthy walking (region B) and paralyzed walking (region C). 

And their details are shown in Fig. 4. 

 

IMU

 
Fig. 1: Typical photo of measuring shank acceleration using IMU.  

 

 
Fig. 2: Sampling interval of collected acceleration signal. 

 

Before analyzing the signal, stationarity test must be implemented. Stationary signals are referred to those whose 

statistics do not change with time. Especially, the signal is considered to be wide-sense stationary if its mean and 

autocorrelation are constant. The shank acceleration signal is nonstationary because it includes different processes. 

Therefore it is necessary to segment the whole signal into small stationary frames. 
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Fig. 3: Interpolated acceleration signal. 

 

In order to guarantee that signal within all moving frames is stationary, frame size and step size must be selected 

carefully. Large frame size could improve stationarity; however, it takes longer time to detect changes occurring in the 

signal and the signal within frames is easier to be blurred. So the longer frame size, the weaker local information can be 

revealed. Too small overlap could cause redundant calculations. Too large overlap causes the loss of detailed information. 

With frame size of 65536 (6.55 s), and overlap=30000 (3 s),  for 77% of frames, the variation in normalized mean is less 

than 20% and for 91% of frames, the variation of autocorrelation for more than 80% of lags is less than 0.4. Therefore the 

process is stationary with about 80% confidence interval. 

 

3. Nyquist Test 
FFT (Fast Fourier Transform) was implemented on the worst stationary frame, as shown in Fig. 5. It is a broadband 

signal, and according to Nyquist sampling theorem, sampling rate fs should be at least twice than the highest frequency fh. 

In order to find white noise, a first-order polynomial is used for data fitting from 4 k samples/second to fs/2. The fitted line 

has a slope of 0.00001. Therefore fh =4 kSps and Nyquist criterion is satisfied. It means than spectral replications are 

separated and spectral overlapping is avoided. 

 

4. Variance Fractal Dimension Trajectory 
In order to evaluate gait status, VFD should be calculated on each stationary frame. Therefore a trajectory of VFD 

(VFDT) is formed. 

 
4.1. Calculation of VFD for a Frame 

Details of calculating VFD for a frame is provided somewhere else [9-13]. Signal increment for j
th
 vel at k

th
 step is  
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where B (t2jk) and B (t1jk) are the magnitudes of selected data points at time t2 and t1 for j
th
 vel at k

th
 step respectively. These 

selected points constitute a vector, and the distance between adjacent data is △tk, which is the vel size at k
th
 step and equal 

to t2jk - t1jk. The variance of all △Bjk at k
th
 step is 
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In (2), Nk is the number of vels at k
th
 step. When △tk ≥2, in order to use all data points, it is necessary to use the other 

vectors by shifting the elements of the above vector by 1, 2, 3…△tk-1 and calculate the variance of each vector according 
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to (2). The average valve of these variances will therefore be 
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Fig. 4: Details of Fig. 3. (a) Region A: standing still (noise signal). (b) Region B: healthy walking. (c) Region C: simulated paralyzed 

walking. 

1 6 11 16 21 26
-0.2

0

0.2

0.4

Time [s]

A
c
c
e
le

ra
ti
o
n
 [

m
2
/s

]

0.1 0.6 1.1 1.6 2.1 2.6

x 10
5

Sample number

10
5

     26

32 37 42 47 52
-1

4

9

14

19

Time [s]

A
c
c
e
le

ra
ti
o
n
 [

m
2
/s

]

3.2 3.7 4.2 4.7 5.2

x 10
5

Sample number

10
5

       52

130 135 140 145 150 155
-1

9

19

29

39

49

Time [s]

A
c
c
e
le

ra
ti
o
n
 [

m
2
/s

]

1.3 1.35 1.4 1.45 1.5 1.55

x 10
6

Sample number

     155

10
5



 

 

 

 

 

128-5 

 
Fig. 5: Power spectral density of worst stationary in Fig. 3. 
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Fig. 6: Flow chart to calculate VFDT. 

 

Then the slope of the average variance Var(△B)k-average verses vel size △tk in a log-log scale is obtained as follows 
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where 
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(5) 

Variance fractal dimension is therefore defined as 
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where H is Hurst exponent, 
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In this paper, △tk = 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 28 until 2044. The flow chart to calculate VFD is shown in Fig. 6.  

 

4.2. Calculation of VFDT for All Frames 
Implementing the above algorithm to each frame of the acceleration signal shown in Fig. 3, VFDT could be obtained 

and is shown in Fig. 7. It is obvious that healthy legs have low dimension value than paralyzed ones, while the background 

noise has the highest value. This is because VFD is low for a correlated signal, whereas it maintains high value for 

uncorrelated noise. 

  

 
Fig. 7: VFDT of the shank acceleration signal. 

 

The RMS error between all Var(△B)k-average and estimated slope for all the frames is shown in Fig. 8. For 99% of 

frames, RMS is less than 0.45.The average variances at different scales and estimated slope of a selected frame whose 

RMS error is 0.45 are shown in Fig. 9. From Fig. 9, Var(△B)k-average exhibits multifractal because interpolation was 

employed on the original data. 
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Fig. 8: RMS=0.45 (For 99% of frames, RMS is less than 0.45). 

 

 
Fig. 9: Average variances at different scales and estimated slope of a selected frame whose RMS error is 0.45. 

             

5. Conclusions 
A VFDT of a shank acceleration signal obtained from IMUs was calculated to monitor and evaluate leg conditions.  

Because VFD had to be calculated on stationary frames, frame size and step size must be selected properly, considering 

stationary levels, rapidity to detect signal changes, signal blurring, information integrity and calculation speed. In order to 

use all collected data points, averaging variances of signal increment at different scales was employed. This technique 

could produce reliable and repeatable results, because the variation in the variances is large. 

Our results show that the VFD of injured legs was high because the acceleration signal was not strongly correlated. 
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