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Abstract - This paper presents a simple and robust non inversion-based perfect tracking control strategy for robot manipulators. 

The proposed approach is capable to eliminate the environmental problems arising from classic feedforward control design and so 

guarantees an appropriate level of robustness of control system to uncertainties including external disturbances, un- modeled 

dynamics, and parametric uncertainty. Extensive simulation results performed using a two degree-of-freedom actuated elbow 

robot prove the effectiveness of the proposed approach. Using free model of system in control law design is a considerable point 

in the field of robot manipulator control. 
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1. Introduction 
Conventional model-based feed forward control (FFC) fails to produce good trajectory tracking performance, in 

presence of uncertainties such as system parameter variations, external disturbance, friction force and unmodeled 

dynamics. Some of inherent weaknesses of this approach have been mentioned in reference [1]. More ever, 

application of this control methodology as a standard approach for linear systems has made it unsuitable for nonlinear 

systems. The main reason for this sensitivity refers to necessity for solving partial differential equations for obtaining 

the feed forward path signal [2]. On the other hand, using of this approach for digital control systems encounters with 

a few difficulties. Because discretization process by zero-order holds usually leads to a discrete-time system with at 

least one notorious unstable zero in out of unit circle [3], thus the feed forward branch becomes unstable and 

consequently, its realization will become impossible. Existence of this zero, also leads to many other lateral problems. 

As a sample we can mention significant phase errors over a broad range of frequencies, which cause problems in 

adaptive controller design [4]. Therefore, many attempts have been made by researches to overcome on the mentioned 

problems over the last decade [3-15]. However, all of these studies are based-model and need solving the complicated 

equations. This work attempts to address a unified digital feed forward control scheme for a 2 degree of freedom 

robotic manipulator using linear state feedback and without needing any additional control method. An analytical 

consideration for tracking problem is presented including free model of plant for controller design. The paper is 

organized as follows: The motion equations of the system and model-free digital control design are constructed in 

section 2. Stability analysis and simulation results are presented in section 3 and 4 respectively and conclusions are 

drawn in section 5. 
 

2. Model-Free Digital Control 
Consider motion equations of an integrated actuator-robot system described in the joint space as below [16] 
 

 
 

(1) 

 

where, q is the n×1 vector of generalized joint coordinates, ( )D q is the inertia matrix,  is the vector of 

centripetal and Coriolios terms, ( )G q is the vector of gravitational torques,  is a constant matrix and u  is the control 

input vector. In addition, ( )D q  and  are nonsingular matrices. It can easily be shown that, by introducing appropriate 
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state variables and simple manipulations Eq. 1, a non-linear, time-variant, continuous-time control system, can be 

described by the following model 
 

  (2) 

 y C x  
 

 

(3) 

 

where 

 

 

 

(4) 

 

where x is a 2n  1  state vector, y is the n×1 output vector, and 0 and I are the n×n zero and identity matrices, 

respectively. Also, Ax,0, Ax,1 and Bx,0 are defined as follows: 
 

 

 

 
 

(5) 

 

Easily can be shown that, Eq. 2 can be rewritten as 

 

  (6) 

 

where   is the vector of uncertainties including external disturbance, and unmodeled dynamics, and A, B and C 

matrices are given by 

 

 0 0
,    

0 0

I
A B

I

   
    
   

 (7) 

 

Discritization process by zero order hold leads to a discrete-time form of Eq. 3 and Eq. 6 as below 

 

 ( ( ) ( ) ( )1)k k k kx Gx Hu   
 

 

(8) 

 

 ( ) ( )y k Cx k
 

 

(9) 

 

Now, we design a linear control law of the form 

 

 
0( ) ( ) ( )u k kx k k r k    (10) 

 

where k and k0 are constant. It must be noted that ( )r k  is the robustifying control input, such that it leads to 

minimization of the tracking error. By substituting Eq. 10 into Eq. 8 we will have: 

 

   0( 1) ( ) ( ) ( )x k G Hk x k Hk r k k      (11) 

 

Now we develop an algorithm to adjust ( )r k . Toward this end, suppose that the desired closed loop state 

equations are given by: 
 

   0( 1) ( ) + ( )d d dx k G Hk x k Hk r k  
 (12) 
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d d( ) ( )y k Cx k  (13) 

 

where ( )dr k  and d ( )y k  are the desired trajectory and desired output in joint space, respectively. It must be noted that, 

the coefficient vector k is designed so that, d ( )y k  agreeably follows ( )dr k . For continuation of this subject, let us 

introduce the following transformation: 
 

 
d( ) ( ) ( )k y k y k @

 
 

(14) 

 

 ( ) ( ) ( )de k x k x k@
 

 

(15) 

 

 v( ) ( ) ( )dk r k r k@  (16) 

 

By these assumptions, Eq. 11, 12 in new coordinates becomes 

 

  ( 1) ( ) + v( ) ( )0e k G Hk e k Hk k k   
 

 

(17) 

 

 ( ) C ( )k e k   (18) 

 

Now, by considering linear system properties, we arranged a difference equation as follows 

 

  

1

( 1) ( ) ( )

( ) ( )

0
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k p k p j
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Where 
 

 

1
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p

j
j

p

j
j

k j

k j

k e k b e

k k b









  

 



=

 (20) 

 

Here, if we assume, ( )k can be modeled by a p-order difference equation as below, where order p reflects the 

dynamic structure of ( )k , we will have 

 

1

( ) ( )
p

j
j

k p k p jb


      (21) 

 

The continuous-time form of this assumption has been addressed in [17]. In the next step, we define a digital 

control law as follows 
 

 
0( ) ( ) ( )k p k p j k p       

p

j
j=1
-

 

 

(22) 

 

Substituting the last equation in Eq. 19 we obtain 
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  01( ) ( )

( )
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j
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 (23) 

 

whereas ( )k , )(k  are functions of tracking error )(ke , therefore by proper selection of closed-loop system poles we 

can guarantee that )(ke  converges to zero asymptotically. Finally, we adjust r(k) in Eq. 11,  from Eq. 16.  

Therefore, we used a 2-stage approach for digital feed forward control design. First, we designed an inner state 

feedback control for tracking of reference input )(kr  by output )(ky  (based on desired state design). Then we utilized 

an outer state feedback control to suppress effects of uncertainties. It is useful to note that, good tracking accuracy can 

be achieved with order p=1 or 2 [19].  The block diagram of the proposed scheme is depicted in Fig. 1. 

It is its turn now that, we show the proposed approach above, is cancelling the disturbances in a feed forward 

combination and does not need any lateral control scheme. In other word, by completing the proposed approach 

instead of classic feedforward form, we will have more tranquillity. Toward this end, the z transform of equation (11) 

is obtained as follows 
 

    
1

x( ) (0) ( ) ( )0X z ZI G k r z zHk


   H  
 

(24) 

 

where ( )X z  is z transform of ( )x k . Furthermore the z transform of equation (12) is defined as 

 

   - Z( ) ( ) (0)0 d d dk r z ZI G Hk X z   xH  (25) 

 

With multiplication extremes of equation (16) in 0kH  we will have: 

 

 
Fig. 1: Model free digital feed forward control scheme. 

 

 ( ) v( ) ( )0 0 0 dk r z k z k r z +H H H  (26) 

  
Also, z transform of equation (22) and (20) under initial condition e(0)=0 is given by 
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(27) 

 

where ( )e z  and ( )v z  are z transform of ( )e k  and ( )v k , respectively. Hence 
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(28) 

 

where ( )e z  is defined as: 

 

 
d( ) ( ) ( )X Xe z z z 

 
 

(29) 

 

In addition, equation (28) can be rewritten in the form 

 

 ( ) ( ) ( ) ( , )v z z e z k z  -  (30) 

where 
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(31) 

 

Multiplication extremes of equation (30) in HK0 yields 

 

 v( ) ( ) ( ) ( , )0 0 0k z k z e z k k z   -H H H
 (32) 

 

Finally, using Eq. 25, Eq. 26 and Eq. 32, the feed forward scheme becomes complete. In proposed approach, the feed 

forward branch is inversion of controlled process by state feedback theory, (ZI-G+HK). The equivalent block diagram 

of the proposed scheme is shown in Fig 2. 

 

3. Stability Analysis 
Here we will show the proposed approach above leads to a stable scheme in presence of disturbances. Toward this 

end, Substituting Eq. 25, Eq. 26, Eq. 32 into Eq. 24 leads to: 
 

 1
( (

,

( ) ( )) ( )

( ))

0

0

e ZI G k

k k

z k z z

z


  

 

  HH

H
 (33) 

 

By proper selection of eigenvalues for outer control loop, ,( )0k k zH  term for rejecting of uncertainties, final 

theorem, and also notification of this point of view that, good tracking accuracy can be achieved with low uncertainty 

model error (p=1 or 2), thus the proposed approach is stable and tracking error tends to zero asymptotically[18]. 
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1
( ) lim(1 ) ( )ss

z
e t Z e z


   .  (34) 

 

4. Simulation Results 
In order to demonstrate usefulness of the proposed controller, we used a 2-link elbow robot manipulator for 

digital simulation, under 10 ms sampling simulation time. The major steps of the proposed algorithm can be 

summarized as bellow: 

- The desired trajectory is specified as follows 

 

 
cos( ) ,   t 0a t a

T


      (35) 

 

where we set 0.5a rad , and 2secT   

- Calculating the state feedback vector k as Table-1 

- Modeling of uncertainty by a pth-order difference equation, set the uncertainty equation to zero and finally obtain bj. 

In this step, if we choose p=1 for the uncertainty, we will have 
 

 
1( 1)  k0           0( )k b k      (36) 

 

 
Fig. 2: Equivalent form of Model free digital feed forward control scheme. 

 
Table 1: Gains of the Controllers. 

 

Joint k 

1, 2   [22100      189.5]  

 

By these assumptions, b1 is set to zero and consequently, ( )k is obtained as an arbitrary constant at the time 

zero. 

- Calculation of state feedback vector μ as Table-2 

In the simulation, we set the masses and lengths of link 1, 2 as m1 = 17.4kg, m2 = 4.8kg, l1 = 0.4318m, l2 

=0.4318m, respectively. Also, the true actuator dynamic coefficients are defined as: R=1.086Ω, L=.01216H, 

km=0.189, kb1=0.189, bm=0.02, jm=0.05 and r=0.02. Based on aforementioned expressions, Fig. 3 depicts tracking 

error of all joints for assumed model-free system with Eq. 12. In this manner the motors voltage obtained as Fig. 4. To 

show the ability of this approach in presence of external disturbances (external load torques on the motors shaft) and 

model uncertainties, we obtained the technical limits such as, torque limit, tracking error , voltage limit and control 

signal as Fig. 5 to Fig. 8, respectively. As can be seen, tracking error, shown by Fig. 6, is bounded and so the 

proposed approach leads to asymptotic stability. Simulation results show that the robot can be effectively controlled 

and robustified subject to uncertainties based on using a free model of plant as seen in Fig.9.  
 

Table 2: Gains of the Controllers. 

 

Joint μ 

1,2 [0.0065    0.0148    0.0003] 
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Fig. 3: Tracking error. 

 

 
Fig. 4: Voltages of motors. 
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Fig. 5: load torques. 

 
Fig. 6: Tracking error subject to disturbances. 

 

 
Fig. 7: Voltages of motor subject to disturbances 

 

 
Fig. 8: Control signal 
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Fig. 9: System response 

5. Conclusions 
A model-free digital control scheme proposed for motion tracking control of robotic manipulator with 

unstructured uncertainty. This controller design is extended form of our previous wok in continuous-time systems. 

The main advantages of the proposed approach are simplicity, practicably, and low computation burden of this 

method to control robotic manipulator systems. 
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