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Abstract - This paper addresses the use of robust control technique ASMC for nonlinear multiple input multiple output RRRP 

manipulator arm precisely to be used for EOD robots in the presence of parametric uncertainties and external disturbances. In the 

proposed scheme for control law, model parameters are assumed unknown and are estimated via adaptive laws. Stability of the 

proposed controller is proved via Lyapunov theory and tracking of the desired path is guaranteed. Advantage of ASMC over other 

techniques is, the availability of a priori information about the upper bounds of the uncertainties are not required. Extensive simulations 

are carried out to show the effectiveness of the proposed controller compared to standard SMC. 
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1. Introduction 
Explosive Ordnance Disposal (EOD) robot is a mobile robot, used as an alternate for human bomb disposer, in order 

to carry out detection, identification, rendering and disposing of unexploded explosive material during EOD operations to 

minimize the risk of human life [1]. The basic operational unit of EOD robot is manipulator arm, which precisely locates 

the end effector to the desired position. This paper proposes RRRP mechanism, which comprises of three revolute and one 

prismatic joint at its forearm, making it a four DOF robotic manipulator. The advantage of RRRP manipulator over other 

manipulators is the addition of prismatic joint at manipulator’s forearm that serves the purpose of maximising the 

versatility of manipulator while working EOD operations in narrow places where there is no sufficient space available for 

the rotation of links. Practically the manipulator systems are highly nonlinear, coupled, time variant and complex. 

Manipulator also contains parametric uncertainties and external disturbances. Robust techniques are required to withstand 

these uncertainties and disturbances.  

A number of techniques have been introduced in the literature for the control of manipulators. Most of these 

techniques are based on linearizing manipulator dynamic models. Linearized model control techniques like PD, PID and 

Feedback linearization discussed in [2, 3 and 4], H∞ control and linear parameter varying technique (LQR/LQG) have been 

discussed in [5]. Stability and performance of these control techniques can be assured by the analytical framework however 

neglecting model parametric uncertainties and external disturbances lead to degradation in performance of these 

controllers. A number of nonlinear controllers have also been proposed by researchers, such as dynamic inversion model, 

which replaces the system’s original dynamics by user-defined dynamics, and ensures stability and performance by 

removing the system nonlinearities; however a major drawback of this technique is that during cancelation the information 

regarding the nonlinearities of system is lost so the robustness of the controller is degraded as described in [6]. Back 

stepping is another nonlinear control technique described in [7], which deals with the parametric uncertainties of the 

system by doing online parameters estimation, a major drawback of this method is the computation of regression matrix 

also it only guarantees ultimate global asymptotic stability when the disturbance is not varying with time. 

SMC and ASMC are the nonlinear robust control techniques to tackle with the above problems. SMC is a control 

technique where we need to drive the error to the sliding surface after which the system is in sliding mode and is not 

affected by external disturbance or model parametric uncertainty, a well-known problem with ideal SMC is that of 

chattering [8]. A well-established method to solve the problem of chattering is to use SMC with signum function replaced 

by saturation function [9]. In SMC sliding surface is designed that models the desired performance in state space, followed 
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by controller design comprising of two parts, equivalent controller and sliding controller. Equivalent controller ensures 

system state trajectories move to sliding surface and sliding controller is designed to keep the state trajectories on that 

surface for all future time. Previously SMC and ASMC were proposed for nonlinear systems but the approaches were 

applied only to simple nonlinear systems [10, 11] or the upper bounds were assumed to be known [12].  

In this paper ASMC is proposed as robust technique to control a nonlinear multiple inputs and multiple outputs EOD 

RRRP robotic manipulator system with uncertainties both in system dynamics and its input distribution gain. ASMC is the 

extension of SMC that can adaptively adjust the controller gain. The advantage of such approach is its robustness to 

parameter variations and disturbances [13, 14] and it doesn’t require any a priori information about upper bounds.  

The rest of this paper is organized as follows: mathematical modelling of system is carried out in section 2, 

followed by design of ASMC in section 3, section 4 contains the simulation results and discussion while the paper 

ends with the conclusion section. 

 

2. System Modelling 
Mathematical modelling of robotic manipulators starts with frame assignment to the joints, keeping that in view the 

frame assignment was carried out for our system as shown in fig. 1. 

 

 
Fig. 1: Frame assignment to RRRP manipulator. 

 

Denavit—Hartenberg (DH) notation parameters are found using method given in [15] shown in table 1. 

 
Table 1: Denavit—Hartenberg parameters for RRRP manipulator. 

 

Joint 𝒂𝒊−𝟏 𝜶𝒊−𝟏 𝒅𝒊 𝜽𝒊 

1 0 00 0 𝜃1 

2 0 900 0 𝜃2 

3 𝑙2 00 0 𝜃3 

4 𝑙3 900 𝑑4 00 
 

Using this DH parameters table the transformation matrices ( 𝑇)𝑖
𝑖−1  between the joints were calculated from those 

transformation matrices the subsequent rotation matrices ( 𝑅𝑖
𝑖−1 ) and position vectors ( 𝑃𝑖

𝑖−1 ) were found using method 

shown in [15]. Using Newton Euler method and plugging in the previously calculated matrices and vectors the kinematic 

and dynamic equations for the robotic arm were obtained.  Final dynamical equations also known as the torque equations 

were found and given in appendix A. The mass matrix 𝑀(𝑞̈), velocity vector 𝑉(𝑞, 𝑞̇)
 
 expressing the Coriolis, centrifugal 

forces and gravity vector 𝐺(𝑞) are extracted from torque equations according to the method given in [15] and generally 

written as:  

 

𝜏 = 𝑀(𝑞)𝑞̈ + 𝑉(𝑞, 𝑞̇) + 𝐺(𝑞) (1) 

  

where  𝑞 = [𝑞1 𝑞2 𝑞3 𝑞4]𝑇, 𝑞1 = 𝜃1, 𝑞2 = 𝜃2, 𝑞3 = 𝜃3 and 𝑞4 = 𝑑4. where 𝜃 is joint angle and 𝑑 is link offset 
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Finding acceleration from Eq. (1) gives: 

 

𝑞̈ = 𝑀(𝑞)−1(𝜏 − 𝑉(𝑞, 𝑞̇) − 𝐺(𝑞)) (2) 

  

Converting into state space, let 𝑥1 = 𝑞1, 𝑥2 = 𝑥̇1, 𝑥3 = 𝑞2, 𝑥4 = 𝑥̇3, 𝑥5 = 𝑞3, 𝑥6 = 𝑥̇5, 𝑥7 = 𝑞4 and 𝑥8 = 𝑥̇7. System 

modelling equation containing parametric uncertainties and external disturbances is written as: 

 

𝑥̇ = 𝑓(𝑥) + ∆𝑓(𝑥) + (𝑔(𝑥) + ∆𝑔(𝑥))𝑢 + 𝑤  

𝑦 = ℎ(𝑥) (3) 

  

where 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8]𝑇 represents state vector, 𝑦 = [𝑥1 𝑥3 𝑥5 𝑥7]𝑇represents output vector, 𝑓(𝑥)  and 

𝑔(𝑥) represent nominal parts of the system, ∆𝑓(𝑥) and ∆𝑔(𝑥) represent variations and uncertainties in parameters and 𝑤 

represents external disturbances. 

 

3. Design of Adaptive Sliding Mode Control 
Uncertainties in system dynamics and external disturbances are unknown in practical systems, the upper bounds of 

uncertainties are very hard to find. Therefore we need a robust technique that does not required a priori information about 

the upper bounds of system uncertainties. For this purpose we have used adaptive sliding mode control approach which is 

most robust and can adaptively adjust the controller gain without any a priori information about the parametric 

uncertainties of system. Adaptive sliding mode controller is comprised of two parts, one deals with nominal system and the 

other controls system parameter variations and external disturbances. In adaptive SMC first step is defining sliding surface, 

assumed to be: 

 

𝑠 = 𝐶𝑇𝑒 (4) 

 

where 𝐶 = 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑛 are positive constants and 𝑒 = [𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛]𝑇are errors between actual and desired 

states, n is order of the system. 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑛 are selected ensuring the polynomial 𝑐𝑛𝛾𝑛−1 + 𝑐𝑛−1𝛾𝑛−2 + ⋯ + 𝑐1 
must be Hurwitz. Decaying rate of tracking error can be changed by changing value of 𝑐. Our main goal is to track the 

desired output states, let us consider the desired trajectories for RRRP manipulator are: 

 

𝑥𝑑 = [𝑥𝑑1 𝑥𝑑2 𝑥𝑑3 𝑥𝑑4]𝑇 = [sin(𝑡) cos(𝑡) sin(𝑡) cos (𝑡)]𝑇 

 
(5) 

Error vector is given as: 

 

𝑒 = [𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 𝑒8]𝑇 = [𝑥1 − 𝑥
𝑑1

 𝑒̇1 𝑥3 − 𝑥
𝑑2

 𝑒̇3 𝑥
5

− 𝑥𝑑3 𝑒̇5 𝑥
7

− 𝑥
𝑑4

 𝑒̇7]𝑇 (6) 

Sliding surfaces are: 

 

𝑠 = [𝑠1 𝑠2 𝑠3 𝑠4]𝑇 = [𝑐1𝑒1 + 𝑐2𝑒2 𝑐3𝑒3 + 𝑐4𝑒4 𝑐5𝑒5 + 𝑐6𝑒6 𝑐7𝑒7 + 𝑐8𝑒8]𝑇 (7) 

 

𝐶, 𝑓(𝑥) and 𝑔(𝑥) are given as:  
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To fulfil our objective for tracking the desired trajectories on Lyapunov base stability let the controller be: 

 

𝑢 = 𝑢𝑛𝑜 + 𝑢𝑠 

𝑢𝑛𝑜 = −(𝐶𝑇𝑔(𝑥))
−1

(𝐶𝑇𝑓(𝑥) − 𝐶𝑇𝑥̇𝑑) 

𝑢𝑠 = −(𝐶𝑇𝑔(𝑥))
−1

∅̂𝑠𝑔𝑛(𝑠) 

 

(8) 

 

𝑢𝑛𝑜 deals with the nominal part of system and  𝑢𝑠 is the adaptive term. To reduce the chattering phenomenon we 

replace 𝑠𝑔𝑛(𝑠) by 𝑠𝑎𝑡(𝑠/𝜖), where 𝜖 is a thin boundary layer that (8) become: 

 

𝑢𝑠 = −(𝐶𝑇𝑔(𝑥))
−1

∅̂𝑠𝑎𝑡(𝑠/𝜖) 

 
(9) 

where ∅̂ is the adjustable gain, for which adaptation law is given as: 
 

∅̇̂ =
1

𝜎
‖𝑠‖ (10) 

 

The adaptation gain 𝜎 can tune the speed of ∅̂ that must be greater than zero. To confirm the control law let consider a 

positive number  ∅𝑑 must fulfil ∅𝑑 > |𝐸(𝑥, 𝑢)| for terminal solution 𝑢𝑠 = −∅𝑑(𝐶𝑇𝑔(𝑥))
−1

𝑠𝑔𝑛(𝑠). Considering 

adaptation error ∅̃ = ∅̂ − ∅𝑑, lumped uncertainties |𝐸(𝑥, 𝑢)| = 𝐶𝑇∆𝑔(𝑥) + 𝐶𝑇∆𝑓(𝑥)𝑢 + 𝐶𝑇𝑤 and Lyapunov 

candidate function: 
 

𝑉 =
1

2
𝑠𝑇𝑠 +

1

2
𝜎∅̃2 

 

(11) 

𝑉̇ = 𝑠𝑠̇ + 𝜎∅̃∅̇̃ 

= 𝑠(𝐶𝑇𝑓(𝑥) − 𝐶𝑇𝑥̇𝑑 + 𝐸(𝑥, 𝑢) + 𝐶𝑇𝑔(𝑥)𝑢)) + 𝜎(∅̂ − ∅𝑑)∅̇̂ 

 

 

(12) 

 
Substituting (8) and (10) in (12) gives: 

 

= 𝑠 (−∅̂𝑠𝑔𝑛(𝑠) +  𝐸(𝑥, 𝑢)) + 𝑠(∅̂ − ∅𝑑)𝑠𝑔𝑛(𝑠)  

= −∅𝑑|𝑠| + 𝐸(𝑥, 𝑢)𝑠 < 0 (13) 
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Hence through lyapunov stability the convergence of sliding surface and adaptation error is proved, also tracking is 

guaranteed because error converges to zero in finite time. 

 

4. Simulation Results and Discussion 
A set of simulations is carried out on matlab/Simulink for RRRP manipulator arm with the following initiations and 

physical parameters. 

 
Table 2: Initiations and physical parameters. 

 

Articulations Initial position Mass(kg) Length(m) 

𝑞1 0 x X 

𝑞2 0 5 0.5 

𝑞3 0 5 0.5 

𝑞4 0 2 X 

 

𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8 are taken 2,4,3,5,6,8,7,9 respectively, 𝜖 is 0.05 and 𝜎 is 0.2. Simulation results of SMC and 

ASMC for RRRP manipulator system containing uncertainties and disturbances are shown in figures 2 to 5. 

 

 
Fig. 2: SMC trajectories tracking. 

 

 
Fig. 3: Errors between actual and desired states for SMC. 
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Fig. 4: ASMC trajectories tracking. 

 

 
Fig. 5: Errors between actual and desired states for ASMC. 

 
From figures it is clear that the robust control technique, ASMC gives excellent results because of tracking the desired 

path accurately and quickly with negligible errors. Error plots in figs. 3 and 5 show that the tracking errors converge to 

zero very rapidly. Both the transient and steady state errors are very low. Absence of chattering in simulation results is due 

to replacement of signum function with saturation function. Results also show that performance of ASMC is much better 

than SMC in the presence of unexpected disruptive conditions. 

 

4. Conclusion 
In this paper robust nonlinear technique ASMC was proposed for nonlinear multiple input multiple output RRRP 

manipulator arm containing parametric uncertainties and external disturbances. RRRP mechanism was selected due to its 

better performance in narrow spaces. Upper bounds were also not required for ASMC, which is very hard to find in 

practical systems. Chattering phenomenon is eliminated by replacing signum function with saturation function. Simulation 

results proved that the proposed scheme gave excellent performance while withstanding the uncertainties and external 

disturbances.  
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