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Abstract - We address the motion planning problem in non-holonomic robotic systems using the tools of control theory. To this objective 

we associate with the robotic system a control-affine system. The derivative of the end-point map of this control system defines the 

Jacobian of the robotic system. Control functions at which the Jacobian is not surjective are referred to as singular configurations of the 

robotic system. As a description of these singularities we propose normal forms under feedback of the associated control system. On the 

basis of the Jacobian we introduce Jacobian motion planning algorithms. Special attention is paid to Lagrangian Jacobian algorithms.  As 

an illustration of theoretical concepts we analyse normal forms, singularities, and motion planning for a free-floating space manipulator. 

A motion planning problem is solved by a Lagrangian Jacobian motion planning algorithm and, alternatively, by a sinusoidal control 

applied to the normal form. Results of computations show the performance of the two algorithms. 
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1. Introduction 
 The concept of a non-holonomic robotic system refers to robots whose motion is subject to a number of velocity 

constraints that are non-holonomic. Examples of such systems are widespread: they include the majority of mobile robots 

and mobile manipulators. Usually, the velocity constraints have  Pfaffian form, either linear or affine. The former describes 

the kinematics of mobile robots, the latter characterizes the dynamics of free-floating space manipulators with non-zero 

conserved momenta. Contrary to the holonomic robotic systems (robotic manipulators), conceptual tools for the analysis of 

non-holonomic robotic systems have not yet been established in a commonly accepted form. To some extent this results from 

the very nature of non-holonomic systems; for example, the concept of singular configurations for robotic manipulators is 

unique and well known, mathematically covered by   singularity theory of maps, while for non-holonomic robotic systems 

there are two diverse concepts derived from geometric control theory: control distribution (posture) or control function 

(configuration) singularities, not to mention some ad hoc constructions. The main objective of this paper is to show that an 

intertwining of robotic and control theoretical concepts can lay systematic foundations for a theory of non-holonomic robotic 

systems. Basic references inspiring the undertaking of this objective are:  the homotopy method, introduced into robotics by 

Sussmann [1] and developed further in [2–4], theory of geometric and optimal control [5-8],   theory of feedback invariants 

[9], sub-Riemannian geometry [10], theory of linear time dependent systems [11], and last but not least, our own work 

devoted to the Endogenous Configuration Space Approach [12]. 

 We believe that any theory of non-holonomic robotic systems should as far as possible be consistent with the existing 

theory of holonomic robotic systems. To this objective we use the framework of control theory in the following way. Having 

associated with  Pfaffian constraints  a control system, we focus on the end-point  map of this system, a standard concept in 

geometric control and  sub-Riemannian geometry, that transforms control functions into system’s states. Given the end-point 

map, the Jacobian of the robotic system is understood as the derivative of this map with respect to the control function. The 

computation of the Jacobian is done by the linear approximation of the associated control system along a fixed control-state 

trajectory (the associated variational system). It follows that for a given control function the Jacobian is a linear 

transformation of the space of control functions into the state space. Control functions at which this operator is a surjection 

(has full rank) are called regular configurations of the non-holonomic robotic system, otherwise the configurations are 

singular. When dealing with singularities we use the fact that singularities of the end point map are identical with the singular 

controls of the associated control system. Moreover, at regular controls the associated control system is locally controllable. 
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This controllability condition allows then to check  regularity of  configurations. It has been shown that singular 

controls are preserved by feedback. For this reason, in order to characterize singularities of a non-holonomic robotic 

system we propose to exploit normal forms under feedback of the associated control system. By the normal form we 

mean a control system of a very simple form, feedback equivalent to the associated control system. A fundamental 

problem addressed in robotic systems is the motion planning problem. Referring to the associated control system this 

problem amounts to determining a control function that drives the state at a prescribed time to a prescribed point. 

Similarly as for holonomic robots, the motion planning problem in non-holonomic robotic systems can be solved by 

Jacobian motion planning algorithms. A derivation of these algorithms relies on the method of homotopy, that provides 

a solution to the motion planning problem as the limit of a curve in the control functions solving a functional differential 

equation governed by a right  Jacobian inverse. This inverse is often obtained by reference to an optimal control problem 

addressed in the associated variational system. If the objective function of this problem is of Lagrange type, the inverse 

is referred to as the Lagrangian Jacobian Inverse. A general form of his inverse has been derived by means of the 

Pontryagin’s Maximum Principle. Thanks to a considerable freedom in choosing the Lagrangian objective function, the 

Lagrangian Jacobian Inverse is capable of accommodating quite many design requirements imposed on the resulting 

motion planning algorithm. For illustration of our approach  we have chosen the dynamics model of a space manipulator 

designed recently in the Space Research Centre of the Polish Academy of  Sciences [13], [14], called the SRC 

manipulator. The SRC manipulator is a free-floating manipulator composed of a planar mobile base carrying on board 

a 2 DOF planar manipulator, built to be used in experiments with capturing Space debris.  The floating of the SRC 

manipulator preserves the linear and angular momenta, so its centre of mass moves uniformly and rectilinearly.  The 

angular motion of the manipulator fulfils the affine Pfaffian constraints, and can be represented by a control-affine 

associated system whose controls are velocities of the on board manipulator’s joints. For this system we define Jacobian 

and singularities, introduce normal forms under feedback, and solve a motion planning problem by means of a specific 

Lagrangian Jacobian algorithm that distinguishes by a minimum energy of the variational trajectory [15]. As a 

counterpoint, we use a normal form and solve the motion planning problem using the sinusoid control algorithm [16]. 

Computer simulations demonstrate the performance of these algorithms. 

The organization of this paper is the following. Section 2 presents basic concepts, concluding with the Jacobian. 

Singularities, normal forms, Lagrangian Jacobian Inverse, and the motion planning are studied in section 3. In section 4 

we apply the theoretical concepts to the SRC manipulator, and display results of computations. Section 5 concludes the 

paper. 

 

2. Basic Concepts  
 As a point of departure we take a robotic system described by generalized coordinates 𝑞 ∈ 𝑅𝑛 and velocities �̇� ∈
𝑅𝑛, whose motion is subject to a number 𝑙 < 𝑛 of non-holonomic phase constraints expressed in the affine Pfaffian form 
 

𝑨(𝑞)�̇� = 𝑏(𝑞). (1) 
 

Hereabout 𝑨(𝑞) denotes a rank 𝑙, (𝑙 × 𝑛) -matrix-valued function, and 𝑏(𝑞) ∈ 𝑅𝑙; both functions depend smoothly on 𝑞. It 
follows that constraints (1) can be expressed in the form of a control-affine system 

 

�̇� = 𝑓(𝑞) + ∑ 𝑔𝑖

𝑚

𝑖=1

(𝑞)𝑢𝑖 = 𝑓(𝑞) + 𝐺(𝑞)𝑢, (2) 

 

where the state variable 𝑞 ∈ 𝑅𝑛 and the control variable 𝑢 ∈ 𝑅𝑚, 𝑚 = 𝑛 − 𝑙. If 𝑨#(𝑞) denotes a right inverse of  matrix 

𝑨(𝑞)  (i. e.  𝑨(𝑞)𝑨#(𝑞) = 𝐼𝑙,   𝐼𝑙   is the 𝑙 × 𝑙  unit matrix) then in (2) the drift vector field 𝑓(𝑞) = 𝑨#(𝑞)𝑏(𝑞). Control 

vector fields  𝑔1(𝑞), 𝑔2(𝑞), . . . , 𝑔𝑚(𝑞) span the null space 𝐾𝑒𝑟𝑨(𝑞) at every point 𝑞. One may notice that system (2) is not 

defined uniquely, namely, if we use a feedback transforming 𝑢 to 𝑢 = 𝛼(𝑞) + 𝛽(𝑞)𝑣, 𝛼(𝑞) an arbitrary function, matrix 

𝛽(𝑞) of full rank 𝑚, then for 
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𝑓(𝑞) = 𝑓(𝑞) + 𝐺(𝑞)𝛼(𝑞), �̃�(𝑞) = 𝐺(𝑞)𝛽(𝑞), (3) 

 

the control-affine system �̇� = 𝑓(𝑞) + �̃�(𝑞)𝑣 also represents constraints (1). Control-affine system (2) will be referred to as 

the associated control system to the non-holonomic robotic system. The associated system is controlled over a time horizon 

𝑇 > 0. Its admissible control functions 𝑈 = 𝐿𝑚
2 [0, 𝑇]   are Lebesgue square integrable 𝑅𝑚-valued functions of time, defined 

on [0, 𝑇]. For an initial state 𝑞0 and an admissible control function 𝑢(⋅), 𝑞(𝑡) = 𝜑𝑞0,𝑡(𝑢(⋅)) denotes the state trajectory of 

(2). The transformation of an initial state and of a control function into the state variable at the end of the time horizon 
 

𝐻𝑞0,𝑇(𝑢(⋅)) = 𝜑𝑞0,𝑇(𝑢(⋅)) (4) 

 

is called the end-point  map of the associated control system. Relying on an analogy between holonomic and non-holonomic 

systems we treat the control function as a configuration of the non-holonomic robotic system. The derivative of (4) with 

respect to the control function defines the Jacobian of the robotic system, 
 

𝐷𝐻𝑞0,𝑇(𝑢(⋅)) = 𝐽𝑞0,𝑇(𝑢(⋅)). (5) 

 

It is a standard fact of control theory [17] that the Jacobian is computed by the linear approximation 
 

𝜉 = 𝐴(𝑡)𝜉 + 𝐵(𝑡)𝑣   (6) 

 

to the associated control system, whose state variable 𝜉 ∈  𝑅𝑛 and control variable 𝑣 ∈ 𝑅𝑚. For a control 𝑢(𝑡) in (2) and 

𝑞(𝑡) being the corresponding trajectory, matrices of the linear approximation are defined as 
 

𝐴(𝑡) =
𝜕 (𝑓(𝑞) + 𝐺(𝑞(𝑡))𝑢(𝑡))

𝜕𝑞
, 𝐵(𝑡) = 𝐺(𝑞(𝑡)). (7) 

 

By computing the state of (6) at time 𝑇 for a given control variation 𝑣(⋅) ∈ 𝑈 we get the following formula for the Jacobian 

 

𝐽𝑞0,𝑇(𝑢(⋅))𝑣(⋅) = 𝑞(𝑇) = ∫ 𝛷
𝑇

0

(𝑇, 𝑡)𝐵(𝑡)𝑣(𝑡)𝑑𝑡,   (8) 

 

where the fundamental matrix satisfies the differential equation 

 
𝜕𝛷(𝑡, 𝑠)

𝜕𝑡
= 𝐴(𝑡)𝛷(𝑡, 𝑠), 𝛷(𝑠, 𝑠) = 𝐼𝑛. (9) 

 

3. Motion Planning  
 With reference to the associated control system, the motion planning problem for a non-holonomic robotic system with 

given desired state 𝑞𝑑  consists in determinig a control 𝑢𝑑(𝑡) such that 𝐻𝑞0,𝑇(𝑢𝑑(⋅)) = 𝑞𝑑 . It follows that solving the motion 

planning problem involves the inversion of the end-point map. This inversion can be done by Jacobian motion planning 

algorithms relying on a right inverse 𝐽𝑞0,𝑇
# (𝑢(⋅)) of the Jacobian, i.e. an operator having the property 𝐽𝑞0,𝑇(𝑢(⋅))𝐽𝑞0,𝑇

# (𝑢(⋅)) =

𝐼𝑛. A general derivation of a Jacobian algorithm consists in  finding a solution for a curve 𝑢𝜗(⋅) of control functions 

parametrized by 𝜗 ∈ 𝑅, of the differential equation 
 

𝑑𝑢𝜗(⋅)

𝑑𝜗
= −𝛾𝐽𝑞0,𝑇

# (𝑢𝜗(⋅))(𝐻𝑞0,𝑇(𝑢𝜗(⋅)) − 𝑞𝑑) (10) 
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initialized at some 𝑢𝜗=0(⋅) = 𝑢0(⋅), where γ > 0 denotes the error decay rate. Indeed, if 𝑒(𝜗) = 𝐻𝑞0,𝑇(𝑢𝜗(⋅)) − 𝑞𝑑 is the 

planning error corresponding to 𝑢𝜗(𝑡) then the differentiation of the error with respect to the parameter results in 
 

𝑑𝑒(𝜗)

𝑑𝜗
= 𝐽𝑞0,𝑇(𝑢𝜗(⋅))

𝑑𝑢𝜗(⋅)

𝑑𝜗
= −𝛾𝑒(𝜗). 

 

(11) 

 

 

 The error decays exponentially providing in the limit a solution to the motion planning problem, 𝑢𝑑(𝑡) = 𝑙𝑖𝑚
𝜗→+∞

𝑢𝜗 (𝑡). 

 
3.1. Singularities 

 By definition, a right inverse of the Jacobian exists on condition that the Jacobian, regarded as a map from the admissible 

control functions to the state space, is surjective, i.e. the end-point map is a submersion. A control function 𝑢(⋅) ∈ 𝑈 at which 

the Jacobian gets surjective is called a regular configuration of the robotic system, otherwise the configuration is referred to 

as singular. It is well known that the singular configuration coincides with the singular control studied in  optimal control 

theory. A necessary and sufficient condition for regularity of 𝑢(∙) is the full rank of the Gram matrix 
 

𝑮𝑞0,𝑇(𝑢(⋅)) = ∫ 𝛷
𝑇

0

(𝑇, 𝑡)𝐵(𝑡)𝐵𝑇(𝑡)𝛷𝑇(𝑇, 𝑡)𝑑𝑡. (12) 

 
3.2. Normal Forms 

 A control-affine system of a simple form that is feedback equivalent to the control system associated with the robotic 

system will be called a normal form of the robotic system. We recall that two control-affine systems 𝛴 and Σ̃ 

 

Σ: �̇� = 𝑓(𝑞) + 𝐺(𝑞)𝑢, Σ̃: �̇̃� = 𝑓(�̃�) + �̃�(�̃�)�̃� (13) 

 

with state variables 𝑞, �̃� ∈ 𝑅𝑛 and  inputs  𝑢, �̃� ∈ 𝑅𝑚 are feedback equivalent if there exist a change of coordinates �̃� =
𝜑(𝑞) and an input transformation 𝑢 = 𝛼(𝑞) + 𝛽(𝑞)�̃�, defined by an 𝑅𝑚-valued function 𝛼(𝑞) and an invertible 𝑚 ×
𝑚 matrix 𝛽(𝑞), both smoothly dependent on 𝑞, such that 

 

𝜕𝜑(𝑞)

𝜕𝑞
(𝑓(𝑞) + 𝐺(𝑞)𝛼(𝑞)) = 𝑓(𝜑(𝑞)),

𝜕𝜑(𝑞)

𝜕𝑞
𝐺(𝑞)𝛽(𝑞) = �̃�(𝜑(𝑞)). (14) 

 

Thanks to the simplicity of the normal form, checking its properties is much easier than of the original system, provided that 

the properties under examination have been preserved by the feedback. Since singular configurations are preserved by 

feedback [18], it is possible to describe singularities of robotic systems by their normal forms. Furthermore, if the feedback 

transformations are known explicitly the normal form may also contribute to designing a motion planning algorithm,  [19]. 
 
3.3. Lagrangian Jacobian Motion Planning  

 There exist many specific right inverses of the Jacobian. In the recent paper [15] we have introduced the Lagrangian 

Jacobian inverse defined as the solution to the Lagrange-type optimal control problem addressed in associated variational 

system (6), (7): 

 

𝑚𝑖𝑛
𝑣(∙)

1

2
∫ (

𝜉(𝑡)

𝑣(𝑡)
)

𝑇𝑇

0

[
𝑄(𝑡) 𝑆(𝑡)

𝑆𝑇(𝑡) 𝑅(𝑡)
] (

𝜉(𝑡)

𝑣(𝑡)
) 𝑑𝑡, (15) 
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with equality constraint   𝐽𝑞0 ,𝑇 
(𝑢(⋅))𝑣(⋅) = 𝜉(𝑇) = 𝑤,   𝑤 ∈  𝑅𝑛. For well-definiteness the matrices appearing in the 

Lagrangian objective function need to fulfil conditions 𝑄(𝑡) = 𝑄𝑇(𝑡) ⩾ 0, 𝑅(𝑡) = 𝑅𝑇(𝑡) > 0, 𝑄(𝑡) − 𝑆(𝑡)𝑅−1(𝑡)𝑆𝑇(𝑡) ⩾

0. The following form of the Lagrangian Jacobian inverse 𝐽𝑞0,𝑇
𝐿𝐽𝐼# has been found  using the Pontryagin’s Maximum Principle 

 

 

(𝐽𝑞0,𝑇
𝐿𝐽𝐼#(𝑢(⋅))𝑤)(𝑡) = 𝑅−1(𝑡)(𝐵𝑇(𝑡)𝜙22(𝑡) − 𝑆𝑇(𝑡)𝜙12(𝑡))𝜙12

−1(𝑇)𝑤, (16) 

 

where matrix 𝜙(𝑡) = [𝜙𝑖𝑗(𝑡)], 𝑖, 𝑗 = 1,2,  solves the differential equation 

 

�̇�(𝑡) = [
𝐴(𝑡) − 𝐵(𝑡)𝑅−1(𝑡)𝑆𝑇(𝑡) 𝐵(𝑡)𝑅−1(𝑡)𝐵𝑇(𝑡)

𝑄(𝑡) − 𝑆(𝑡)𝑅−1(𝑡)𝑆𝑇(𝑡) −𝐴𝑇(𝑡) + 𝑆(𝑡)𝑅−1(𝑡)𝐵𝑇(𝑡)
] 𝜙(𝑡), (17) 

 

with initial condition 𝜙𝑖𝑗(0) = 𝛿𝑖𝑗𝐼𝑛, 𝑖, 𝑗 = 1,2, and 𝛿𝑖𝑗 denoting the Kronecker function. Having plugged 𝐽𝑞0,𝑇
𝐿𝐽𝐼#

(𝑢(∙)) into 

(10) we obtain the Lagrangian Jacobian motion planning algorithm 

 

𝑑𝑢𝜗(⋅)

𝑑𝜗
= −𝛾𝐽𝑞0,𝑇

𝐿𝐽𝐼#(𝑢𝜗(⋅))(𝐻𝑞0,𝑇(𝑢𝜗(⋅)) − 𝑞𝑑). (18) 

 

A specific instance of the Lagrangian Jacobian motion planning algorithm is obtained after choosing 𝑄(𝑡) = 𝐴𝑇(𝑡)𝐴(𝑡),
𝑆(𝑡) = 𝐴𝑇(𝑡)𝐵(𝑡), 𝑅(𝑡) = 𝐵𝑇(𝑡)𝐵(𝑡). Notice that with this choice we get the identity 𝑄(𝑡) − 𝑆(𝑡)𝑅−1(𝑡)𝑆𝑇(𝑡) = 0, so the 

matrix of the quadratic form in the objective function (15) becomes singular. The Lagrangian Jacobian Inverse based on this 

specific choice will be denoted by 𝐽𝑞0,𝑇
𝑆𝐿𝐽𝐼# (𝑆 means specific). It has been shown that this inverse minimizes the energy 

contained in the variation of the state trajectory of the associated control system [15]. We shall use it in example 

computations.  
 

4. Exemplification  
 The concepts introduced in the previous sections will now be applied to the model of dynamics of a free-floating space 

manipulator designed in the Space Research Centre (SRC) of the Polish Academy of Science [13], see Figure 1. The SRC 

manipulator is composed of a planar base carrying on board a 2 DOF planar manipulator. Geometric and dynamic parameters 

of the SRC manipulator have been specified in [14].  

 

  

Fig. 1: SRC space manipulator. 
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The Lagrangian Jacobian motion planning for this manipulator has been studied earlier in [15] under assumption that 

the conserved angular momentum is zero, so the associated control system has been driftless. Here we  allow for a non-zero 

angular momentum. 

4.1. Equations of Motion 

 Having chosen  coordinates 𝑞 = (�̄�, �̄�, 𝜙, 𝜃1, 𝜃2), where �̄�, �̄� refer to the position of the centre of mass of the whole 

space manipulator, and 𝜙, 𝜃1, 𝜃2 denote, respectively, the orientation of the base and the joint positions of the on-board 

manipulator, the Lagrangian of the SRC manipulator can be computed as 

 

𝐿(𝑞, �̇�) =
1

2
𝑚𝑐(�̇̅�2 + �̇̅�2) +

1

2
𝐼𝑏𝜙2˙ +

1

2
𝐷(�̇� + �̇�1)

2
+

1

2
𝐸(�̇� + �̇�12)

2
+ 𝐹 cos 𝜃2 (�̇� + �̇�1)(�̇� + �̇�12). (19) 

 

Hereabout 𝑚𝑐 = 𝑀 + 𝑚1 + 𝑚2 is the total mass of the base and of the links, 𝐼𝑏 denotes the moment of inertia of the base, 

𝜃12 = 𝜃1 + 𝜃2, and 

 

𝐷 =
1

𝑚𝑐
(𝑚1𝑚2(𝑙1 − 𝑑1)2 + 𝑀(𝑚1𝑑1

2 + 𝑚2𝑙1
2)), 𝐸 =

1

𝑚𝑐

(𝑀 + 𝑚1)𝑚2𝑑2
2,

𝐹 =
1

𝑚𝑐

(𝑚1𝑚2(𝑙1 − 𝑑1)𝑑2 + 𝑀𝑚2𝑙1𝑑2). 

(20) 

 
4.2. Affine Pfaffian Constraints  
 The motion equations resulting from Lagrangian (19) obey the conservation law of linear and angular momenta. This 

implies that the centre of mass of the space manipulator will move in Space uniformly and rectilinearly. Further, the 

conservation of the angular momentum yields the following affine Pfaffian constraint 
 

𝐾(𝜃2)�̇� + 𝑀(𝜃2)�̇�1 + 𝑁(𝜃2)�̇�2 = 𝑝, (21) 

 

where 𝐾(𝜃2) = 𝐼𝑏 + 𝐷 + 𝐸 + 2𝐹 cos 𝜃2 , 𝑀(𝜃2) = 𝐷 + 𝐸 + 𝐹 cos 𝜃2 , 𝑁(𝜃2) = 𝐸 + 𝐹 cos 𝜃2, and the constant 𝑝 denotes 

the conserved angular momentum. It is assumed that the space manipulator is controlled by the rotation velocities of the 

joints. Now, let us introduce a global change of coordinates (𝜙, 𝜃1, 𝜃2) → (𝛼, 𝛽, 𝜃2) defined as 
 

𝛼 = (𝐼𝑏 + 𝐷 + 𝐸)𝜙 + (𝐷 + 𝐸)𝜃1 + 𝐸𝜃2 + 𝐹 sin 𝜃2 ,   𝛽 = 𝜙 + 𝜃1,    𝜃2 = 𝜃2. (22) 
 

In new coordinates the control system associated with constraint (21) takes the following form: 
 

�̇� = 𝑝 − 2𝐹 cos 𝜃2 𝑢1, �̇� = 𝑢1, �̇�2 = 𝑢2. (23) 

 

Observe that the original orientation angle 𝜙 and the joint position 𝜃1 can be retained easily from (22). 
 
4.3. Normal Forms and Singularities 

 Let us distinguish the set 𝑆2 = {(𝜙, 𝜃1, 𝜃2)| sin 𝜃2 = 0} of kinematic singularities of the on-board manipulator, and 

assume that 𝑝 ≠ 0. We recall that a control 𝑢(𝑡) in (2) is referred to as singular if the Gram matrix  
 

𝑮𝑞0,𝑇(𝑢(⋅)) = ∫ 𝛷
𝑇

0

(𝑇, 𝑡)𝐵(𝑡)𝐵𝑇(𝑡)𝛷𝑇(𝑇, 𝑡)𝑑𝑡 (24) 

 

is rank deficient. It has been shown in [18] that the dynamics of the SRC manipulator can be given by feedback either of the 

two following normal forms. 
 Outside 𝑆2 the normal form is Pfaff-Darboux [20],  
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�̇�1 = 1 + 𝑧2𝑣2, �̇�2 = 𝑣1, �̇�3 = 𝑣2, (25) 
 

and the singular controls are trivial: 𝑣1(𝑡) = 𝑣2(𝑡) = 0. 

 Inside 𝑆2 the normal form is Martinet [6], 

 

�̇�1 = 1 + 𝑧2
2𝑣2,           �̇�2 = 𝑣1,         �̇�3 = 𝑣2, (26) 

 

whose singular controls are 𝑣1(𝑡) - arbitrary and 𝑣2(𝑡) = 0. In this way the normal forms describe singularities of the SCR 

manipulator. Furthermore, since normal form (25) resembles the chained form, the motion planning problem in this normal 

form can be solved by the simple sinusoid control, see [16] and [19]. Fused with the feedback   

 

𝑧1 =
𝛼

𝑝
,   𝑧2 = 2𝐹𝑐2, 𝑧3 = −

𝛽

𝑝
, 𝑢1 = −𝑝𝑣2, 𝑢2 = −

1

2𝐹 sin 𝜃2
𝑣1 (27) 

 

that establishes the equivalence between (23) and (25), the sinusoid control can provide an alternative solution to the motion 

planning problem in  associated system (2). 

  
4.4. Motion Planning  

  We study a motion planning problem for the SRC manipulator floating with the conserved angular momentum 𝑝 =

0.02, consisting in reaching the desired point 𝑞𝑑 = (−
𝜋

10
,

𝜋

6
,

𝜋

2
)  from  𝑞0 = (0,0,

𝜋

8
) in time 𝑇 = 20.  Results are displayed 

in figures  2 and 3, for two  motion planning algorithms: 𝐽𝑞0,𝑇
𝑆𝐿𝐽𝐼#

 and the sinusoid  control (𝑁𝐹 + 𝑆𝐼𝑁), applied to  normal 

form (25) and transformed back to the associated control system by (22). The figures show the orientation of the base, the 

path of the end effector with respect to the (𝑋𝑏 , 𝑌𝑏) frame, where 𝑥𝑒 = 𝑙1 cos 𝜃1 + 𝑙2 cos 𝜃12, 𝑦𝑒 = 𝑙1 sin 𝜃1 + 𝑙2 sin 𝜃12, and 

the control energy spent at consecutive steps of the algorithms (there are no steps in the sinusoid control). The sinusoid 

algorithm distinguishes by simplicity and efficiency. On the other hand, the Lagrangian Jacobian algorithm, although much 

more complex,  generates smaller motions and saves control energy, what may be desirable  in Space applications. 

 

 

Fig. 2: Results of computations. 

  

4. Conclusion 
 Relying on instruments of the modern control theory this paper makes a contribution to the conceptual foundations of 

the theory of non-holonomic robotic systems. Special attention has been paid to the Lagrangian Jacobian motion planning, 

and to the role of the feedback equivalence and of the feedback normal forms in describing singularities. Usefulness of the 

proposed concepts has been demonstrated by an application to a space manipulator. In this context an energy saving 

Lagrangian Jacobian motion planning algorithm has been exploited, and two normal forms established and used as a tool for 

describing singularities as well as for designing a  motion planning algorithm based on sinusoid control. Further research 
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will include experiments with the SRC manipulator as well as a study of normal forms and Jacobian motion planning of 

free-floating space manipulators equipped with more redundancy on board.  
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