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Abstract - Identification of a nonlinear nonparametric system is not easy. On the other hand, many systems are sparse in the sense that 

not all variables contribute. If these variables that do not contribute can be detected and removed, the identification problem becomes 

lower dimensional and is relatively easy to deal with. The goal of the paper is to develop an overlap group Lasso method to detect which 

variables contribute and which variables do not. The algorithm developed favors sparsity in terms of partial derivatives that is the 

necessary and sufficient condition for a variable to contribute. 

 

 

1. Introduction 
In modeling of engineering, social or biomedical problems, a parsimony model is often preferred. It is based on the 

principle that is to explain the system input-output behavior by the simplest model possible that does not violate the data in 

any significant ways. A parsimony model is essential if the purpose of the model is for prediction. Input-output data usually 

is composed of two contributions, a replicable contribution that similar outputs are expected if similar inputs are applied and 

an non-replicable contribution that is due to random uncertainty including noise. A good model should capture the replicable 

part but very little of the non-replicable part. Overly simplified models that underfit the data are unable to capture the 

replicable part and provide poor prediction even the same inputs are applied. Overly complex models tend to overfit 

uncertainty including noise that may or may not be predictable and again provide poor prediction. Thus in practice a 

parsimony model is often preferred to discriminate system properties from noise. 

There are also practical reasons to choose a parsimony model in many nonlinear system identification settings, including 

the complexity of identification algorithms and the cost of identification. Unlike linear system identification, identification 

of a nonlinear system is a very hard task [1, 2, 19, 20]. Further, identification of a high dimensional nonlinear system is much 

more complex than that of a low dimensional one [12, 22]. For instance, the required data length depends on the dimension 

of the system. In general, the data length required increases exponentially as a function of the number of variables in the 

systems. When the dimension is high, the curse of dimensionality becomes an issue. In such a case, it is simply unrealistic 

to collect such a long data sequence. By keeping model parsimony alleviates such difficulties. 

We consider in this paper a nonlinear system  
 

𝑦(𝑘) = 𝑓(𝑥(𝑘)) + 𝑣(𝑘)  

(1) = 𝑓(𝑥1(𝑘), 𝑥2(𝑘), . . . , 𝑥𝑞(𝑘)) + 𝑣(𝑘) 

𝑓𝑜𝑟 𝑘 = 1,2, . . . , 𝑁 
 

where 𝑦(𝑘) is the system output at time 𝑘 and 𝑣(𝑘) is an iid noise sequence of zero mean and finite variance, and is 

independent of the input variable 𝑥𝑖(𝑘) , 𝑖 = 1, . . . , 𝑞 . The regressor 𝑥(𝑘) = (𝑥1(𝑘), . . . , 𝑥𝑞(𝑘))𝑇  consists of possible 

contributing input variables. The structure of the nonlinear function 𝑓 is unknown. The system (1) represents a large class 

of nonlinear systems including the well known finite impulse response nonlinear systems [5] and the nonlinear auto-

regressive systems with exogenous inputs (NARX)[11,14], by letting  
 

𝑥(𝑘) = (𝑢(𝑘 − 1), . . . , 𝑢(𝑘 − 𝑞)), 𝑜𝑟 

𝑥(𝑘) = 𝑓(𝑦(𝑘 − 1), . . . , 𝑦(𝑘 − 𝑚), 
𝑢(𝑘 − 1), . . . , 𝑢(𝑘 − 𝑚)) 
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respectively. 

The goal of identification is to identify the unknown system 𝑓(⋅)  based on the available input-output data set 

{𝑦(𝑘), 𝑥(𝑘)}𝑘=1
𝑁 . As discussed, nonlinear system identification is not an easy task specially if the dimension 𝑝 is high. 

Fortunately for many practical applications, systems are sparse in the sense that not all variables contribute to the system. If 

the variables that do not contribute can be identified and removed, the dimension for identification could be smaller, also 

making the model parsimony. 
 

2. Overlap group Lasso approach 

In this section, we propose a way to detect if the variable 𝑥𝑖 contributes or not for every 𝑖. The objective is that the 

algorithm developed should not suffer from the curse of dimensionality like the local approach and should have a fixed 

number of unknown parameters to be estimated that does not increase as the data length increases as in both the local and 

RKHS approaches. To this end, assume that there are some basis functions 𝜙𝑖(𝑥)’s, 𝑗 = 1,2, . . . , 𝑀 so that the unknown 

function 𝑓(⋅) can be written as 
  

𝑓(𝑥) = ∑

𝑀

𝑗=1

𝛽𝑗
∗𝜙𝑗(𝑥) 

(2) 

  

for some 𝑀 > 0 and unknown coefficients 𝛽𝑗
∗’s. Admittedly the assumption (2) is stronger than in RKHS representation 

𝑓(𝑥) = ∑∞
𝑘=1 𝛼𝑘𝐾(𝑥(𝑘), 𝑥) that could have infinitely many terms. Thus, more prior information on the unknown 𝑓(⋅) is 

needed. However, (2) does have applications for many practical systems. For instance suppose 𝑓 is unknown but is known 

that it is a polynomial of the maximum 𝐿. Then the assumption (2) is valid and the choice of 𝜙𝑗(𝑥) is obvious. 

Now, decompose the coefficients set {𝛽1
∗, . . . , 𝛽𝑀

∗ } into 𝑞 subsets 𝑆1, . . . , 𝑆𝑞,  

 

𝑆𝑖 = {𝛽𝑗
∗|𝜙𝑗(𝑥) 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑠 𝑥𝑖, 𝑗 = 1,2, . . . , 𝑀}, 

𝑖 = 1,2, . . . , 𝑞 
 

Clearly ⋃
𝑞
𝑖=1 𝑆𝑖 ⊂ {𝛽1

∗, . . . , 𝛽𝑀
∗ }, but there could be overlaps between 𝑆𝑖 and 𝑆𝑗. If no confusion we may also refer 𝑆𝑖 by 

the indices of 𝛽𝑗
∗ ∈ 𝑆𝑖, i.e., 𝑆𝑖 = {𝑗|𝜙𝑗(𝑥) 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑠 𝑥𝑖}. 

We now make a simple but important observation:  
 

𝜕𝑓

𝜕𝑥𝑖
≡ 0 ⟺ 𝛽𝑗

∗ = 0  𝑖𝑓  𝛽𝑗
∗ ∈ 𝑆𝑖 

⟺ ∑

𝑗∈𝑆𝑖

𝛽𝑗
∗2 = 0 

 

We give an example here. Consider a polynomial of 𝑥1, 𝑥2, 𝑥3 of order 2,  
 

𝑓(𝑥) = 𝛽1
∗𝑥1 + 𝛽2

∗𝑥2 + 𝛽3
∗𝑥3 + 𝛽4

∗𝑥1
2 + 𝛽5

∗𝑥2
2  

 

(3) 
+𝛽6

∗𝑥3
2 + 𝛽7

∗𝑥1𝑥2 + 𝛽8
∗𝑥2𝑥3 + 𝛽9

∗𝑥2𝑥3 

= 𝛽1
∗𝜙1(𝑥) + 𝛽2

∗𝜙2(𝑥) + 𝛽3
∗𝜙3(𝑥) + 𝛽4

∗𝜙4(𝑥) 

+𝛽5
∗𝜙5(𝑥) + 𝛽6

∗𝜙6(𝑥) + 𝛽7
∗𝜙7(𝑥) 

+𝛽8
∗𝜙8(𝑥) + 𝛽9

∗𝜙9(𝑥) 
 

Then,  

𝑆1 = {𝛽1
∗, 𝛽4

∗, 𝛽7
∗, 𝛽8

∗}, 
𝑆2 = {𝛽2

∗, 𝛽5
∗, 𝛽7

∗, 𝛽9
∗}, 
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𝑆3 = {𝛽3
∗, 𝛽6

∗, 𝛽8
∗, 𝛽9

∗} 
Now,  

𝜕𝑓

𝜕𝑥1
= 𝛽1

∗
𝜕𝜙1(𝑥)

𝜕𝑥1
+ 𝛽4

∗
𝜕𝜙4(𝑥)

𝜕𝑥1
+ 𝛽7

∗
𝜕𝜙7(𝑥)

𝜕𝑥1
 

+𝛽8
∗

𝜕𝜙8(𝑥)

𝜕𝑥1
 

 

It is easily verified that  

𝜕𝑓

𝜕𝑥1
≡ 0 ⟺ 𝛽1

∗ = 𝛽4
∗ = 𝛽7

∗ = 𝛽8
∗ = 0 

⟺ ∑

𝑗∈𝑆1

𝛽𝑗
∗2 = 0 

 

Similarly,  

𝜕𝑓

𝜕𝑥2
≡ 0 ⟺ ∑

𝑗∈𝑆2

𝛽𝑗
∗2 = 0,

𝜕𝑓

𝜕𝑥3
≡ 0 

⟺ ∑

𝑗∈𝑆3

𝛽𝑗
∗2 = 0 

 

For a polynomial of the form (3), the sets 𝑆𝑖’s can be visualized by re-parameterizing (3) as  
 

𝑓(𝑥) = ∑

3

𝑖=1

�̅�𝑖𝑥𝑖 + ∑

3

𝑖=1

∑

3

𝑗=1

�̅�𝑖,𝑗𝑥𝑖𝑥𝑗 

 

where �̅�𝑖,𝑗 = �̅�𝑗,𝑖. Then 𝑆𝑖 consists of all the coefficients in the 𝑖th row as shown in Figure 1. 

 
Fig. 1: Illustration of 𝑆𝑖’s. 

 

Now consider (2). The objective is to estimate the unknown 𝛽𝑗
∗’s and determine if ∑𝑗∈𝑆𝑖

𝛽𝑗
∗2 = 0 or not for each 𝑖. 

To this end, let  
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𝐽(𝛽) = 𝐽(𝛽1, . . . , 𝛽𝑀) =  

 

(4) 
1

2
∑

𝑁

𝑘=1

[𝑦(𝑘) − ∑

𝑀

𝑗=1

𝛽𝑗𝜙𝑗(𝑥(𝑘))]2 

+𝑁 ∑

𝑞

𝑖=1

𝜆𝑁𝑖√∑

𝑗∈𝑆𝑖

𝛽𝑗
2 

  

for some 𝜆𝑁𝑖 and consider the following minimization  
 

min
𝛽

𝐽(𝛽) (5) 

  

The (4) can also be rewritten in a matrix form, 
 

𝐽(𝛽) =
1

2
∥ 𝑌 − Φ𝛽 ∥2+ 𝑁 ∑

𝑞

𝑖=1

𝜆𝑁𝑖√∑

𝑗∈𝑆𝑖

𝛽𝑗
2 

 

 

 

 

 

(6) 

where, 𝑌 = (𝑦(1), . . . , 𝑦(𝑁))′, 𝛽 = (𝛽1, . . . , 𝛽𝑀)′ and 

1

1

1

( (1)) ( (1))

( (2)) ( (2))

( ( )) ( ( ))

M

M

M

x x

x x

x N x N

 

 

 

 
 
  
 
 
 

 

 

Note the cost function of (6) is similar to Lasso [25] but with a different penalty term. This is because each 
𝜕𝑓

𝜕𝑥𝑖
 is represented 

by a group of coefficients 𝛽𝑗
∗ ∈ 𝑆𝑖. Lasso minimization amounts to the selection of each coefficient 𝛽𝑗

∗ rather than a group 

of coefficients 𝛽𝑗
∗ ∈ 𝑆𝑖 corresponding to one variable 𝑥𝑖. When applied, Lasso tends to make selection based on the strength 

of individual 𝜙𝑖(𝑥) rather than the strength of the group of coefficients 𝛽𝑗
∗ ∈ 𝑆𝑖, often resulting in selecting more variables 

than necessary. A key difference is that sparsity here is not defined by 𝜙𝑗(𝑥)’s but in terms of variables 𝑥𝑖’s. The natural 

group tension of (4) favors sparsity in terms of partial derivatives 
𝜕𝑓

𝜕𝑥𝑖
 and thus improves over Lasso in terms of variable 

selection. 

Theorem 2.1  Consider the system (2), the cost function (4) and the minimization (5). Assume 
1

𝑁
𝛷𝑇𝛷 > 0. Denote �̂� the 

least squares solution of  𝑚𝑖𝑛 ∑𝑁
𝑘=1 (𝑦(𝑘) − ∑𝑀

𝑗=1 �̂�𝑗𝜙𝑗(𝑥(𝑘)))2. Let  

 

𝜆𝑁𝑖 =
𝑁−𝜖

√∑𝑗∈𝑆𝑖
�̂�𝑗

2

 
 

(7) 

  

for some 1/2 < 𝜖 < 1. Then, we have in probability as 𝑁 → ∞,   

1)  𝛽 − 𝛽∗ = 𝑂(𝑁−1/2). 

2)  If √∑𝑗∈𝑆𝑖
𝛽𝑗

∗2 = 0,  
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𝑃𝑟𝑜𝑏{√∑

𝑗∈𝑆𝑖

𝛽𝑗
2 = 0} → 1. 

 

Proof: (1) Note that 𝐽(𝛽) is a strictly convex function if 
1

𝑁
Φ𝑇Φ > 0. Therefore from [8], it suffices to show that 𝛽 is √𝑁-

consistency, if for any 𝜀 > 0, there exists a large enough 𝐶 > 0 such that  
 

liminf
𝑁→∞

𝑃{ inf
𝑢∈𝑅𝑀,∥𝑢∥=𝐶

𝐽(𝛽∗ + 𝑁−1/2𝑢) > 𝐽(𝛽∗))} > 1 − 𝜀. (8) 

 

Note  
 

𝐽(𝛽∗ + 𝑁−1/2𝑢) − 𝐽(𝛽∗))

=
1

2
∥ 𝑌 − Φ(𝛽∗ + 𝑁−1/2𝑢) ∥2

−
1

2
∥ 𝑌 − Φ𝛽∗ ∥2

+𝑁 ∑

𝑞0

𝑖=1

𝜆𝑁𝑖√∑

𝑗∈𝑆𝑖

(𝛽𝑗
∗ + 𝑁−1/2𝑢𝑗)2

−𝑁 ∑

𝑞0

𝑖=1

𝜆𝑁𝑖√∑

𝑗∈𝑆𝑖

𝛽𝑗
∗2

+𝑁 ∑

𝑞

𝑖=𝑞0+1

𝜆𝑁𝑖√∑

𝑗∈𝑆𝑖

(𝑁−1/2𝑢𝑗)2

≥
1

2𝑁
𝑢𝑇Φ𝑇Φ𝑢 −

1

√𝑁
𝑢𝑇(𝑌 − Φ𝛽∗)

+𝑁 ∑

𝑞0

𝑖=1

𝛼𝑁−𝜖

√∑𝑗∈𝑆𝑖
𝛽𝑗

∗2

⋅

(√∑

𝑗∈𝑆𝑖

(𝛽𝑗
∗ + 𝑁−1/2𝑢𝑗)2 − √∑

𝑗∈𝑆𝑖

𝛽𝑗
∗2)

= 𝑂(∥ 𝑢 ∥2) + 𝑂(𝑢) + 𝑂(𝑁−(𝜖+1/2−1))

 

 

 

 

 

 

 

 

 

 

 

 

 

(9) 

 

  

The first term in (9) is quadratic function in 𝑢, and the second term is linear in 𝑢, and the third term converges to zero. Thus 

for large enough 𝐶, (8) holds, then  

𝛽 − 𝛽∗ = 𝑂(
1

√𝑁
) 

 

(2) Suppose that 𝛽𝑤
∗  is in 𝑆𝑞0+1, . . . , 𝑆𝑞 , i.e., 𝛽𝑤

∗  is in some √∑𝑗∈𝑆𝑖
𝛽𝑗

∗2 = 0 or 𝛽𝑤
∗ = 𝛽𝑗

∗ for some 𝑖 = 𝑞0 + 1, . . . , 𝑞 
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and 𝑗 ∈ 𝑆𝑖. 

Let Φ𝑤 denote the 𝑤th column of Φ. The necessary condition for 𝛽𝑤 to be optimal is  

 

0 =
1

√𝑁

𝜕𝐽

𝜕𝛽𝑤

=
1

2√𝑁
Φ𝑤

𝑇 (𝑌 − Φ𝛽)

+√𝑁 ∑
𝑎𝑙𝑙 𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑡ℎ 𝛽𝑤

𝑎𝑛𝑑√∑𝑗∈𝑆𝑖
𝛽𝑗

2=0

𝑁−𝜖

√∑𝑗∈𝑆𝑖
𝛽𝑗

2

𝛽𝑤

√∑𝑗∈𝑆𝑖
𝛽𝑗

2

+√𝑁 ∑
𝑎𝑙𝑙 𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑡ℎ 𝛽𝑤

𝑎𝑛𝑑√∑𝑗∈𝑆𝑖
𝛽𝑗

2≠0

𝑁−𝜖

√∑𝑗∈𝑆𝑖
𝛽𝑗

2

𝛽𝑤

√∑𝑗∈𝑆𝑖
𝛽𝑗

2

=
1

2√𝑁
Φ𝑤

𝑇 (𝑌 − Φ𝛽∗) −
1

2√𝑁
Φ𝑤

𝑇 Φ(𝛽 − 𝛽∗)

+𝑂(𝑁1−𝜖) + 𝑂(𝑁−(1−𝜖))

 

 

 

 

 

 

 

 

 

 

(10) 

 

  

The first term in (10) is of the order 𝑂(1), and so is the second term because of 𝛽 − 𝛽∗ = 𝑂(𝑁−1/2) according to the proof 

of (1) in Theorem 2.1. The third term goes to ∞ and the fourth term goes to zero. Thus if 𝛽𝑤 ≠ 0, the terms in (10) is 

𝑂(𝑁1−𝜖) → ∞. This implies that 𝛽𝑤 ≠ 0 ⇒
1

√𝑁

𝜕𝐽

𝜕𝛽𝑤
≠ 0 that contradicts that 𝛽𝑤 is optimal. Thus optimal 𝛽𝑞 equals zero 

for 𝑁 large enough. 

We make a few comments.   

• From the theorem, if 𝑥𝑖 contributes or not can be determined by checking if √∑𝑗∈𝑆𝑖
𝛽𝑗

2 = 0. 

• The representation of 𝑓(⋅) is global and so the curse of dimensionality is no longer an issue. Also the number of parameters 

𝛽𝑗, 𝑗 = 1,2. . . , 𝑀, to be estimated is fixed independent of the data length 𝑁. 

• The minimization (5) is reminiscent of the group Lasso [27] but not the same. In the group Lasso setting, the coefficients 

are decomposed into disjoint subsets with no overlap. In out setting, overlap is allowed and in fact often present. 

• The minimization (5) is also reminiscent of the overlapping groups Lasso as in [13] but again totally different. Though in 

[13], overlapping is allowed, e.g., 𝛽𝑗
∗ ∈ 𝑆𝑖1, . . . , 𝑆𝑖𝑙 . Then, 𝛽𝑗

∗  has to be decomposed in a unique way into 𝛽𝑗𝑖1
∗ ∈

𝑆𝑖1, . . . , 𝛽𝑗𝑖𝑙
∗ ∈ 𝑆𝑖𝑙  such that 𝛽𝑗

∗ = 𝛽𝑗𝑖1
∗ +. . . +𝛽𝑗𝑖𝑙

∗ . In our setting, such equalities usually do not hold. Consequently, the 

convergence proofs and the algorithms developed in [13] do not apply to our minimization.  

The minimization problem (5) can be solved by modifying LARS [6]. However, LARS is known to have some difficulties 

if 𝜙𝑖(𝑥)’s are highly correlated. We propose to solve (5) by the coordinate descent algorithm [26] well known in the 

literature. 

Algorithm to solve (5): 

Step 0: Set 𝑚 = 0 and any initial estimate 𝛽(0). 

Step 1: At any 𝑚, set 𝑙 = 1 

Step: 1.1: Fix 𝛽1(𝑚), . . . , 𝛽𝑙−1(𝑚), 𝛽𝑙+1(𝑚), . . . , 𝛽𝑝(𝑚) and solve  

min
𝛽𝑙

𝐽(𝛽𝑙) 

where 𝐽 is in (4) by fixing (𝑝 − 1) 𝛽𝑗’s and leaving one 𝛽𝑙 for minimization. This one dimensional minimization can be 

solved by the gradient descent method or by the line search method. Set the solution as 𝛽𝑙(𝑚 + 1). 
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Step: 1.2: If 𝑙 < 𝑞, set 𝑙 = 𝑙 + 1 and go to Step 1.1. If 𝑙 = 𝑞, go to Step 2. 

Step 2: If ∥ 𝛽(𝑚 + 1) − 𝛽(𝑚) ∥/∥ 𝛽(𝑚) ∥ is smaller than a prescribed threshold, stop. Otherwise, set 𝑚 = 𝑚 + 1 and go 

to Step 1. 

The following result is from [26].  

 

Theorem 2.2 Consider the above algorithm and the minimization (5). Assume 
1

𝑁
𝛷𝑇𝛷 > 0. Then, the sequence 𝛽(𝑚) 

generated by the above algorithm converges to the solution of (5).  

Note so far we only consider the case that 𝑀 is fixed and 𝑁 → ∞. The result can be extended to the case 𝑁 > 𝑀, and 

𝑀, 𝑁 → ∞  under some restrictive conditions. To this end, define 𝐻𝑐 = {𝑆1, . . . , 𝑆𝑞0
} , 𝐻𝑟 = {𝑆𝑞0+1, . . . , 𝑆𝑞}  and also 

Φ𝑖, Φ𝐻𝑐
, that contain 𝜙𝑖 or the corresponding parts of 𝐻𝑐, respectively. 𝐻𝑐 is the part of coefficients that |𝛽𝑖

∗| > 0 and 

𝐻𝑟 is the part of coefficients that |𝛽𝑖
∗| = 0. 

 

Assumption 2.1    

1)  𝛼2𝐼 >
1

𝑁
Φ𝑇Φ > 𝛼1𝐼 almost surely as 𝑁 → ∞. 

2)  Assume the cardinality of 𝑆𝑖, 𝑖 = 1, . . . , 𝑞  is 𝑑𝑖 , and 𝑑0 = ∑𝑞0
𝑖=1 𝑑𝑖 , 𝑑 = ∑𝑞

𝑖=1 𝑑𝑖 . Let 𝛼 = min𝑖∈𝐻𝑐
∥ 𝛽𝑖

∗ ∥∞  and 

assume 

1

𝛼
[√

log𝑑0

𝑁
+ √𝑑0𝜆𝑁𝑖] → 0. 

3)  For some 0 < 𝜖 < 1 and every 𝑖 ∈ 𝐻𝑟, 

∥ Φ𝑖
𝑇Φ𝐻𝑐

(Φ𝐻𝑐

𝑇 Φ𝐻𝑐
)−1 ∥2≤

1 − 𝜖

√𝑞0

 

4)  
1

𝜆𝑁𝑖
√

log(𝑑−𝑑0)

𝑁
max𝑖∈𝐻𝑟

√𝑑𝑖 → 0.  

 

Then following the proof of Theorem 4.2 [16], we have 

 

Theorem 2.3  Consider the system (2), the cost function (4) and the minimization (5). Under the assumption 2.1, the 

probability that ∥ �̃�𝑖 ∥2> 0 for all 𝑖 ∈ 𝐻𝑐, and �̃�𝑖 = 0 for all 𝑖 ∈ 𝐻𝑟 converges to 1 as 𝑁 > 𝑀, 𝑀, 𝑁 → ∞.  

Interested readers are referred to [16] for more details. 

 

3. Numerical simulation 
Consider an 10-dimensional second order polynomial system with the input 𝑢(𝑘 − 𝑖) = 𝑥𝑖(𝑘) where 𝑢(⋅) is iid 

Gaussian of zero mean and unity variance.  

 

𝑦(𝑘) = 𝑓(𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥10(𝑘)) + 𝑣(𝑘) ( 

 

 

 

 

(11) 

 

=  𝑢(𝑘 − 3) + 𝑢(𝑘 − 4) + 𝑢(𝑘 − 3)2 

+0.5𝑢(𝑘 − 3)𝑢(𝑘 − 4) + 0.5𝑢(𝑘 − 4)2 

+ 𝑢(𝑘 − 6) + 𝑢(𝑘 − 6)2 + 𝑢(𝑘 − 3)𝑢(𝑘 − 6) 

+𝑢(𝑘 − 4)𝑢(𝑘 − 6) + 𝑣(𝑘) 

= 𝑥3(𝑘) + 𝑥4(𝑘) + 𝑥3(𝑘)2 + 0.5𝑥3(𝑘)𝑥4(𝑘) 

+0.5𝑥4(𝑘)2 + 𝑥6(𝑘) + 𝑥6(𝑘)2 + 𝑥3(𝑘)𝑥6(𝑘) 

+𝑥4(𝑘)𝑥6(𝑘) + 𝑣(𝑘) 

= ∑

10

𝑖=1

�̅�𝑖𝑥𝑖(𝑘) + ∑

10

𝑖,𝑗=1

�̅�𝑖,𝑗𝑥𝑖(𝑘)𝑥𝑗(𝑘) + 𝑣(𝑘), 
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with �̅�𝑖,𝑗 = �̅�𝑗,𝑖. 𝑣(⋅) represents iid Gaussian of zero mean and standard deviation 0.5. In simulation, no knowledge of   

𝑓(⋅) is available. 

Consider the overlap group Lasso method, Similar to Figure 1 for the example (3), the set 𝑆𝑖’s are clearly defined in 

terms of �̅�𝑖 and �̅�𝑖,𝑗. In fact 𝑆𝑖 consists of all the coefficients in the 𝑖th row as in Figures 2 and 3. Since only 𝑥3, 𝑥4 and 

𝑥6 contribute and 𝑥1, 𝑥2, 𝑥5, 𝑥7, 𝑥8, 𝑥9 and 𝑥10 do not contribute  

√�̅�𝑖
2 + �̅�𝑖,1

2 +. . . +�̅�𝑖,10
2 = 0, 

for 𝑖 = 1,2,5,7,8,9,10 and  

√�̅�𝑖
2 + �̅�𝑖,1

2 +. . . +�̅�𝑖,10
2 > 0, 

for 𝑖 = 3,4,6. 

With 𝑁 = 80 and 𝜆𝑁𝑖 =
𝑁−0.6

√∑𝑗∈𝑆𝑖
�̂�𝑗

2
 as given by (7) where �̂�𝑗’s are the least squares estates, the results of the overlap group 

Lasso are shown in Figure 2. Light gray indicates that the corresponding estimate of �̅�𝑖 or �̅�𝑖,𝑗 is exactly zero and dark 

gray indicates that the corresponding estimate of �̅�𝑖  or �̅�𝑖,𝑗  is non-zero. Figure 1 clearly demonstrates that all the 

coefficients in 𝑆𝑖, 𝑖 = 1,2,5,7,8,9,10  are exactly zero and some coefficients in 𝑆𝑖, 𝑖 = 3,4,6  are nonzero. Thus, the 

variables 𝑥3, 𝑥4 and 𝑥6 contribute and 𝑥1, 𝑥2,, 𝑥5, 𝑥7, 𝑥8, 𝑥9, 𝑥10 do not contribute. For comparison, the standard Lasso is 

also applied for the same example and the same simulation parameters. The results are shown in Figure 3. Obviously, it does 

not reveal which variable contributes and which one does not. The reason is that Lasso favors sparsity in terms of individual 

terms but not in terms of variable selection. On the other hand, the overlap group Lasso proposed in this paper favors sparsity 

in terms of partial derivatives 
𝜕𝑓

𝜕𝑥𝑖
 and thus improves the variable selection capability. 

 
Fig. 2: �̅�𝑖 , �̅�𝑖,𝑗 ∈ 𝑆𝑖 , 𝑖 = 1, . . . ,10 with overlap group Lasso. 
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Fig. 3: �̅�𝑖 , �̅�𝑖,𝑗 ∈ 𝑆𝑖 , 𝑖 = 1, . . . ,10 with Lasso. 

 

4. Concluding remarks 
In this paper, an overlap group Lasso method is developed that aims to determine which variables contribute and which 

ones do not. The algorithm favors sparsity in terms of variables and therefore overperforms the standard Lasso that favors 

sparsity in terms of individual terms. 

There is an important issue that is not discussed in the paper: how to make sense of the ranking if variables are 

statistically correlated. When variables are correlated, contributions from one input are contaminated by the contributions 

from other correlated variables. This makes ranking very hard if possible. Also, the ranking depends on the definition of 

importance. In the papers, it is based on the summation of the coefficients squares. It is not clear at this point how to rank 

the importance of variables, e.g., in terms of the Goodness of Fit. These directions deserve further studies. 
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