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Abstract- In this paper, adaptive control is developed for an M-input linear time-invariant system with actuator failures
and nonlinearities in presence of an unknown triangular matrix Λ. Three technical problems are solved: (i) the devel-
opment of a simple adaptive controller without the use of an additional compensator system, which ensures desired
stability and state tracking properties; (ii) the extension of the developed adaptive control scheme the case when Λ is
an unknown triangular matrix; and (iii) the development of an adaptive control scheme for the case when some of the
actuators fail during the system operation, that is, some components of u(t) = [u1,u2, . . . ,uM]T become uncontrollable
by the feedback control signals.
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1. Introduction
Adaptive control has been studied for dealing with system uncertainties from the plant and external

disturbances to ensure desired tracking performance [1, 2, 3, 4, 5, 6]. In this paper, we consider the adaptive
control problems for an M-input linear time-invariant system:

ẋ(t) = Ax(t)+BΛu(t)+BΘ
∗
φ(x), x(t) ∈ Rn, u(t) ∈ RM, (1.1)

where (A, B) is a known and controllable pair, Λ ∈ RM×M is an unknown matrix, Θ∗ ∈ RM×s is an unknown
constant matrix, and φ(x) ∈ Rs is a known vector. Systems with such a structure have recently attracted
considerable attentions in the literature [7, 8, 9], mainly for Λ = diag{λ1,λ2, . . . ,λM} is an unknown and
diagonal matrix with λi 6= 0 for i = 1,2, . . . ,M. Typical current solutions to adaptive control of such systems
are based on the introduction of another n-dimensional compensator systems and the design of an adaptive
controller for the augmented system, for achieving some state tracking.

Different from the existing results in [7, 8, 9], in this paper, we will solve three technical problems: (i)
the development of a simple adaptive controller without the use of an additional compensator system, which
ensures desired stability and state tracking properties; (ii) the extension of the developed adaptive control
scheme to the case when Λ is an unknown triangular matrix; and (iii) the development of an adaptive control
scheme for the case when some of the actuators fail during the system operation, that is, some components
of u(t) = [u1,u2, . . . ,uM]T become uncontrollable by the feedback control signals.
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The rest of this paper is organized as follows. In Section 2, adaptive control is studied for the plant with
diagonal Λ. In Section 3, adaptive control is studied for the triangular Λ case. In Section 5, simulation study
is shown and conclusions are given in Section 6.

2. Adaptive Control Design for Diagonal Λ

Consider an M-input linear time-invariant plant

ẋ(t) = Ax(t)+BΛu(t)+BΘ
∗
φ(x), (2.2)

where (A, B) is a known and controllable pair, Λ = diag{λ1,λ2, . . . ,λM} is an unknown and diagonal matrix
with λi 6= 0 for i = 1,2, . . . ,M, Θ∗ ∈ RM×s is an unknown matrix, and φ(x) ∈ Rs is a known vector. x(t) ∈ Rn

is the system state vector and u(t) ∈ RM is the control input vector. With (A, B) known and controllable, we
can find known constant matrices K10 ∈ Rn×M and K20 ∈ RM×M such that

Am = A+BKT
10, Bm = BK20 (2.3)

are known with Am being stable, for constructing a good reference model system

ẋm(t) = Amxm(t)+Bmr(t), xm(t) ∈ Rn, r(t) ∈ RM, (2.4)

where r(t) is a bounded and piecewise continuous reference input.

We first introduce the parameter matrices

K∗T1 = Λ
−1KT

10, K∗2 = Λ
−1K20, K∗3 =−Λ

−1
Θ
∗. (2.5)

Then, for KT
1 (t), K2(t) and K3(t) being the estimates of K∗T1 ∈ RM×n, K∗2 ∈ RM×M and K∗3 ∈ RM×s, we use

the adaptive controller
u(t) = KT

1 (t)x(t)+K2(t)r(t)+K3(t)φ(x). (2.6)

From the definitions of K∗1 , K∗2 and K∗3 , we have

BΛ(K∗T1 x(t)+K∗2 r(t)+K∗3 φ(x)) = B(KT
10x(t)+K20r(t)−Θ

∗
φ(x)). (2.7)

Introducing the parameter errors K̃1 = K1−K∗1 , K̃2 = K2−K∗2 , K̃3 = K3−K∗3 , we express the control signal
from (2.6) as

u(t) = K̃T
1 (t)x(t)+ K̃2(t)r(t)+ K̃3(t)φ(x)+K∗T1 x(t)+K∗2 r(t)+K∗3 φ(x), (2.8)

and, in view of (2.3) and (2.7), the closed-loop system as

ẋ(t) = Ax(t)+BΛ(K̃T
1 (t)x(t)+ K̃2(t)r(t)+ K̃3(t)φ(x))

+BΛ(K∗T1 x(t)+K∗2 r(t)+K∗3 φ(x))+BΘ
∗
φ(x)

= Amx(t)+Bmr(t)+BΛ(K̃T
1 (t)x(t)+ K̃2(t)r(t)+ K̃3(t)φ(x)). (2.9)

Then, in view of this equation and (2.4), the tracking error e(t) = x(t)− xm(t) satisfies

ė(t) = Ame(t)+BΛ(K̃T
1 (t)x(t)+ K̃2(t)r(t)+ K̃3(t)φ(x)). (2.10)
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Introducing θ ∗i such that θ ∗Ti is the ith row of [K∗T1 ,K∗2 ,K
∗
3 ], i = 1, . . . ,M, letting θi be the estimate of θ ∗i and

θ̃i(t) = θi(t)−θ ∗i , i = 1, . . . ,M, and defining ω(t) = [xT (t),rT (t),φ T (x)]T ∈ Rn+M+s, we express (2.10) as

ė(t) = Ame(t)+BΛ

 θ̃ T
1 (t)ω(t)

...
θ̃ T

M(t)ω(t)

 . (2.11)

Letting P = PT > 0 satisfy PAm +AT
mP =−Q for a chosen constant matrix Q ∈ Rn×n such that Q = QT > 0,

and ēi(t) be the ith component of eT (t)PB, i = 1, . . . ,M, we design the adaptive law for θi(t) as

θ̇i(t) =−sign[λi]Γiēi(t)ω(t), (2.12)

where Γi = ΓT
i > 0 is a chosen constant adaptation gain matrix, and sign[λi] is the sign of λi, i = 1,2, . . . ,M.

To analyze the adaptive control system performance, we consider the positive definite function
V (e, θ̃i, i= 1,2, . . . ,M) = eT Pe+∑

M
i=1 |λi|θ̃ T

i Γ
−1
i θ̃i and derive its time derivative along the trajectory of (2.11)

and (2.12) as V̇ =−eT (t)Qe(t). From this result, the following Theorem 1 can be established next.

Theorem 1. The feedback controller (2.6) with the adaptive law (2.12), applied to the system (2.2), ensures
that all signals in the closed-loop control system are bounded and the tracking error e(t) = x(t)− xm(t)
satisfies: limt→∞ e(t) = 0.

3. Adaptive Control for Triangular Λ

In this section, we solve the adaptive control problem for the case when Λ in (1.1) is either an unknown
lower triangular matrix or an unknown upper triangular matrix, using a simple controller structure derived
from the above developed adaptive control scheme. When Λ in (1.1) is an unknown upper triangular matrix,
we use DU decomposition to decompose Λ as Λ = D∗U , where U is a unit upper triangular matrix, and

D∗ = diag{d∗1 ,d∗2 , · · · ,d∗m}= diag
{

∆1,
∆2

∆1
, · · · , ∆M

∆M−1

}
, (3.13)

with ∆i, i = 1,2, · · · ,M, being the leading principal minors of Λ. For such an uncertain Λ, we make a basic
assumption which is necessary for adaptive law designs.

Assumption 1. The leading principal minors of the unknown Λ are non-zero and their signs are known.

With the adaptive controller (2.6), where K1, K2 and K3 are the estimates of K∗1 , K∗2 and K∗3 :

K∗T1 = Λ
−1KT

10, K∗2 = Λ
−1K20, K∗3 =−Λ

−1
Θ
∗, (3.14)

we express the closed-loop system as in the form:

ẋ(t) = Amx(t)+Bmr(t)+BΛ(u(t)−K∗T1 x(t)−K∗2 r(t)−K∗3 φ(x)), (3.15)

in which Λ is an unknown upper triangular matrix. Then, we have

ẋ(t) = Amx(t)+Bmr(t)+BD∗U(u(t)−K∗T1 x(t)−K∗2 r(t)−K∗3 φ(x))

= Amx(t)+Bmr(t)+BD∗(u(t)− (I−U)u(t)−UK∗T1 x(t)−UK∗2 r(t)−UK∗3 φ(x)), (3.16)

CDSR 118-3



where I−U is an upper triangular matrix with zero diagonal elements. In view of this equation and (2.4),
the tracking error e(t) = x(t)− xm(t) satisfies

ė(t) = Ame(t)+BD∗(u(t)−Φ
∗
0u(t)−Φ

∗T
1 x(t)−Φ

∗
2r(t)−Φ

∗
3φ(x)), (3.17)

where Φ∗0 = I−U ∈ RM×M, Φ∗T1 =UK∗T1 ∈ RM×n, Φ∗2 =UK∗2 ∈ RM×M, and Φ∗3 =UK∗3 ∈ RM×s. This error
equation motivates the adaptive controller structure as

u(t) = Φ0u(t)+Φ
T
1 x(t)+Φ2r(t)+Φ3φ(x), (3.18)

where Φ0, ΦT
1 , Φ2, and Φ3, are estimates of Φ∗0, Φ∗T1 ,Φ∗2 and Φ∗3, and the parameter matrix Φ0 has the same

special upper triangular form as that of Φ∗0, that is,

Φ0 =


0 φ12 φ13 · · · φ1M

0 0 φ13 · · · φ1M
...

...
...

...
...

0 0 · · · 0 φM−1M

0 0 · · · 0 0

 ∈ RM×M. (3.19)

This special form ensures that

uM(t) = [ΦT
1 x(t)+Φ2r(t)+Φ3φ(x)]M, (3.20)

uM−1(t) = φM−1,MuM(t)+ [ΦT
1 x(t)+Φ2r(t)+Φ3φ(x)]M−1, (3.21)

...

u2(t) =
M

∑
i=3

φ2iui(t)+ [ΦT
1 x(t)+Φ2r(t)+Φ3φ(x)]2,

u1(t) =
M

∑
i=2

φ2iui(t)+ [ΦT
1 x(t)+Φ2r(t)+Φ3φ(x)]1, (3.22)

where [v]i is the ith row of the vector v and φi j is the component from the ith row and the jth column of Φ0.

With the special parameter structure (3.19), we let ΦT
1i, Φ2i and Φ3i be the ith row of ΦT

1 (t), Φ2(t) and
Φ3(t), respectively, with i = 1,2, · · · ,M, in (3.18). And define

θ1 = [φ12(t),φ13(t), · · · ,φ1M(T ),ΦT
11,Φ21,Φ31]

T ∈ Rn+2M+s−1,

θ2 = [φ23(t), · · · ,φ2M(T ),ΦT
12,Φ22,Φ32]

T ∈ Rn+2M+s−2,

...

θM−1 = [φM−1,M(t),ΦT
1,M−1,Φ2,M−1,Φ3,M−1]

T ∈ Rn+M+s+1,

θM = [ΦT
1,M,Φ2,M,Φ3,M]T ∈ Rn+M+s, (3.23)

as estimates of θ ∗i from the ith rows of Φ∗0, Φ∗T1 , Φ∗2, and Φ∗3. With (3.17), (3.18) and (3.23), we obtain

ė(t) = Ame(t)+BD∗

 θ̃ T
1 (t)ω1(t)

...
θ̃ T

M(t)ωM(t)

 , (3.24)
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where θ̃i(t) = θi−θ ∗i , i = 1,2, · · · ,M, and

ω1(t) = [u2(t),u3(t), · · · ,uM(t),xT ,rT (t),φ T (x)]T ∈ Rn+2M+s−1,

ω2(t) = [u3(t),u4(t), · · · ,uM(t),xT ,rT (t),φ T (x)]T ∈ Rn+2M+s−2,

...

ωM−1(t) = [uM(t),xT ,rT (t),φ T (x)]T ∈ Rn+M+s+1,

ωM(t) = [xT ,rT (t),φ T (x)]T ∈ Rn+M+s. (3.25)

Adaptive laws. Based on (3.24), the adaptive laws for the adaptive estimates θi(t) are chosen:

θ̇i(t) =−sign[d∗i ]Γiēi(t)ωi(t), t ≥ 0, (3.26)

where ēi(t) is the ith component of eT PB with P = PT > 0 and i = 1, · · · ,M, satisfying PAm+AT
mP =−Q, for

a chosen constant matrix Q ∈ Rn×n such that Q = QT > 0, Γi = ΓT
i > 0, and sign[d∗i ] is known (Assumption

1). To analyze the stability properties of the adaptive law (3.26), we consider the positive definite function

V (e, θ̃i, i = 1,2, · · · ,M) = eT Pe+
M

∑
i=1
|d∗i |θ̃ T

i Γ
−1
i θ̃i. (3.27)

The time-derivative of V (e, θ̃i), along the trajectory (3.26), is

V̇ = 2eT Pė+2
M

∑
i=1
|d∗i |θ̃ T

i Γ
−1
i θ̇i =−eT (t)Qe(t). (3.28)

Since Q = QT > 0, (3.28) implies that the equilibrium state ec = 0, with ec(t) = [eT , θ̃ T
1 , · · · , θ̃ T

M]T , of
the closed-loop system consisting (3.24) and (3.26) is uniformly stable and its solution ec(t) is uniform-
ly bounded. Therefore, y(t), θi(t), i = 1,2, · · · ,M, and ė(t) are all bounded. And from (3.28), we obtain
e(t) = x(t)− xm(t) ∈ L2, and so as limt→∞ e(t) = 0. Then, we establish Theorem 2.

Theorem 2. The feedback controller (3.18) with the adaptive control law (3.26), applied to the system (1.1)
with an uncertain upper triangular matrix Λ, ensures that all signals in the closed-loop control system are
bounded and the tracking error e(t) satisfies: limt→∞ e(t) = 0.

Remark 1. When Λ is an unknown lower triangular matrix, LD decomposition can be adopted to decompose
Λ = LD∗ with L being a unit lower triangular matrix and D defined as (3.13). Then, similar derivations as
shown above can be made for designing an adaptive control input signal u(t) in (3.18) (while, for this case,
the signal component u1(t) will be first designed). �

4. Adaptive Control for Actuator Failures
In this section, we solve the adaptive control problem when some actuators in the system fail at uncertain

time instants, in uncertain failure patterns and with uncertain failure values. The type of actuator failures
considered in this paper is characterized by some unknown inputs being stuck at some unknown fixed values
that cannot be influenced by control action, which are modeled as

u j(t) = ū j, t ≥ t j, j ∈ {1,2, . . . ,M}, (4.29)
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where the failure value ū j, the failure time instant t j and the failure index j are unknown. A typical example
is an aircraft control surface (such as rudder, elevator, or stabilizer) stuck at some unknown fixed value not
influenced by control. In the presence of failures, u(t) can be expressed as

u(t) = v(t)+σ(ū− v(t)), (4.30)

where v(t) is the applied control input to be designed, and σ = diag{σ1,σ2, . . . ,σM} is the failure pat-
tern matrix with σ j = 1 representing the jth actuator fails, i.e., u j = ū j and otherwise,σ j = 0, and
ū(t) = [ū1, ū2, . . . , ūM]T . Then, the system model (1.1) is rewritten as

ẋ(t) = Ax(t)+BΛv(t)+BΛσ(ū(t)− v(t))+BΘ
∗
φ(x). (4.31)

Next, we design an adaptive control signal v(t) for (4.31) for desired system stabilization and state tracking.
Notices that what if no actuator failure occurs in the plant, u(t) = v(t) and the system model (4.31) is
the controlled plant (1.1): ẋ(t) = Ax(t)+BΛu(t)+BΘ∗φ(x). For this case, we can introduce the adaptive
controller structure as

v(t) = KT
1 (t)x(t)+K2(t)r(t)+K3(t)φ(x)+K4(t), (4.32)

where K∗1 ∈ Rn×M, K2 ∈ RM×M, K∗3 ∈ RM×s and K∗4 ∈ RM are the nominal versions of K1(t),K2(t),K3(t)
and K4(t), with K∗1 and K∗2 designed for plant-model matching, and K∗3 being chosen for compensation of
the actuator nonlinearity, and K∗4 (t) for compensation of the actuation error BΛ(ū− v). To ensure desired
compensation of uncertain actuator failures, some key system conditions are necessary which are derived as

rank(Ba) = rank(Ba|Am−A), rank(Ba) = rank(Ba|Bm), (4.33)

rank(Ba) = rank(Ba|BΘ
∗), rank(Ba) = rank(B), (4.34)

where Ba ∈ Rn×(M−p) is constructed by collecting the M− p columns of B, b j, j 6= j1, · · · , jp (assuming there
are p failed actuators at time t, that is, u j(t) = ū j, j = j1, · · · , jp). Due to space limits, derivations for system
conditions and control designs are not given here, and control designs are similar to the failure-free case.

For this case, we also obtain the results of closed-loop system signal boundedness and asymptotic track-
ing: limt→∞ e(t) = 0, when Λ in (1.1) is an unknown diagonal or triangular matrix.

5. Simulation Study

To demonstrate the effectiveness of the proposed adaptive controller, a delta wing aircraft whose roll
dynamics can be regulated by ailerons is derived from [8] as

φ̇ = p,

ṗ = θ1φ +θ2 p+(θ3|φ |+θ4|p|)p+θ5φ
3 +θ6δa, (5.35)

where φ and p are the aircraft roll angle and roll rate, respectively, and δa is the differential aileron. The
unknown system parameters are defined as θ1 = −0.018, θ2 = 0.015, θ3 = −0.062, θ4 = 0.009, θ5 =
−0.021, θ6 = 0.75. Rewriting the model (5.35) in the form of (2.2) gives[

φ̇

ṗ

]
=

[
0 1
θ1 θ2

][
φ

p

]
+

[
0
1

]
θ6(u+Θ

∗
φ(x)), (5.36)

where Λ= θ6 is the system control effectiveness, Θ∗= 1
θ6
[θ3,θ4,θ5]∈R1×3, φ(x)= [|φ |p, |p|p, φ 3]T ∈R3×1.

For simulations, the reference roll dynamics are defined by the second order transfer function:

φre f

φcmd
=

ω2
n

s2 +2ξ ωns+ω2
n
. (5.37)
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The above Laplace transform represents the desired command-to-response roll angle behavior, where φre f

denotes the reference roll angle and φcmd is the commanded roll angle. (ωn,ξ ) are desired natural frequency
and the damping ratio, respectively. Clearly, the matching conditions (2.3) can be given in the form below[

0 1
θ1 θ2

]
+

[
0
1

]
θ6KT

10 =

[
0 1
−ω2

n −2ξ ωn

]
, (5.38)[

0
1

]
θ6K20 =

[
0

ω2
n

]
. (5.39)

0 50 100 150
−2

0
2

Roll angles: φ, φref (rad), vs. time (s)

0 50 100 150
−0.02

0
0.02

Tracking error e1 = φ− φref (rad) vs. time (s)

0 50 100 150
−1

0
1

Roll rates: p, pref (rad/s), vs. time (s)

0 50 100 150
−0.1

0
0.1

Tracking error e2 = p − pref (rad/s) vs. time (s)

0 50 100 150
−2

0
2

Control input: δa (rad) vs. time (s)

Fig. 1: System responses for the square wave r(t) in (5.40).

The reference system parameters are selected as: ωn = 1(rad/s), ξ = 0.7, and the reference input r(t) is
selected as a piecewise square signal shown below

r(t) =
{

1 2kT ≤ t ≤ (2k+1)T ,k = 0,1,2, ...
0 otherwise.

(5.40)

Hence, the ideal gains are KT
10 =−(1.3093,−1.8867)T and K20 = 1.3333, with adaption gain Γ = 100. The

constant matrix Q ∈ Rn×n is chosen as Q = diag{1,10} and thus P which satisfies PAm +AT
mP =−Q is

P =

[
4.5179 0.3767
0.3767 2.8726

]
. (5.41)
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Applying adaptive law (2.12), we obtain simulation results showed in Fig. 1 for the system output y(t) =
[ρ, p]T , reference output ym(t) = [ρre f , pre f ]

T , the tracking error e(t) = [e1,e2]
T , and control input signal δa.

From Figure 1, it is obvious that our designed adaptive control signal δa as shown in Figure 1 can ensure the
boundedness of all closed-loop system signals and the desired state tracking property.

6. Conclusions
This paper has studied adaptive control for an M-input linear time-invariant system with actuator failures

and nonlinearities in presence of an unknown triangular matrix Λ. A simple adaptive controller has been
designed without the use of an additional compensator system, which can ensure desired stability and state
tracking properties. An extension of the developed adaptive control scheme has been extended to the case
when Λ is an unknown triangular matrix. Further results have been established for adaptive control of
systems of the form (1.1), to deal with uncertainties of the actuation matrix Λ and the failures of the actuators
u(t), to ensure desired system stability and state tracking properties.
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