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Abstract - Humanoid robots (humanoids), at least in theory, can assist humans and work with them in cluttered and confined 

environments. However, further developments are needed to fully enable them to work in close proximity (even in physical 

interactions) with humans while not risking the safety of themselves and the objects and people around them. Current methods have not 

been fully successful in preparing humanoids for 100% safe physical Human Robot Interaction (HRI) due partially to the unresolved 

challenges of detecting the characteristics of the surrounding environment. Furthermore, current humanoids employ expensive and 

fragile equipment making them costly, thus limiting humanity of using them. This paper presents a novel real-time and hardware 

inexpensive collision detection methodology that employs signals from the robots’ motor joints and data processing capabilities from 

the computers running the robot. The approach enables the safe close-proximity HRI for position-controlled humanoids that minimizes 

any negative effects caused by the detected collision. Using the proposed algorithm, humanoids can speedily identify the joint(s) 

responsible for the collision and the affected joints from which effective path planning movement control can be determined. 

Experimental results using a life-size humanoid robot having 29 degrees of freedom are presented that demonstrates the applicability of 

the proposed approach. 
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1. Introduction 
Human beings have been envisioning having strong, agile, and trustworthy human-alike companionable machines for 

more than a century. The expectations of fully realizing such artifacts was initially depicted in the form of cartoon 

characters such as “Rosie the Robot Maid” during the 1960’s TV show “The Jetsons”. Today, depending on the 

application, humanoids come in different size, dexterity, and Human-Robot Interaction (HRI) capabilities. Due to the 

inability of current humanoids to deal with our chaotic highly dynamic and dense industrial (e.g., manufacturing floors), 

recreational (e.g., sporting events), and other (e.g., farmer markets) environments these robots have been mainly deployed 

in engineered static environments. In the medical industry for example, where safety is paramount, humanoids require the 

presence of a human operator for the safe execution of diverse maneuvers. In industry, relatively large robots are kept 

within safe distances from humans to prevent accidents and increase safety [1]. However, if humanoids are to be of benefit 

to society and meet the expectations of having trustworthy companions/servants, effective methodologies are needed to 

enable autonomous systems to deal with the high dynamics and frequent changes of our world (e.g., obstacle avoidance of 

high-speed entities) or develop methodologies to minimize the negative effects of unavoidable (accidental) collisions. The 

paper focus on increasing safety during the deployment and operation of humanoids by minimizing the effects of collisions 

on the robot, the user(s) and the environment as it is not a question if collisions will occur but rather it is a fact that 

collisions will occur. In the context of this paper the following three aspects are considered when discussing the safe 

operation of humanoids within our human-centric world: 

 The robot’s ability to operate amongst and within close proximity of humans and objects without unplanned collisions. 

 Robots capable of safely maneuvering in cluttered and dynamic confined spaces typically designed for humans. 

 Robots having the mechanisms to avoid causing damages to itself, humans, and the objects around it. 

Considering the above-mentioned aspects, we argue that the interacting mechanisms among such qualities increases 

safe HRI. For this we focus on unplanned or undesired collisions as well as planned collisions which are defined as: 

Planned collision is defined as an expected force impact from the robot’s body to the environment/objects. In this 

paper it is desired to detect planned collisions as by properly controlling and being aware of such impacts enhances safer 

HRI. 

Unplanned collision, a.k.a. accidents, are when two or more bodies exert a force, F  x, on each other that causes an 
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undesirable change in velocity/position on at least one entity (with or without damage).  

Based on this, the following problem statement is formulated: 
 

Develop a fast (instantaneous) planned & unplanned collision-detection algorithm to enable humanoids 

to safely maneuver in arbitrary cluttered dynamic environments and operate safely in any HRI activity. 

 
2. Background 

Some of the important aspects of a humanoid’s safe operation, its ability to sense, balance, and react to errors rely 

on its ability to move within the environment. Pedal walking has showed to be more agreeable with the terrains that 

humans generally walk on [2-4]. Moreover, with the employment of legged over wheeled locomotion (using less than 

3 wheels), a lower chance a humanoid has of falling or colliding on the surrounding objects [5]. Therefore, pedal gaits 

contribute to a safer robotic manoeuvre amongst humans. Legged locomotion on humanoid robots like ASIMO and 

BIPER having superior means of walking and maintaining a balanced posture when combined with suitable walking 

pattern generation has shown to be suitable for preventing collisions [6]. As the aspect of collision avoidance based on 

the perceived information about the surrounding environment highly allows a safer walking, it’s beneficial to target 

collision avoidance and step generating in cluttered environments [7-8]. To do so most humanoids employ vision 

system to examine the environment and prevent collisions. Although suitable for static spaces, due to its high 

computer demand, computer vision is limiting when used in high-speed changing dynamic cluttered spaces where 

multiple objects move in somewhat chaotic fashion (like seen in a busy downtown street). 

It is a well-known fact that human beings can rely on their hands to protect themselves in case of falling and have 

a more balanced posture when compared to humanoids. Due to humanoids’ close physical characteristics to humans 

they can also benefit from using their hands and other body parts besides their feet for balance enhancement [7-11]. 

With improved and comprehensive methodologies to maintain balanced, humanoids will reach safer close-proximity 

interactions with humans. However, to fulfil this vision humanoids need to engage complementary technologies and 

methods to their current sensor and motion systems to assure effective handling of systematic errors/disturbances [7].  

It is known that humans use their sense of touch to compensate for errors associated with their visual and hearing 

systems. Humanoids can also benefit from the contribution of their tactile sensing for higher accuracy during the 

overall balancing and interaction operations [11-13]. While enhancing humanoids balance and interaction mechanisms 

increases the possibility of close-proximity human-robot interaction, it also contributes to the aspect of physical HRI’s 

safety. It is undeniable that a more balanced robot having numerous complementary methods to compensate for 

possible unforeseen errors and dynamics can increase safety. Not only robots will be able to guarantee its surrounding 

objects’ and humans’ safety but also they will prevent damaging their own self, hence not endangering its own safety 

[14]. Overall the employment of tactile sensing in a broad sense seems to enhance safe humanoid robot interaction 

[15]. Currently humanoid robots use tactile, and force sensors which among other things are used for effective pedal 

balancing purposes [11-13].  There are some humanoid robots that are equipped with tactile sensors in their hands and 

other body parts [13]. The utilization of such sensors all over the humanoid’s body is thought to enable the robot to 

have tactile sensing comparable to a human and thus, a higher possibility of performing safe manoeuvres. However, it 

negatively affects the robot’s computation and reaction time while increasing its costs. In addition, these sensors 

require high maintenance due to their complexity and fragility [16]. As a result, the employment of complementary 

techniques that could provide similar information to the robot without the associated complexities can be highly 

beneficial. Surely such robots would be able to use their tactile sensation to contribute to their balance and interaction 

system while not causing high expenses or a burden on the computational time for fast, safe, real-life interactions. 

 

3. Proposed Solution: Collision Detection Algorithm 
As mentioned in the Section 2, humanoid robots are, at least in theory, capable of safe operation through arbitrary 

cluttered environments, navigate on rough dynamic terrains, and perform effective work among and cooperating with 

humans. Many of the different techniques used to enable HRI, and safe humanoid robots’ operation, either use visual 
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perception or benefit from other sophisticated sensing equipment such as tactile sensors to feedback information to the 

robot so that it can effectively maneuver and prevent dangerous collisions. Even though the techniques associated with 

visual perception and the associated sensors have been used in the field of robotics longer than tactile sensors, they are yet 

yet to be completely error-free and reliable. However, the sensors which inform the robot about its physical connection 

with its surrounding (e.g., tactile sensors) also help to compensate for visual perception errors. However, the family of 

tactile sensors (tactile, touch, and force sensors) also have shortcomings. Thus, in order to fully enable safe, reliable, 

dependable, friendly, and provide effective inexpensive robots, it is favorable to minimize the addition of sensing and 

hardware equipment and use the robot’s available hardware with advanced control, data analysis, and motion planning 

techniques. This will maximize the potential use of the available systems and components. Although many and diverse of 

the current robot characteristics can be thought to be required to enable 100% error-free and safe operation (e.g. perception, 

motion control, and path planning), one of the goals is to prevent collisions and minimize any negative effects that any 

unplanned collision could cause. However, for this to be possible in real world activities (in part because the world is 

highly dynamic) robots must be able to adapt.  

Based on this and within the context of this work, this paper presents a fast (instantaneous) collision-detection 

algorithm applicable to position-controlled humanoid robots which enables them to safely maneuver in arbitrary cluttered 

environments and operate safely in any HRI activity. The goal of the proposed methodology is to enable humanoids to 

detect planned and unplanned collisions within a given range of applied force and determine (as precise as possible) the 

location on where the collision occurred so that effective and safer robot activities can be constructed. This is to be 

achieved without adding sensors or other devices to the basic available infrastructure (e.g., motors, IMU, F/T sensors, 

cameras) present in typical humanoids. 

Figure 1 illustrates an overall flowchart of the proposed methodology for detecting collisions on the humanoid’s body. 

The approach consists of four layers (Fig. 1): Perception, Evaluation, Identification, and Execution Layers. The solution 

uniquely combines prior published work in perception and develops novel Evaluation, and Identification layers. These two 

layers process the received signals from the robot’s joint motors and keeps track of the controlled computer commands 

used during the planned maneuvers. The output is the recognized collisions (if any occurred) and their locations on the 

humanoids’ body. As can be observed from Figure 1 the methodology is performed in a sequential manner. A process that 

is repeated at every control cycle 𝛿𝑡 𝑚 (the period that the robot’s controlling mechanism takes to update the robot’s 

(current) state).  

 
Figure 1: Flowchart of the Collision Detection Algorithm. 

 

In brief, the proposed algorithm works as follow: The current and desired state of every joint comprising the humanoid 

are gathered by the Perception layer. The joint state is herein defined by the following three parameters: a) position, b) 

velocity, and c) torque. The current state of all joints is then passed to the Evaluation layer which records a sequence of 

joint states over a pre-defined time window. This is performed for every joint either if the joint is moving or static. 

Since the sensed joint state values might have errors the goal of the Evaluation layer is to remove the erroneous values 

denoted herein as outliers. For this, the Evaluation layer records a set of incoming data repetitive over a short time window 
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∆𝑡 = ∑ 𝛿𝑡 𝑚
𝑙
𝑚=1  (m refers to the number of storing iterations and ∆𝑡 is the storing time window). Once the outliers 

(errors) are removed from the joint states data received a good set of data set is generated from where the max and min 

values for each parameter of interest is obtained (i.e., max & min position/velocity/torque for joint “i”). Herein the 

corresponding difference between the max & min is referred to as the parameter range for joint “i”. Such range is then 

passed to the Identification layer for processing (Section 3.2.1). Subsequently, the so-called safe range, the robot’s 

kinematics, and the desired goal values for each joint are used to compute if several conditions are met. The developed 

conditions are used to identify collisions as well as the affected robotic joints. This is a task performed by the 

Identification Layer which executes its task every 𝛿𝑡 𝑚 (Section 3.1). Consequently, the Identification layer detects 

collisions in accordance to the results from the Evaluation layer and the desired and current joint values from the 

Perception layer. The Evaluation layer then helps to decide on whether to continue a specific robot maneuver 

(depending if a planned or unplanned collision was detected). The result of such a decision is then carried by the 

Execution layer, which sends the result of the decision back to the corresponding robotic joint(s) to stop or continue 

the on-going maneuver. If the overall algorithm does not detect a collision, the above cycle continues simultaneously 

as the robot performs any given maneuver. In the following sub-sections, each of the proposed layers is described in 

detail followed by illustrative results in Section 5. 

 
3.1. Perception Layer 

The perception layer is developed under the assumption of using position-controlled humanoid robots which 

operate by computing and propagating the desired future joint position values. Furthermore, since the purpose of the 

proposed algorithm is mimic the information provided by tactile/skin sensors, the motion information perceived from 

the robot’s joint motors and the values computed by the motion mechanism regarding the future (planned) states are 

considered as the main element (sensing information) of the Perception layer. The motor information used in the 

proposed approach includes the position, velocity, and internal applied torque (or force) of all the robot’s joints 

(Figure 1). The current and future joint states data is always utilized in the execution of the proposed collision 

detection algorithm. The joint values are updated every control cycle 𝛿𝑡 𝑚, where 𝛿𝑡 𝑚 is the time that one cycle of the 

control algorithm takes to compute its future state. The 𝛿𝑡 𝑚 is also used to represent the 𝑚𝑡ℎ iteration of the robot’s 

control cycle. The current state of the joints and the goal (calculated) joint values are then independently fed to the 

Evaluation layer for further evaluation and interpretation. 

 
3.2. Evaluation Layer 

Throughout this work, the desired (computed) position of a joint 𝑖, based on following a given trajectory at 

iteration (control) cycle 𝑚 is denoted as 𝑃𝑑𝑖

𝑚. Likewise, the current motor state values directly received from the 

motors (position, velocity and torque) for each joint 𝑖 are denoted as 𝑃𝑐𝑖
𝑚,  𝑉𝑐𝑖

𝑚,and 𝜏𝑐𝑖
𝑚, respectively. The full set of 

motor state values is then defined as: 𝑆 = {𝑃𝑐𝑖
𝑚, 𝑉𝑐𝑖

𝑚, 𝜏𝑐𝑖
𝑚, 𝑃𝑑𝑖

𝑚} where 𝑃𝑐𝑖
 , 𝑉𝑐𝑖

 , 𝜏𝑐𝑖
 , 𝑃𝑑𝑖

  (current values for position, 

velocity, torque, and desired position) are arrays of size based on the number of motors comprising the robot. As 

illustrated in Figure 1, the subset of 𝑆 of the desired and current position, velocity, and torque values for the robotic 

joints is stored for each time window ∆𝑡 = ∑ 𝛿𝑡 𝑚
𝑙
𝑚=1 . 

 
3.2.1. Moving Filtering Mechanism 

Although there are numerous available methods for interpreting erroneous data with considerable amounts of false 

irregularities, developing methods which result in higher accuracies in terms of detecting and replacing outliers 

without noticeable data loss in a time efficient manner is needed. With the purpose of reducing time and increasing 

computation efficiency, a dynamic filter for the current values of torque 𝜏𝑐𝑖
  is proposed in combination with the 

position and velocity data to detect collisions. The proposed filter is a moving (dynamic) filtering method used to 

detect local outliers comprising the sensed torque values according to a window size 𝑊𝑠. The method identifies 

outliers as the data elements which have a value greater than three local scaled Median Absolute Deviation (MAD) 

from the local median over the sliding window having size 𝑊𝑠. For joint 𝑖 during ∆𝑡 the scaled MAD is defined as: 
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𝑆𝑐𝑎𝑙𝑒𝑑 𝑀𝐴𝐷 = 𝐶 × 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝜏𝑐𝑖
𝑚 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝜏𝑐𝑖

 )|) (1) 

where 

𝐶 = −1

√2 × 𝑒𝑟𝑓𝑐−1(
3
2

))
⁄  

(2) 

 

In Eqn. 2, 𝑒𝑟𝑓𝑐−1 stands for the Inverse complementary error function which provides the following value: C=1.4826. 

Once all outlier data points comprising each array of 𝜏𝑐𝑖
  are identified, each outlier is replaced with a modified value. The 

outliers are replaced with the computed threshold values using the “linear interpolation neighboring” method. The resulting 

filtered array (no outliers present) for the torque is then denoted as  �̂�𝑐𝑖
 (filtered current torque values). 

 

3.2.2. Generation of Collision Detection Mechanism Requirements 

Simultaneously with the filtering mechanism, the max and min values for 𝑃𝑐𝑖
  and its differential value are computer 

and stored in a matrix, 𝑀𝐴𝑀𝑃𝑐𝑖
 . Subsequently, for each pair of positions (𝑃𝑐𝑖

𝑚, 𝑃𝑑𝑖

𝑚) the difference between the current, 𝑃𝑐𝑖
𝑚, 

and desired, 𝑃𝑑𝑖

𝑚, values for time period ∆𝑡 are computed. The differentiated values of desired and current position are 

computed per Eqn. 3 and stored into new array, 𝑑𝑃𝑖
 . 

𝑑𝑃𝑖 = |𝑃𝑐𝑖
 − 𝑃𝑑𝑖

 | (3) 

 

Thereafter, the max values for each array of 𝑑𝑃𝑖
  is calculated and stored as 𝑑𝑃𝑖

 𝑀𝑎𝑥. The values of 𝑑𝑃𝑖
 𝑀𝑎𝑥are updated 

during each ∆𝑡 and used during the collision detection process (Eqns. 6 and 7). 

The third and last condition used to identify collisions uses the slopes between the �̂�𝑐𝑖
 𝑚 variables. During diverse tests 

it was observed that even though the torque values might follow a constantly rising or falling pattern between each �̂�𝑐𝑖
 𝑚, the 

absolute values of the slopes between each �̂�𝑐𝑖
 𝑚 for each period 𝛿𝑡𝑚 can be effectively utilized for detecting collisions. For 

this purpose, Eqn. 4, is used to find the 𝑚 − 1 absolute slope values between �̂�𝑐𝑖
 𝑚 variables during the control cycle 𝛿𝑡𝑚 for 

each joint 𝑖: 

𝑆�̂�𝑐𝑖
  

 

𝑚−1×1
= |[

�̂�𝑐𝑖
 1 − �̂�𝑐𝑖

 2

𝛿𝑡𝑚

�̂�𝑐𝑖
 2 − �̂�𝑐𝑖

 3

𝛿𝑡𝑚
…

�̂�𝑐𝑖
 𝑚−1 − �̂�𝑐𝑖

 𝑚

𝛿𝑡𝑚

]| (4) 

 

From Eqn. 4 it is observed that 𝑆�̂�𝑐𝑖
  

  is an 𝑚 − 1 × 1 matrix calculated for the time period ∆𝑡 (i.e., 𝑆�̂�𝑐𝑖
  

 includes the 

slopes between toque values during the time ∆𝑡). Subsequently, the maximum value within 𝑆�̂�𝑐𝑖
  

  is identified as 𝑆�̂�𝑐𝑖
  

𝑀𝑎𝑥. The 

values of 𝑆 �̂�𝑐𝑖
   

𝑀𝑎𝑥, updated for each ∆𝑡, are used for the third and last condition (Eqn. 7) for detecting collisions. 

 
3.3. Identification Layer 

In this sub-section, the previously explained requirements are utilized to generate a time and computational efficient 

collision detection for humanoid robots. At the start of the process the proposed algorithm undergoes a startup 

(initialization) time of ∆𝑡. This is due to the minimum time the Evaluation Layer requires to store, filter, and process its 

input data. Once the algorithm has finished its startup time, for each 𝛿𝑡𝑚, defined as the time between each array of 

received data, the received values for the present time 𝑚 and the previous time iteration 𝑚 − 1 are compared with the 

previously computed (during the preceding ∆𝑡) 𝑀𝐴𝑀 𝑃𝑐𝑖
  . This is performed for each joint 𝑖 using Eqn. 5 where 𝑃𝑐𝑖

𝑚−1 

stands for the preceding time iteration 𝑚 − 1 position values. 

|𝑃𝑐𝑖
𝑚−1 − 𝑃𝑐𝑖

𝑚| ≤  𝑀𝐴𝑀 𝑃𝑐𝑖
   (5) 
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The values of 𝑑𝑃𝑖
 𝑀𝑎𝑥 are used for developing the second condition for detecting collisions. According to Section 

4.2.2, the absolute differential value for the current time (iteration 𝑚) received and desired position (𝑃𝑐𝑖
𝑚 & 𝑃𝑑𝑖

𝑚 ) are 

compared with 𝑑𝑃𝑖
 𝑀𝑎𝑥. Such comparisons are computed via Eqn. 6 during ∆𝑡 for each joint. If the absolute 

between the current (iteration 𝑚) and the desired values is less or equal than the maximum of the absolute differential 

value computed between the received and desired values in the preceding ∆𝑡 period, then it is identified that a collision 

not been detected. Meeting the 2nd condition alongside the 1st and 3rd conditions provides supporting information for 

accurately detecting collisions. 

 

|𝑃𝑐𝑖
𝑚 − 𝑃𝑑𝑖

𝑚| ≤ 𝑑𝑃𝑖
𝑚𝑎𝑥   (6) 

 

In Section 3.2.2 the requirements for developing the last collision detecting condition were described. According 

to Equation 3.4, at each control cycle 𝛿𝑡𝑚, the absolute slope value between the current time 𝑚 and the previous cycle 

(time 𝑚 − 1) for each joint i is calculated and compared with the value obtained from Eqn. 4 ( 𝑆 �̂�𝑐𝑖
  

 

𝑚−1×1
) where 

𝜏𝑐𝑖
𝑚−1 represents the torque values for each joint 𝑖 for the preceding time iteration 𝑚 − 1. 

 

|
𝜏𝑐𝑖

𝑚−1 − 𝜏𝑐𝑖
𝑚

𝛿𝑡𝑚
⁄ | ≤ 𝑆 �̂�𝑐𝑖

  
𝑀𝑎𝑥  

(7) 

 

If the above three conditions are met (i.e., Equations 5, 6 and 7) is said that a collision has not taken place. The 

results for the 3 conditional statements are published for all joints i as binary values 0 (no collision has been detected) 

and 1 (collision detected) in addition to the current readings from the robotic joints 𝑃𝑐𝑖
𝑚, 𝑉𝑐𝑖

𝑚, and 𝜏𝑐𝑖
𝑚, and the joints’ ID 

number from which the joints where a collision has been detected can be rapidly identified. Hence, for a humanoid 

robot with 𝑖 = 1, 2, . . . , 𝑛 joints the following three results (Eqn. 8) are obtained where 𝐷𝑀𝐶𝑗 
, 𝐷𝐽𝐼𝐷𝑗, and 𝐷𝐽𝐶𝑗

 

represent the “Detection Matrix”, “Detected Joints’ ID”, and “Detected Joints’ current readings” for the jth condition 

(𝑗 = 1, 2, 3), respectively. 
 

𝐷𝑀𝐶𝑗 
= [0|1 0|1 … 0|1]𝑖×1, 

 

(8a) 
 

𝐷𝐽𝐼𝐷𝑗 = [0|1 0|2 … 0|𝑖]𝑖×1 
 , and 

 

(8b) 
 

𝐷𝐽𝐶𝑗
= [

𝜏𝑐1
𝑚|0 𝑃𝑐1

𝑚|0 𝑉𝑐1
𝑚|0

⋮ ⋮ ⋮
𝜏𝑐𝑖

𝑚|0 𝑃𝑐𝑖
𝑚|0 𝑉𝑐𝑖

𝑚|0
]

𝑖×3

  (8c) 

 

The results obtained from Eqn. 8 are then combined using the logical operator “AND” resulting is a set of three 

matrices generated for a given humanoid robot having n joints: 𝑖 = 1, 2, . . . , 𝑛 where the terms 

𝐹𝐷𝑀𝐶, 𝐹𝐷𝐽𝐼𝐷, and 𝐹𝐷𝐽𝐶  
represent the “Final Detection Matrix”, “Final Detected Joints’ ID”, and “Final Detected 

Joints’ readings”, respectively. 

 

𝐹𝐷𝑀𝐶 = (𝐷𝑀𝐶1 ∧ 𝐷𝑀𝐶2 ∧ 𝐷𝑀𝐶3 ), 
 

(9a) 
 

𝐹𝐷𝐽𝐼𝐷 = (𝐷𝐽𝐼𝐷1  ∩  𝐷𝐽𝐼𝐷2 ∩ 𝐷𝐽𝐼𝐷3), and 
 

(9b) 
 

𝐹𝐷𝐽𝐶 
= ( 𝐷𝐽𝐶1

∩ 𝐷𝐽𝐶2
∩ 𝐷𝐽𝐶3

) (9c) 
 

Since the values for the exceeding torque, position and velocity values are identified in Eqn. 9, the proposed 

methodology finds the approximated value for the applied torque on the robotic joints as well as the amount of 

displacement and velocity change. The results of the Identification layer are passed to the Execution layer which 
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completes the operation architecture. At this stage, based on the results of the collision detection process the robot can stop 

or continue a given maneuver. 

 

4. Experimental Results 
To test and analyse the proposed collisions detection algorithm the process was implemented in a life-size (5.5 feet 

tall) experimental humanoid robot having 29 degrees of freedom (servomotor joints). A set of representative results is 

provided in Figures 2 & 3. The robot was subjected to a series of collisions executed with a Stanley 51-104 rubber mallet 

at various locations within the robot’s body. To not damage the robot or its joints the applied collision forces used where in 

line with the targeted joints. That is, the applied force of each hit was below the torque threshold of each joint. The control 

cycle 𝛿𝑡𝑚 was set to 0.008 seconds and the values for 𝑆 were stored for twenty data captured cycles, 𝑚 = 20. Thus, the 

algorithm captured motor sensor data for a timer period of ∆𝑡 = 0.16 [s]. Therefore, the collision detection mechanism 

started to detect collisions 0.16 [s] after the initialization of the robot’s desired and current joints data publishing. For the 

used storing data number of 20, the Window Size 𝑊𝑠=9 was used. 

Figures 2 illustrates the results of a light intensity collision on the more sensitive group of 20 [Watt] servomotors. The 

tests were conducted on two cases: i) robot’s joints idle, and ii) moving. The right 2 columns of the figure show the 

recorded time when a collision was detected (after the collision took place) and the corresponding location on the body. 

The proposed approach was able to detect the collisions on the targeted area as well as on the joints proximal to the place 

where the collision took place. Collision on some of the joints were detected as a result of torque propagating through the 

robot’s body caused by the collision (neck and left hand joints for the idle experiment and right hand and torso for the head 

moving experiment).  
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Figure 2: Real-time collision detection of the humanoid’s 20 W servomotor joints. 

During a series of more complex experiments, various groups of servomotors were hit using various intensity 

collisions. The applied collisions shown in Figure 3 were performed one at a time in a relatively fast succession. For 

the results shown in Figure 3 three collisions were applied (right wrist, left hip, and right ankle). The proposed method 

was successful in detecting the areas of the collision as well as the torque propagation resulted from the collisions. 

Some of the more sensitive servomotor joints like joint ID 29 (neck) erroneously detected the collisions which can be 

explained similarly to the results in Figure 2. 
 

 

Figure 3: Real-time collision detection of the humanoid’s servomotor joints in idle state. 

 

6. Conclusions 

From the numerous experimental results, it is concluded that the proposed collision detection algorithm is able to 

successfully detect collision on the humanoid’s body as fast as 0.02 seconds (Figure 3) from the time the 

corresponding collision took place. On average (based on 60 diverse tests), the proposed algorithm takes 0.16 seconds 

to analyse the received signals from the robotic joints and can identify which joints where impacted as fast as 0.008 

seconds. Furthermore, the location of the collision in addition to the other impacted areas could be found very quickly. 

Using the proposed approach, humanoid robots can detect and locate collisions on their body which should enable 

them to work near humans and even engage in physical HRI activities in a safe manner. This should be even possible 

despite the possibility of failures in the robot’s visual perception and movement algorithms. Thus, the proposed 

approach should be able to provide a tool to minimize the associated costs and disadvantages of current expensive and 

delicate tactile sensing sensors and their mechanisms. Despite the developments presented, there are numerous 

improvements that can be made to the proposed algorithm including increasing the accuracy of the collision detections 

and developing algorithms to identify the difference between a collision and the effects of a collision propagating 

through the robot’s body. 
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