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Abstract - In this work, three adaptive estimation methods are considered for the identification of the stator winding resistance of an 

interior permanent magnet motor. The layout of the magnets in the motor under consideration produces a trapezoidal back electromotive 

force (emf), which is more challenging for the estimators due to the introduction of higher order harmonics. The three estimation 

techniques are compared in terms of accuracy in estimating the true parameter value. The multiple model estimation (MME) algorithm 

utilizing Kalman filters provides the most accurate estimate with the least computational complexity while the additional complexity of 

the extended Kalman filter (EKF) and the fading memory extended Kalman filter (FM-EKF) results in a poor estimate of the parameter. 
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1. Introduction 
In the field of motor-drives, most control techniques still utilize physical model-based methods that rely on the 

knowledge of parameter values [1]. Using parameter-based models facilitates fast and accurate control of the motor-drive, 

but introduces the need for fast and accurate parameter identification for optimal control results, especially if the parameters 

are varying with operating conditions and require occasional re-identification [2]. Stator resistance is a parameter especially 

sensitive to operating conditions, necessitating fast and accurate parameter estimation [3]. 

Several investigations have attempted to address the stator winding resistance estimation problem. In [4], the authors 

propose a method to estimate the stator parameters, including stator resistance, using only voltage and current measurements 

without rotor operation information. They also analyze the sensitivity of the stator resistor estimation to errors in the estimates 

of other motor parameters. In [5], the authors demonstrate how error in the stator resistance estimation detunes the control 

performance. These authors include an additional PI controller to act on the error in the angle between the stator flux and 

stator current to estimate stator resistance during operation when performance degrades. Other methods for estimating or 

compensating for stator resistance error are similar to the method proposed in [6]. Here, a stepwise direct-current excitation 

is used and the stator current periodically sampled and post-processed. The authors show how the method tracks stator 

resistance estimation changes well, though with a 10 second time delay, and they demonstrate how to track stator winding 

temperature changes using the stator resistance estimate and an external thermometer. 

This work extends [7] by comparing three adaptive estimation techniques when applied to the stator winding resistance 

identification problem. Section 2 presents the permanent magnet (PM) motor models used in this work. The three adaptive 

estimation techniques, the multiple model estimation (MME) algorithm utilizing a bank of Kalman filters, the extended 

Kalman filter (EKF), and the fading memory extended Kalman filter (FM-EKF), are discussed in Section 3. The simulation 

and the estimation results for the case study motor are presented in Section 4. Finally, Section 5 summarizes the results and 

provides conclusions. 

 

2. The Permanent Magnet Synchronous Motor Model 
The continuous time permanent magnet motor model in the abc coordinate system using phase currents as state variables 

[8] is used to generate the motor measurement data.  

𝑖̇̇𝑎𝑏𝑐 = −𝐿−1(𝑅𝑠 + �̇�)𝑖𝑎𝑏𝑐 + 𝐿−1(𝑣𝑎𝑏𝑐 − 𝑒𝑎𝑏𝑐)        (1) 
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Here, 𝑖𝑎𝑏𝑐   =  [ 𝑖𝑎    𝑖𝑏    𝑖𝑐]
𝑇are the phase currents in Amperes (A), 𝑣𝑎𝑏𝑐 = [𝑣𝑎 𝑣𝑏 𝑣𝑐]𝑇 are the terminal phase 

voltages in Volts (V), 𝑒𝑎𝑏𝑐 = [𝑒𝑎 𝑒𝑏 𝑒𝑐]𝑇are the voltages induced by the back electromotive force (emf) in Volts, 𝑅𝑠 is 

the diagonal matrix consisting of the stator resistance 𝑟𝑠 in Ohms (Ω), L is the matrix of time-varying self and mutual 

inductances of the stator windings in Henries (H), and �̇� is the time derivative of the L matrix which is calculated element-

by-element.  

Note that (1) is a time-varying model. In practice, it is advantageous to transform the model for estimation and control 

purposes in such a way that it becomes time invariant. The dq0 coordinate transformation projects the motor currents and 

voltages into a reference frame that rotates at the synchronous speed of the motor, reducing sinusoids at synchronous 

frequency to dc quantities determined by magnitudes and phase angles. The amplitude invariant dq0 transformation 𝑇𝑑𝑞0 and 

its inverse 𝑇𝑑𝑞0
−1  are presented in (2) and (3). 
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Here, σ is the electrical position of the rotor in radians. When the rotor speed is constant, this becomes σ = ω𝑒𝑡, where 

ω𝑒 is the electrical rotational speed of the motor in electrical radians per second, and 𝑡 is the time instant in seconds.  

Transforming (1) using (2) results in the dq0 coordinate motor model (4) [9] 
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]     (4) 

where 𝑖𝑑𝑞0 is the vector of dq0 coordinate phase currents, 𝑣𝑑𝑞0 is the vector of dq0 coordinate terminal phase voltages, and 

𝑒𝑑𝑞0 is the vector of dq0 coordinate voltages induced by the motor back emf. Additionally, 𝐿𝑑𝑑, 𝐿𝑞𝑞, and 𝐿00 are the self-

inductances of the stator projected into dq0 coordinates. Note that this model is linear and time invariant when ω𝑒 is constant. 

The measurements of the system are the phase currents in abc coordinates. The inverse dq0 transform in (3) is used to 

relate the dq0 currents to the measured values. Thus, the measurement equation is 

[
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Note that neither system noise nor measurement noise is modeled in this work. 

It is often useful to discretize continuous time systems when the estimator is implemented using a microcontroller. 

Implicit discretization methods, such as the trapezoidal method, generally are more accurate and numerically stable than 

explicit discretization methods, such as the Forward Euler method. However, it can be challenging to return the system to 

state space form, particularly for nonlinear systems. In the case of a linear time invariant (LTI) system, such as (4) during 

steady state operation, the trapezoidal discretization method can be written for LTI systems as  

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘         (6) 

𝐴 = (𝐼 − 0.5𝑇𝑠𝐴𝑐)
−1(𝐼 + 0.5𝑇𝑠𝐴𝑐)       (7) 

𝐵 = 0.5𝑇𝑠(𝐼3 − 0.5𝑇𝑠𝐴𝑐)
−1𝐵𝑐        (8) 
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where 𝐴𝑐 is the continuous time A matrix, 𝐵𝑐 is the continuous time B matrix, 𝑇𝑠 is the sampling period in seconds, and I is 

the identity matrix of appropriate dimension. Since parameter identification with the EKF or the FM-EKF results in a 

nonlinear problem, (4) is discretized using the Forward Euler method: 
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3. The Estimators 
3.1. Multiple Model Estimation (MME) utilizing Kalman Filters 

The multiple model estimation algorithm estimates an unknown system parameter such as 𝑟𝑠 by creating a set R of N 

hypotheses. One estimator is designed around each hypothesis, and the posterior probability that the 𝑖𝑡ℎ hypothesis 𝑟𝑠,𝑖 is 

closest to the true parameter value is calculated using Bayes' rule (10). Here, 𝑝(∗) represents a probability density function, 

𝑦𝑘 is the measurement at time k, and 𝑌𝑘 is the set of all measurements through time k.  

𝑝(𝑟𝑠,𝑖|𝑌𝑘) =
𝑝(𝑦𝑘|𝑌𝑘−1, 𝑟𝑠,𝑖)𝑝(𝑟𝑠,𝑖|𝑌𝑘−1)

∑ 𝑝(𝑦𝑘|𝑌𝑘−1, 𝑟𝑠,𝑚)𝑝(𝑟𝑠,𝑚|𝑌𝑘−1)𝑁
𝑚=1

       (10) 

Fig. 1 outlines this process. A more detailed explanation of the MME algorithm and its application to stator resistance 

estimation can be found in [7]. Since the MME algorithm preserves the linearity of the system, it is possible to discretize the 

dq0 coordinate model in (4) using the trapezoidal method. The hypothesis set R = {0.2, 0.3, 0.4, 0.5, 0.6} consists of five 

possible values for the stator resistance, each of which is equally likely to be closest to the true stator resistance. In practice, 

if a certain nominal value is more likely than others, the initial posterior probabilities can be adjusted to reflect this. 

 

 

Fig. 1: Block diagram of the multiple model estimation algorithm [10]. 

 
3.2. The Extended Kalman Filter (EKF) 

Consider a nonlinear time varying stochastic system of the form 
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝐹𝑘𝑣𝑘

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑢𝑘) + 𝐺𝑘𝑤𝑘
        (11) 

where 𝑥𝑘 is the 𝑛 × 1 state vector, 𝑢𝑘 is the 𝑚 × 1 input vector, and 𝑦𝑘 is the 𝑝 × 1 measurement vector. The 𝑛 × 1 system 

noise vector 𝑣𝑘, the 𝑝 × 1 measurement noise vector 𝑤𝑘, and the initial state value 𝑥0 are independent white random variables 

with Gaussian densities as in (18) of the Appendix. The extended Kalman filter for model (11) and (18) can be expressed as 

in (12) below. See the Appendix for the complete set of equations [11]. The innovations term �̃�𝑘 is given in (13). 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝐾𝑘�̃�𝑘        (12) 

�̃�𝑘 = 𝑦𝑘 − �̂�𝑘 = 𝑦𝑘 − ℎ(𝑥𝑘 , 𝑢𝑘)       (13) 

To use the Kalman filter gain and covariance equations found in (20) and (21) of the Appendix, the nonlinear system is 

linearized around the current estimate 𝑥𝑘. Thus, 𝐴𝑘 and 𝐶𝑘 are found from the Jacobians of the nonlinear system 
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𝐴𝑘 =
𝜕𝑓

𝜕𝑥
|𝑥=𝑥,𝑢=𝑢𝑘

 𝐶𝑘 =
𝜕ℎ

𝜕𝑥
|𝑥=�̂�,𝑢=𝑢𝑘

       (14) 

In the parameter identification problem, the unknown parameter is appended to the state vector, and the dynamic model 

for this parameter is appended to the system vector. In the case of a constant parameter such as the stator resistance, the 

parameter model is of the form of (15). In this work, the EKF is designed using the dq0 coordinate motor model discretized 

using the Forward Euler method as found in (9) and is initialized with a value of �̂�𝑠,0 = 0.3 Ω. 

𝑟𝑠,𝑘+1 = 𝑟𝑠,𝑘                  (15) 

 
3.3. The Fading Memory Extended Kalman Filter (FM-EKF) 

Several techniques have been developed that can improve the performance of the Kalman filter and the EKF [12]. One 

such technique involves weighting recent measurements more heavily than older measurements. This modification is known 

as the fading memory extended Kalman filter [12]. It is particularly useful when there may be a mismatch between the system 

and the model because it prioritizes the recent measurement information over the expected system dynamics. The estimator, 

the Kalman gain, and the Jacobians remain the same as in the standard formulation of the EKF. The covariance equation 

includes a forgetting factor α that is slightly larger than 1, which prevents 𝑃𝑘 from becoming too small. The increase in 𝑃𝑘 

reflects a lack of confidence in the estimate, which results in a larger estimator gain. Thus, the innovations will have a larger 

effect on the estimate at each time step. The modified covariance equation is given by 

𝑃𝑘+1 = α2𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝐹𝑘𝑉𝑘𝐹𝑘

𝑇 − α2𝐴𝑘𝑃𝑘𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)

−1
𝐶𝑘𝑃𝑘𝐴𝑘

𝑇    (16) 

Note that if the value of α is too large, the system model is completely neglected, and the estimator will not converge;                

α = 1.01 is commonly selected. As with the EKF, the FM-EKF is designed using the model in (9) and is initialized with a 

value of �̂�𝑠,0 = 0.3 Ω. In addition, the value of α is fixed to 1.01. 

 

4. Simulation Results 
4.1. The Case Study 3.5 hp Motor 

Table 1 presents the ratings of the case study motor. All motor parameters were previously calculated using Finite 

Element Analysis. In particular, the resistance of the stator resistance is 𝑟𝑠 = 0.49 Ω, and the voltages induced by the back 

emf contain significant odd harmonics. This results in a trapezoidal waveform as seen in Fig. 2.  

The sinusoidal terminal excitation is applied in such a way that the ratio of the voltage in Volts and the frequency in 

Hertz (V/f) remains constant. This control maintains constant torque across different motor speeds, assuming the voltage 

drop over the stator windings is small compared to the applied voltage. Three operating speeds are considered using constant 

voltage to frequency control: rated speed, one-half rated speed, and one-quarter rated speed. For the purpose of simulation, 

all input and output data are generated using the continuous time abc coordinate model of the motor in (1). The differential 

equations are solved using the stiff solver ode23s in MATLAB. It is assumed that the drive uses a constant sampling period 

of 𝑇𝑠  =  200 μs. Thus, as the motor operating speed decreases, the number of samples per electrical cycle increases. 

 

Table 1: Ratings of the Case Study Motor. 

 

Rated Power 3.5 hp 

Rated Speed 3450 r/min 

Rated Torque 7.25 Nm 

Rated Current 10 A 

Rated Line-to-Line Voltage  240 V 
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Fig. 2: Phase a open circuit back emf of the motor at rated speed. The back emf of phase b and phase c are phase shifted ±120𝑜 from 

phase a. The waveform is trapezoidal.

 
4.2. Results at Rated Speed 

In Fig. 3, the posterior probabilities of the five hypotheses of the MME algorithm are presented as a function of time. 

The probability curves corresponding to 𝑅1, 𝑅2, 𝑅3, and 𝑅5 approach 0, while the probability curve corresponding to 𝑅4 

approaches 1. This indicates that the hypothesis 𝑅4 = 0.5 Ω is the closest to the correct value of 0.49 Ω. The posterior 

probability of 𝑅4 converges in approximately 1 second. However, 𝑅4 is the preferred hypothesis as early as 0.2 s. Thus, the 

MME algorithm correctly identifies the stator resistance when operating at rated speed and rated torque. 

 

Fig. 3: Posterior probability of each hypothesis when the case study motor operates at rated speed. The estimated stator 

resistance is 0.5 Ω, and the true resistance is 0.49 Ω. 

In Fig. 4, the estimate of 𝑟𝑠 from the EKF is presented. Note that the mean estimate is 1.5787 Ω. This is significantly 

larger (224%) than the true stator resistance of 0.49 Ω. The error in the estimate may be a result of errors introduced by the 

Forward Euler discretization. Essentially, a sample period of 𝑇 =  200 μs results in about 29 samples per fundamental 

electrical cycle. However, the back emf contains harmonics up to the 13th, and at this sampling period there are only two 

samples per 13th harmonic cycle. In Fig. 5, the estimate of 𝑟𝑠 from the FM-EKF is presented. The mean estimate is 1.5779 

Ω, which is significantly larger (222%) than the true value of 0.49 Ω and only a minimal improvement over the estimate 

from the EKF.  
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Fig. 4: Stator resistance estimate produced by the EKF at rated 

speed. The average estimated stator resistance is 1.5787 Ω, and 

the true resistance is 0.49 Ω. 

 

Fig. 5: Stator resistance estimate produced by the FM-EKF at 

rated speed. The average estimated stator resistance is 1.5779 

Ω, and the true resistance is 0.49 Ω. 

 
4.3. Results at One-Half Rated Speed 

In Fig. 6, the posterior probabilities of the five hypotheses of the MME algorithm are presented as a function of time. 

The posterior probability of 𝑅4 = 0.5 Ω converges to 1 in about 1 second and again appears to be the preferred hypothesis 

at 0.2 s. Thus, the MME algorithm correctly identifies the stator resistance when operating at one-half rated speed and rated 

torque. 

 
Fig. 6: Posterior probability of each hypothesis when the case study motor operates at one-half rated speed. The estimated stator 

resistance is 0.5 Ω, and the true resistance is 0.49 Ω. 

 

In Fig. 7, the estimate of 𝑟𝑠 from the EKF is presented. At one-half rated speed, the mean estimate is 0.7508 Ω. This is 

significantly larger (53.2%) than the true stator resistance of 0.49 Ω, but it is an improvement over the estimate from the 

EKF at rated speed. At one-half rated speed, the number of samples per electrical cycle increases to approximately 58 samples 

per fundamental electrical cycle, and 4.5 samples per 13th harmonic cycle. This indicates the estimate from the EKF improves 

as the motor speed decreases. In Fig. 8, the estimate of 𝑟𝑠 from the FM-EKF is presented. The mean estimate is 0.7505 Ω, 

which remains significantly larger (53.2%) than the true value of 0.49 Ω and indicates the FM-EKF is similarly affected by 

the sampling period. Note that at one-half rated speed, the FM-EKF does not significantly improve on the estimate from the 

EKF. 
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Fig. 7: Stator resistance estimate produced by the EKF at one-

half rated speed. The average estimated stator resistance is 

0.7508 Ω, and the true resistance is 0.49 Ω. 

 
Fig. 8: Stator resistance estimate produced by the FM-EKF at 

one-half rated speed. The average estimated stator resistance is 

0.7505 Ω, and the true resistance is 0.49 Ω.

 
4.4. Results at One-Quarter Rated Speed 

In Fig. 9, the posterior probabilities of the five hypotheses of the MME algorithm are presented as a function of time. 

Again, the posterior probability of 𝑅4 = 0.5 Ω converges to 1 in about 1 second, correctly identifying the parameter within 

the tolerance of the quantization.  

In Fig. 10, the estimate of 𝑟𝑠 from the EKF is presented. At one-quarter rated speed, the mean estimate is 0.5526 Ω. This 

is 12.8% larger than the true stator resistance of 0.49 Ω. Note that the estimate does not improve at the same rate that the 

speed is decreased despite the increase to 116 samples per fundamental electrical cycle, and 9 samples per 13th harmonic 

cycle. In Fig. 11, the estimate of 𝑟𝑠 from the FM-EKF is presented. The mean estimate is 0.5525 Ω, which remains 12.8% 

larger than the true value of 0.49 Ω. By one-quarter rated speed, the FM-EKF does not improve on the estimate from the 

EKF, indicating sampling period and discretization method have a greater effect on accurate estimation of 𝑟𝑠. 

 

 

Fig. 9: Posterior probability of each hypothesis when the case study motor operates at one-quarter rated speed. The estimated 

stator resistance is 0.5 Ω, and the true resistance is 0.49 Ω. 
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Fig. 10: Stator resistance estimate produced by the EKF at one-

quarter rated speed. The average estimated stator resistance is 

0.5526 Ω, and the true resistance is 0.49 Ω. 

 

Fig. 11: Stator resistance estimate produced by the FM-EKF at 

one-quarter rated speed. The average estimated stator 

resistance is 0.5525 Ω, and the true resistance is 0.49 Ω.

 

5. Conclusions 
The results from each of the estimators are summarized in Table 2. The MME algorithm utilizing Kalman filters 

identified the stator resistance within the tolerance of the quantized parameter space during operation at all three speeds. In 

contrast, the EKF cannot identify the parameter, though the estimates improve as the operating speed decreases. This 

indicates that a sampling period of 𝑇 =  200 μs is not sufficiently small to capture the system dynamics. Furthermore, the 

sampling period may not be sufficiently reduced to be within the region of numerical stability of the Forward Euler method. 

Thus, it would be more effective to improve the discretization of the system. Additionally, the FM-EKF provides minimal 

improvement over the EKF, particularly at lower operating speeds. This suggests that improving the discretization of the 

system would result in a greater improvement than the fading memory modification. 

 
Table 2: Summary of Stator Resistance Estimates. 

 

 MME with KF EKF FM-EKF 

100% Speed 0.5 Ω 1.5787 Ω 1.5779 Ω 

50% Speed 0.5 Ω 0.7508 Ω 0.7505 Ω 

25% Speed 0.5 Ω 0.5526 Ω 0.5525 Ω 

 

Since implicit methods are challenging to implement on a nonlinear system such as in the parameter identification 

problem, it is highly desirable to preserve the linearity of the original system if the system is discretized. This highlights one 

major advantage of the MME algorithm over other parameter identification techniques. Future work includes applying these 

three estimators to the stator resistance estimation problem when pulse-width modulation terminal excitation is used. 

 

Appendix 
Consider a linear time varying stochastic system 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐹𝑘𝑣𝑘

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝐺𝑘𝑤𝑘
        (17) 

[
𝑥0

𝑣𝑘
𝑤𝑘

] ∼ 𝑁 ([
�̅�0

0
0

] , [

𝑋0 0 0
0 𝑉𝑘 0
0 0 𝑊𝑘

])        (18) 

The Kalman filter for (18) is expressed by (20) The predict and update equations are combined in this formulation. 

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐶𝑘�̂�𝑘 − 𝐷𝑘𝑢𝑘)      (19) 

The Kalman gain 𝐾𝑘 is defined as 

𝐾𝑘 = 𝐴𝑘𝑃𝑘𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)

−1
       (20) 

The covariance of the state estimate 𝑃𝑘 is calculated as 

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝐹𝑘𝑉𝑘𝐹𝑘

𝑇 − 𝐴𝑘𝑃𝑘𝐶𝑘
𝑇(𝐶𝑘𝑃𝑘𝐶𝑘

𝑇 + 𝐺𝑘𝑊𝑘𝐺𝑘
𝑇)

−1
𝐶𝑘𝑃𝑘𝐴𝑘

𝑇     (21) 
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