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Abstract - This paper describes a kinematic calibration method applied to a humanoid robot arm having seven degrees of freedom. The 

methodology is developed and used to determine the parameters of robotic artifacts having a non-linear model. The parameter 

identification process can be used to identify diverse parameters such as the distance between the joints, moments of inertia, and others. 

The proposed methodology comprises four main steps: First, the kinematic model of the manipulator is determined using the Denavit-

Hartenberg convention. Then, measurement values of the robotic artifact of interest are collected via a Multibody Dynamics simulation 

software. Subsequently, the desired system parameters are identified using a nonlinear identification algorithm. In this third step, the 

Gauss-Newton method is employed to linearize the non-linear model of the system, and the least squares method is used to find the best 

fit for the parameters. As the last step, the obtained identified model (model with identified parameters) is validated by comparing the 

behaviour of the manufactured system with its simulation behaviour. For this, sine wave signals are used as inputs to the actuators 

comprising the robot. The results show that the behaviour of both methods perfectly match which verifies that the identified parameters 

are correctly estimated and highlights the value of model calibration in the control of humanoid robots. 
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1. Introduction 
Robotic manipulators are being used in a variety of applications such as assembly lines [1], underwater welding [2], 

collaborative robots (cobots), and assistance for people with disabilities [3]. Among the extensive applications of robotic 

arms, their use in humanoid robots comprising two legs and two arms enabling their use, at least in theory, in the same 

environments as humans (e.g., manufacturing floors), and perform cooperative tasks with people (e.g., assembly operations 

and inspection of parts). In this context, their physical interactions with people must be safe and to some extent predictable. 

Therefore, the movement accuracy of humanoids and cobots is of vital importance. However, one of the factors which causes 

inaccuracy in a robot’s operation are the unavoidable differences between the geometric characteristics of the robot’s 

kinematic model (i.e., robot’s design) and the manufactured characteristics (dimensions). Although these errors tend to be 

relatively small, they might become significant when the robot’s linkages are arranged in a given geometrical configuration 

such as in series which cause the errors to accumulate and ultimately affect the motion accuracy of the robot such as its 

walking, object manipulations abilities, or its capability to safely interact with humans. Therefore, small errors during 

designing or manufacturing the components comprising the robot (e.g., linkages, and gear boxes) will cause a considerable 

error in placing/moving the robot’s end-effector, feet, and other of its body components (e.g., sensors). As a result, a negative 

impact on the model-based controlling system of the robot(s) will be result [4]. 

The rest of this paper is organized as follows: Section 2 provides a brief literature review. Section 3 provides a 

description of the proposed approach. Then Section 4 presented the process of generating the kinematic model, followed by 

description of the non-linear system identification approach and the concept of kinematic calibration in Section 5. In Section 

6, the results of the calibrated model are presented, and compared with the results of the Multibody Dynamics simulation 

software. Finally, conclusions are provided in Section 7. 

 

2. Literature Review 

One tool that has been used to deal with the problems identified in Section 1 is system or model identification, a practical 

solution to improve the mathematical model of systems for which the exact value of its parameters are inaccurate. [4]. In 

some cases, systems, including redundant robotic systems or systems whose characteristics change over time, are so complex 

that deriving an accurate mathematical model directly from conventional rules of physics is computationally intensive and 
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costly. In such cases, system identification uses the systems’ inputs and outputs data to estimate the needed parameters 

including geometrical dimensions, moments of inertia, and other not easy to obtain parameters such as coefficients of 

friction.  

There are few cases where the system identification process can be implemented using only raw data from 

measurements as the inputs that guide the method. However, due to the fact that the performance of any given system 

is a coupling effect between the inputs and the system parameters, in most cases, the system identification process is 

implemented using some technical theoretical knowledge about the system itself in addition to the inputs and outputs 

data. That is, the type and order of the model should be estimated to find which method of the system identification 

should be implemented. For instance, neural network [5] and formal mathematical algorithms for complex non-linear 

highly coupled systems, and  linear time-invariant models [6], respectively are typically used each having their pros and 

cons. Although formal algorithms produce highly accurate models they are limited to simple systems and the techniques 

(e.g., machine learning, neural networks) used for non-linear systems are typically black-box only approximations. 

Unfortunately, non-linear systems represent most, if not all, of real-life systems. 

There is a vast literature on system identification and its application to robotics. Humanoid system identification 

has been mostly focus on enhancing the stability of robot during walking. The authors in [7] consider the dynamics of 

walking robot errors associated with the idea of simplifying the multi-body robot to an inverted pendulum. They resolve 

the associated complexities by utilizing the system identification method to the stability model of the robot during 

walking. Others apply a non-linear system identification approach on a manipulator of a humanoid robot to estimate the 

contact model [8]. Beyond humanoid robot, there are several studies which focus on the kinematic calibration of arm 

manipulators including the kinematic calibration on parallel manipulators [e.g., 9]. Unlike parallel manipulators, serial 

manipulators tend to have a higher level of error due to the accumulative effect of errors in its kinematic chain, thus 

extensive work has been devoted to the kinematic calibration of serial manipulators, [e.g., 10 and 11]. The calibration 

process for any given system, specially robotics, is highly dependent on the available equipment for measurement. As a 

result, the process tends to be expensive and time-consuming [e.g., 12]. 

 

3. Proposed Approach 

In this work, the non-linear model identification of a 7 degrees of freedom (DoF) serial manipulator (Figure 1) is 

investigated. In what follows, it is assumed that the arm and its corresponding dimensions shown in Figure 1 represents 

the left arm of a life-size humanoid robot which needs to be accurately modelled so that an effective controller can be 

designed to move the arm and humanoid with high precision. Thus, we aim to calibrate the designed arm in such a way 

that the desired output of the arm (i.e., the position and motion trajectory of its end-effector) matches the desired 

trajectory output as computed from the arm’s kinematic model. In what follows, it is assumed that due to errors in 

manufacturing and assembling, the physical dimensions of the real robot arm do not match the CAD design and 

measuring the needed parameters (e.g., moments of inertia) is difficult. For this, a parameter identification method is 

implemented to determine the lengths of the linkages comprising the arm (i.e., the distance between each pair of joints 

forming the robot arm). In what follows we refer to the designed link lengths and their identified (real) values as dinitial 

and didentified, respectively. Such parameter was chosen because the dinitial values tend to be highly prone to errors. 

The typical four main steps in every kinematic model calibration are: i) Modelling, ii) Measurement, iii) Parameter 

identification, and iv) Compensation [10]. For the modelling step, the kinematics of the manipulator are derived using 

typical robot forward kinematics principles and Denavit-Hartenberg (D-H) convention. For the measurement step, the 

CAD model of the robot is imported and simulated into a Multibody Dynamics simulation software from where precise 

motion and reaction forces are obtained. From such simulating environment all working environment conditions (e.g., 

collisions, reaction forces, etc.), and the output data sets (motion trajectory) are obtained. Subsequently, such information 

is imported to the parameter identification algorithm (Step 3). The main idea behind this proposed method of parameter 

identification is to minimize the difference between the current position of the end-effector and the desired location that 

is obtained from the robot’s kinematic model. In the area of linear systems, the least square method is mostly employed 

for the identification process. In non-linear systems, however, using an ordinary least square method is not applicable; 
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therefore, in the proposed approach, the Gauss-Newton method is first used to linearize the theoretical kinematic model [13]. 

After obtaining the identified parameter values, didentified, the obtained parameters replace the theoretical parameter values. 

Herein, we refer to this model as the “new model”. The new model is then validated by comparing the trajectory outputs of 

obtained from the simulator and the new kinematic model. 

 
Fig. 1: 7-DoF robotic manipulator used in the case study. 

 

Unlike previous developments, in this work, the theoretical manipulator is simulated in a Multibody Dynamics simulator 

running a physical engine from where the measurement data is estimated by simulating all inertial and gravitational forces 

which exist in the real-environment where the robot will operate.. The first advantage of this method is being significantly 

cost effective when compared to other methods that requires specialized hardware to be mounted on the robot. Secondly, 

measurement equipment such as Coordinate Measuring Machines or laser trackers have their own sources of errors which 

cause inconsistency on the output data of measurements, and consequently, on the calibrated model. However, a well-

simulated model in the simulation environment does not contain such kind of errors. Lastly, calibrating a model in a 

simulation environment, and before the robot is manufactured, gives insightful tips about how to modify/enhance the 

mechanical design of the robot in order to reduce the number of errors when the manipulator is manufactured.  

 

4. Modelling: Kinematic Model 
In this section, the kinematic model of the robot arm shown in Figure 1 is presented. As a multi-body system, the arm 

comprises a set of seven rigid bodies (i.e., links) joined by seven interconnection elements driven by actuators. The 

interconnection elements are revolute joints that constrain the relative motion of the corresponding pairs of links.  

 
4.1. Forward Kinematics 

The forward kinematics analysis representing the structural formulation that is used to calculate the configuration of the 

end-effector as a function of the joint variables is formulated via the joint variables (the angles between the links). To perform 

the kinematic analysis, a local coordinate frame of 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖 rigidly attached to each of the seven joints, 𝑖𝑡ℎ link, is used. In 

order to express the motion of each link in the inertia frame of reference (𝑂0𝑥0𝑦0𝑧0) the homogenous transformation matrices 

that expresses the position and orientation of 𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 with respect to 𝑂𝑗𝑥𝑗𝑦𝑗𝑧𝑗 is herein denoted by 𝑇𝑗
𝑖 and defined as per 

Equation (1): 
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𝑇𝑗
𝑖 =

{
 
 

 
 [
𝑅𝑗
𝑖 𝑂𝑗

𝑖

0 1
]      𝑖𝑓 𝑖 < 𝑗

𝐼                     𝑖𝑓 𝑖 = 𝑗

(𝑇𝑗
𝑖)−1           𝑖𝑓 𝑗 > 𝑖

 

 

 

(1) 

 

where 𝑅𝑗
𝑖 denotes the orientation of frame of reference 𝑂𝑗𝑥𝑗𝑦𝑗𝑧𝑗 relative to 𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 computed by the rotational parts of 

the T-matrices as per Equation (2):  

𝑅𝑗
𝑖 = 𝑅𝑖+1

𝑖 …𝑅𝑗
𝑗−1

 (2) 

The coordinate vectors 𝑂𝑗
𝑖 are then computed via Equation (3): 

𝑂𝑗
𝑖 = 𝑂𝑗−1

𝑖 + 𝑅𝑗−1
𝑖 𝑂𝑗

𝑗−1
 (3) 

4.2. Denavit-Hartenberg Representation 

To formulate the cumulative effect of the entire set of joint angles for the 7-link manipulator the classical Denavit-

Hartenberg representation is used. In such a convention, the homogeneous transformation 𝑇𝑖
𝑖−1 , represented as a product of 

the four basic transformations, 𝑅𝑜𝑡𝑧,𝜃𝑖 , 𝑇𝑟𝑎𝑛𝑠𝑧,𝑑𝑖 , 𝑇𝑟𝑎𝑛𝑠𝑥,𝑎𝑖 , and 𝑅𝑜𝑡𝑥,𝛼𝑖 is used which resulted in Equation (4): 

 

𝑇𝑖
𝑖−1 = [

cos(𝜃𝑖) −𝑠𝑖𝑛(𝜃𝑖)
𝑠𝑖𝑛(𝜃𝑖)cos(𝛼𝑖−1) cos(𝜃𝑖)cos(𝛼𝑖−1)

0 𝑎𝑖−1
−𝑠𝑖𝑛(𝛼𝑖−1) −𝑠𝑖𝑛(𝛼𝑖−1)𝑑𝑖

𝑠𝑖𝑛(𝜃𝑖)𝑠𝑖𝑛(𝛼𝑖−1) cos(𝜃𝑖)𝑠𝑖𝑛(𝛼𝑖−1)
0         0

cos(𝛼𝑖−1)         cos(𝛼𝑖−1)𝑑𝑖
0          1

 ] 

 

 

(4) 

 

 

where 𝑎𝑖, 𝛼𝑖, and 𝑑𝑖 are the arm constants representing the link length, link twist, and the link offset, respectively while 

𝜃𝑖 denotes the angle of joint “i”. In this case study, as mentioned in Section 3, the identification of 𝑑𝑖 parameter (didentified) are 

to be determined. In Eqn. (4) the parameter 𝑎𝑖 is different from the distance between the joints. Thus, the reader should be 

aware that the proposed algorithm identifies the 𝑑𝑖 parameters not 𝑎𝑖 (Table 1). 

With the obtained set of 𝑇𝑖
𝑖−1 matrices for all the links comprising the arm, the transformation matrix to transforms the 

coordinate of the end-effector to the inertia coordinate is calculated, Equation (5). Table 1 shows the values of D-H 

parameters for each link, while Figure 2 presents the skeleton of the arm where the location of each of the eight local 

coordinate frames (including the inertial frame of reference from where the position of the end effector is computed) attached 

to their links of reference is shown. As shown in Figure 2, to simplify the mathematical formulation, using the D-H 

convention two or three local frames are positioned at the same origin. Therefore, from the value of the seven parameters 

that we aim to identify, at least in theory, only two of them (Links 3 and 5) have non-zero values (Table 1).  

 

𝑇7
0 = 𝑇1

0 × 𝑇2
1 × 𝑇3

2 × 𝑇4
3 × 𝑇5

4 × 𝑇6
5 × 𝑇7

6 (5) 

Table 1: D-H parameters values for the 7-DoF manipulator. 

 

𝐢 𝛉𝐢 𝐝𝐢 𝐚𝐢−𝟏 𝛂𝐢−𝟏 

1 θ1 0 0 0 

2 θ2 0 0 90 

3 θ3 0.3605 0 90 
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4 θ4 0 0 90 

5 θ5 0.265 0 -90 

6 θ6 0 0 -90 

7 θ7 0 0 90 

 

The resulting matrix, 𝑇7
0, represents the kinematic model of the robot arm which is ready for the identification process. 

 
Fig. 2  D i af aglf  fo af aa ocafi  cieacol e T-n ciaci i gaglf .  

 
5. Non-linear Model Identification and Kinematic Calibration 

Linear and non-linear systems are herein represented as per Equations (6) and (7), respectively:  

 

Linear model: 𝑦𝑙 = 𝐴𝑙𝜑 (6) 

Non-linear model: 𝑦𝑙 = 𝑓(𝑥𝑙 , 𝜑) (7) 

 

where 𝑥𝑙 = {𝑥1
𝑙 , 𝑥2

𝑙 , … , 𝑥𝑛
𝑙 } denotes the input variables vector, 𝑦𝑙 = {𝑦1

𝑙 , 𝑦2
𝑙 , … , 𝑦𝑀

𝑙 } denotes the output variables vector, 

and 𝜑 = {𝜑1, 𝜑2, … , 𝜑𝑁𝑝𝑎𝑟}  denotes the parameters vector where 𝑁𝑝𝑎𝑟 is the number of parameters that it is desired/needed 

to be identified. In linear systems (Eqn. (6)), the matrix 𝐴𝑙 (known as regressor matrix) is a function of the input variables 

𝑥𝑙, and the least squares approach is utilized to obtain the needed parameters vector 𝜑 [13]. Nonlinear models, however, 

contain a non-linear function of 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑀}, so the ordinary least squares method cannot be implemented due to the 

fact that there is no regressor matrix for such models. One method to overcome this problem is the Gauss-Newton method 

[14]. This method is herein used to take an initial value of the parameters that one needs to identify and iteratively updates 

that the parameters by finding a correction value in each iteration. The advantage of this method are diverse: it is fast, and a 

quadratic convergence to the desired parameters exists; however, it is important to note that the proposed method fails to 

converge to the actual parameter values when the initial estimation of the parameters differs by a large factor from the actual 

parameter values. The method also fails when the non-linearity of the system is high. During the kinematic calibration of the 

proposed methodology, however, the initial values for parameters are known, and the non-linearity of the system is mild 

(contains only sine and cosine functions). For solving non-linear systems with the Gauss-Newton method, the model is 

linearized using Taylor series expansion. Considering the parameter estimation at iteration of 𝑘, the linearized model is 

written as follows: 
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𝑦𝑙 ≈ 𝑓𝑙(𝜑𝑘) + 𝐴𝑙∆𝜑 (8) 
where 

𝐴𝑙 = 
𝜕𝑓𝑙

𝜕𝜑
  (Jacobian matrix at 𝜑𝑘) 

 

(9) 

Therefore: 

∆𝑦𝑙 = 𝐴𝑙∆𝜑 (10) 

 

As a result, the parameter estimation process is transformed into an ordinary least square problem, where ∆𝜑 is 

defined as:  

∆𝜑 = (𝐴𝑇𝐴)−1𝐴𝑇∆𝑦  (11) 

 

Accordingly, 𝜑𝑘 is updated in every iteration per Equation (12). The pseudocode of the proposed methodology is shown in 

Table 2. 

𝜑𝑘+1 = 𝜑𝑘 + ∆𝜑 (12) 

 
Table 2: Pseudocode of the proposed method for obtaining the values of the linkage’s length parameters. 

 

Inputs to algorithm Algorithm 

Details of 14 poses including: 

- Joint angles (𝜃𝑖 ): 14 × 7 joint angles (14 

poses of 7-DoF arm) 

- link lengths (𝑎𝑖): ∀𝑖 ∈ {1,… ,7}  
- link twists (𝛼𝑖):  ∀𝑖 ∈ {1,… ,7} 
- link offsets (𝑑𝑖

0):  ∀𝑖 ∈ {1,… ,7} 
end-effector positions (𝑝𝑠𝑖𝑚): 14 × 7 values (x, y, 

and z position of 14 poses), imported from 

simulation software 

Step 0:  k = 0, 𝑑𝑖 = 𝑑𝑖
0 

Step 1: Calculate 𝑝𝑚𝑜𝑑𝑒𝑙  position of end-effector using D-H 

convention and transformation matrices for 14 poses. 

Step 2: Calculate the error in the position of end-effector using 

imported data and 𝑑𝑖  for 14 poses. 

𝑒𝑟𝑟𝑜𝑟𝑖 = 𝑝𝑠𝑖𝑚 − 𝑝𝑚𝑜𝑑𝑒𝑙 , ∀𝑖 ∈ {1,… ,7}  
Step 3: Take the derivative of 𝑝𝑚𝑜𝑑𝑒𝑙 where it is variable of 𝑑𝑖 , 
and define the matrix regressor of A, for 14 poses:  

𝐴𝑖 = 
𝜕𝑝𝑚𝑜𝑑𝑒𝑙
𝜕𝑑𝑖

 , ∀𝑖 ∈ {1,… ,7};  𝐴 = [
𝐴1
⋮
𝐴7

]  

Step 5: Obtain the correction in distance using the least square 

method and matrix A for 14 poses.   
∆𝑑 = (𝐴𝑇𝐴)−1𝐴𝑇𝑒𝑟𝑟𝑜𝑟  

Step 6: Correct the value of 𝑑𝑖 in each step until it converges to the 

final values of 𝑑𝑖. These values are the new identified values of 𝑑𝑖 
for 14 poses. 

𝑑𝑖
𝑘+1 = 𝑑𝑖

𝑘 + ∆𝑑, ∀𝑖 ∈ {1,… ,7} 

𝑑𝑖 = 𝑑𝑖
𝑘+1 

Step 7: If ∆𝑑 < 𝜀, stop. If not, return to Step 1. (𝜀 is the desired 

error) 

Outputs of algorithm 

- Matrix 𝑑𝑝𝑎𝑟 which is a 1 × 7 matrix including 

identified values for 𝑑𝑖, ∀𝑖 ∈ {1,… ,7}. 

Parameters used in the algorithm: 

- k : iteration number. 

- 𝑑𝑖
𝑘: the length of link offset for 𝑖 link at 

iteration k. 

- 𝑝𝑚𝑜𝑑𝑒𝑙 : the position of end-effector in the 

model. 

- 𝑝𝑠𝑖𝑚: the position of end-effector in the 

simulation. 

 

6. Simulations and Results 

 In order to verify the proposed methodology for parameter identification on non-linear robotic models the 

methodology was applied to the kinematic model of the robot arm show in Figures 1 and 2. For this the robot arm was 

simulated in a multi-physics software where each of the seven joints, 𝜃𝑖 for 𝑖 = 1 to 7, comprising the robot arm was 

commanded to move following a sinusoidal function, 𝜃𝑖 = sin (𝑡𝑖𝑚𝑒). That is, the same function was applied to each of 

the seven joint actuators. The actuator for the gripper was not commanded to move as such joint has no effect on the 



 

 

 

 

 

 

 

148-7 

positioning of the end-effector and thus does not affect the parameter estimation process. In fact, when setting up the 

simulations, this aspect was checked by commanding the gripper joint to move and comparing the results.  

The robot am was initially positioned hanging from its base in a pendulum-like position (see time 0 insert in Fig. 3) and 

and commanded to move. The model was run for 10 seconds using a simulation step size of 0.1 sec. The arm performed 1.6 

1.6 complete cycles of the commanded trajectory which was enough time to complete the parameter estimation process. 

Table 3 shows the values of the initial link parameters (𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙 )  and their estimated (real) values (𝑑𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑).  
 

Table 3: The initial and identified values for the link parameters. 

 
 

 Link 1 

[m] 

Link 2 

[m] 

Link 3 

[m] 

Link 4 

[m] 

Link 5 

[m] 

Link 6 

[m] 

Link 7 

[m] 

𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙  0 0 0.3605 0 0.265 0 0 

𝑑𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 0.0028 0.0002 0.3636 0.0015 0.2650 0.0015 0.0005 
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Fig. 3: Results for the end-effector’s position in “x” axis: Top) Multi-body 

dynamic simulation, Bottom) Identified model. 

During the tests, 14 robot arm poses 

were generated and imported into the 

simulation parameter calibration 

environment. Note that it was important to 

choose poses having no singularity 

conditions. After generating these 14 poses, 

the input data (i.e., joint angles) and output 

data (i.e., end-effector position in x, y, and 

z axes) was imported to the identification 

algorithm. Table 3 shows the initial and the 

identified values of the distance parameters, 

d. The results show that both outputs follow 

the same path with reasonable accuracy in 

the three axes of x, y, and z (as shown in 

Figures 3, 4, and 5, respectively). The slight 

difference between these two paths is due to 

the minimal errors which exist in the 

identified model (even though least squares 

method minimizes the square of errors, 

these errors cannot be zero in real case 

scenarios). 

 

 
a) Multi-body dynamic simulation.                                                                    b) Identified model. 

Fig. 4: Results for the end-effector position’s in “y” axis. 

 

 
a) Multi-body dynamic simulation.                                                                       b) Identified model. 

Fig. 5: Results for the end-effector’s position in “z” axis. 
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7. Conclusions 
In this paper, the kinematic calibration of a 7-Dof humanoids' manipulator has been investigated. The main objective of 

of the proposed parameter estimation algorithm was to address the errors which are created during the design and 

manufacturing aspects of robot arms. The results show that the method is successful in identifying kinematic parameters 

using the Gauss-Newton approach as part of the solution method in combination with the simulation environment as the 

measurement tool. This study corroborates that the model calibration is a powerful tool to address the problem of prevalent, 

inevitable errors in simulation environments. However, further work is required to test the performance of the method in 

real-world robots having higher complexities or being highly redundant. Under such robots the proposed approach might not 

converge to the solutions in one simulation run and might require several runs to deal with the redundancy. Another area for 

further progress is the application of the proposed method on identifying other parameters in the arm such as inertial 

parameters, sensors gain, sand others. Although this paper focused on identifying the distance between joints, identifying 

other kinematic as well as time-varying parameters could be of interest.  
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