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Abstract-Humanoid robot perception is challenging compared to perception in other robotic systems. The sensors in a humanoid are in 

constant state of motion and their pose estimation is affected by the constant motion of the tens of DOFs (Degrees of Freedom) which in 

turn affect the estimation of the sensed environmental objects. This is especially problematic in highly cluttered dynamic spaces such as 

indoor office environments. One of the challenges is identifying the presence of all independent moving/dynamic entities such as people 

walking around the robot. If available, such information would assist humanoids to build better maps and better plan their motions in 

unstructured confined dynamic environments. This paper presents a moving object detection pipeline based on relative motion and a 

novel confidence tracking approach that detects point clusters corresponding to independent moving entities around the robot. The 

detection does not depend on prior knowledge about the target entity. A ground plane removal tool based on voxel grid covariance is 

used for separating point clusters of objects within the environment. The proposed method was tested using a Velodyne VLP-16 LiDAR 

and an Intel-T265 IMU mounted on a gimbal-stabilized humanoid head. The experiments show promising results with a real-time 

computational time complexity. 
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1. Introduction 
 Numerous researches on humanoid robots have focused on developing them to be capable of assisting humans in 

different social environments [1]. Usually the workplace for such socially capable humanoids is dynamic and unstructured. 

Due to the environment’s and the robot’s motion the perception sensors of the robot undergo change in pose (position and 

orientation) during the mission execution process. Highly dynamic environments such as busy streets, shopping malls, and 

sporting events undergo frequent unanticipated changes due to the presence of numerous independent moving entities (e.g, 

people, vendors and vehicles) around the space. Humanoids navigating in such environments require frequent/fast knowledge 

about the spatial locations of the moving entities to enable them to be aware of the changes taking place in their surroundings. 

In the field of robot perception such a problem is commonly known as Detection And Tracking of Moving Objects (DATMO) 

[2]. One of the essential applications of DATMO is as a pre-processing step providing information for Simultaneous 

Localization and Mapping (SLAM) algorithms where there is a need to generate accurate maps in dynamic environments 

that are as good as the ones generated in a purely static environment. Numerous SLAM algorithms have been developed that 

are focused and bound to be used in static or quasi-static environments (e.g, [3]). In cluttered and dynamic spaces, however 

if slow or fast moving objects are not properly identified the generated maps will have a potentially large number of 

(undesirable) artifacts (considered static but actually being dynamic) (e.g, [4]).  

 

In the last decade, 3D perception sensors have been successfully used for SLAM to a great extent. 3D Light Detection 

and Ranging (LiDAR) sensors having high data sampling frequencies in capturing the terrain topology with high precision 

have been used in somewhat effective DATMO algorithms. Wang et al. [5], and Vu et al. [6] among others have proposed 
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the use of Bayesian formulations to integrate SLAM with DATMO. In contrast to an integrated model, Wolf et al. [7] used 

multi-occupancy grids while Mertz et al. [8] used a 2D scan matching method based on environmental features to detect 

moving objects. Asvadi et al. [9] used a 2.5D motion grid pointcloud representation to detect moving objects via historical 

sensor pose information. Dewan et al. [10] proposed a probabilistic approach to model moving objects using the Random 

SAmple Consensus (RANSAC) algorithm while Azim et al. [11] used octree data structures to detect inconsistencies between 

consecutive pointcloud frames to detect moving objects. Takabe et al. [12] proposed a detection method based on the 

minimization of an energy function from photometric and depth consistency data. 

Most of the works on DATMO with 3D LiDARs have focused on outdoor environments where the spatial difference 

between consecutively captured pointclouds is large. Although such approaches work relatively well, the developed solutions 

present problems when used in indoor environments where higher sensitivity and robustness of the detection algorithms is 

required. Previous works have mainly used Kalman filters for tracking the moving objects, but they have proven somewhat 

ineffective in indoor environments due to the inconsistent motion cues of the moving entities. Existing algorithms have not 

given full consideration to cluster based approaches that could prove effective in indoor applications where objects might 

possess both static and dynamic aspects simultaneously (e.g, a person waving his/her arms while standing at a fixed position) 

a problem that has not been fully considered in past work. To be effective in such cases the detection algorithms must not 

only detect the arms as moving but the entire point cluster belonging to the person must be identified as the moving entity. 

The work presented in this paper follows the goals of DATMO but incorporates cluster based approaches to identify all 

individual moving objects within the sensed space. The proposed algorithm is generic enough and can be used in various 

autonomous systems (e.g, rovers) and humanoids performing complex manoeuvres that typically compromise the robot’s 

estimation process (e.g, transitioning from crawling to climbing, to jumping). The proposed algorithm has the aim to be used 

as an intermediary process in SLAM and in the navigation of humanoids in dynamic cluttered spaces where flexible objects 

of various geometries move in diverse (chaotic) ways, and at varying speeds. 

 

2. Moving Object Detection 
The proposed work focuses on DATMO as a complementary functional block to SLAM and navigation in real-

time. The real time output of the block is suitable to be used along other functions of interest such as SLAM, navigation, 

dynamic obstacle avoidance, etc. The proposed approach focuses to indoor environments where the collected 

environmental sensor data can be used as collected or cropped depending on the desired area where moving entities are 

to be identified around the sensor. In what follows it is assumed that the humanoid (autonomous robot) has the following 

basic sensors: LiDAR and IMU (inertia measuring unit) with suitable driver algorithms running on the robot. The 

detection of moving objects takes place in 7 steps described below.  
 
2.1 Cloud Pose Synchronization 

The pointcloud data from the LiDAR and the odometry data from the IMU are time synchronized to generate a set 

of pointcloud-pose pairs that is updated over time. Each pair includes a pointcloud (captured at time ”t”) and the 

corresponding sensor pose w.r.t the inertial frame at the time of capturing the pointcloud. The synchronization is 

achieved using the ROS (Robot Operating System) approximate time policy that ensures minimum data loss [13].  

 
2.2  Ground Plane Removal 

Ground plane points represent the data points that connect different point clusters together within the pointcloud. 

With the pairs from Step 2.1 a ground plane removal is done to isolate distinct clusters present in the pointcloud. 

Traditional ground plane removal methods (e.g, RANSAC [14]) do not perform well with sparse LiDAR pointclouds in 

indoor environments due to unavailability of enough ground plane points for plane fitting. Pointcloud density variation 

w.r.t distance and ring-shaped ground plane features [15] make the process even more difficult for LiDAR data. As the 

concerned environment of operation is indoor, it has been assumed that the ground surfaces do not have much 

inclinations or slopes. The proposed approach used in this paper is a modification of the method proposed by Douillard 

et al. [16] where the following 3-step process is used: 
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(a) The pointcloud is partitioned using a voxel grid [17] approach where the size of each voxel holding a small subset 

of the pointcloud depends on the density of the captured pointcloud. 

(b) Assuming the ground plane’s normal axis is aligned with the z-axis (gimbal stabilized humanoid head) of the sensor, 

the ground plane points must have very little variance along the z-axis of the sensor. Under such conditions the xz 

and yz covariance for each voxel is determined using Eqn. 1 where cov(x,z) is the covariance of “x” w.r.t “z”, n is 

the total number of points within the voxel, and μ is the mean value. The voxels having a covariance less than a 

threshold δ are clustered into a group of voxels called Ground Voxel Plane (GVP). In the context of the work 

performed (including the simulation and experimental tests), it was found that the value of δ is typically less than 

0.1 for indoor environments. 

𝑐𝑜𝑣(𝑥, 𝑧) =  
∑ (𝑥𝑖 − 𝜇𝑥)(𝑧𝑖 − 𝜇𝑧)𝑛

𝑖=1

𝑛
 

                                                               𝑐𝑜𝑣(𝑥, 𝑧) <  𝛿  𝑎𝑛𝑑  𝑐𝑜𝑣(𝑦, 𝑧) <  𝛿                                  (1)     

 

(c) Depending on the environment, the GVP obtained in Step (b) may include voxels corresponding to surfaces (e.g, 

table surfaces, stair landings, etc.) other than the desired ground plane. To identify the ground plane, the true ground 

plane is assumed to be the plane with the maximum number of points. To determine the dominant plane w.r.t point 

count, all the points within the voxels present in the GVP are binned w.r.t their z-coordinate value. Such process 

divides the z-axis domain (zmin to zmax) of GVP into equal subdivisions (bins, each having size G) and distributes the 

points among the bins according to their z-coordinate values (Eqns. 2 and 3). The value of G differs between indoor 

environments (e.g., the G value for an office environment is different from the G value for bedroom) and typically 

has a value between 5 and 15. The bin having the highest number of points is considered to be the ground plane and 

all such points are removed from the raw pointcloud. 

 

                         No. of bins   𝑁 = 𝑐𝑒𝑖𝑙(
𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛

𝐺
)                                                 (2) 

                Range of 𝑖𝑡ℎ bin = [𝑧𝑚𝑖𝑛 + (𝑖 − 1) ∗ 𝑮, 𝑧𝑚𝑖𝑛 +  𝑖 ∗ 𝑮] , where i=1,2,....N                       (3) 

 

The results of the proposed ground plane removal applied to a Velodyne VLP-16 LiDAR point cloud is shown in Fig 1 

where the plane surface corresponding to a table is preserved in the pointcloud. 

(a) Raw pointcloud     (b) Extracted groundplane         (c) Ground removed pointcloud  

 
Fig. 1: Ground plane removal based on voxel grid covariance. LiDAR location shown as a black dot. 
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2.3  Euclidean Clustering 
The pointcloud without the ground plane obtained in Step 2.2 is clustered based on the euclidean distance between 

individual points as described in [18]. This step generates distinct point clusters corresponding to different objects around 

the sensor. In what follows, a point cluster captured at time t is referred as PCt and the number of points within such a cluster 

is denoted as NPCt. 

 
2.4  Cluster Correspondence 

A Global Nearest Neighbour (GNN) approach using a Kd-tree data structure [19] is used to match the centroids of the 

point clusters identified in Step 2.3 between consecutive frames. The correspondence assumes the following 2 constraints.  

i). The sensor has a high sampling rate (e.g. 10Hz). 

ii). The sensor’s relative velocity w.r.t the ground is within a pre-selected range (i.e. 0m/s and 6m/s). 

 

The associations between point clusters representing the same object captured in two consecutive pointcloud frames at 

time t-1 and t are stored as a correspondence map Mt. Such a collection of maps is used for tracking the clusters through 

multiple consecutive frames. In order to prevent false positive correspondences, the matching operation is reciprocal in 

nature. Additionally, a volume constraint (Eqn. 4) on the bounding box (BB) of the clusters is used to ensure correct 

correspondence. In Eqn. 4 the terms PC(t-1) and PC(t) represent the point clusters of the same object in two consecutively 

captured pointcloud frames at times t-1 and t, respectively. The parameter δ in Eqn. 4 is a threshold that has a value typically 

in the range of 0.01 to 0.3. 

               𝑣1 = 𝑉𝑜𝑙𝑢𝑚𝑒 (𝐵𝐵( 𝑃𝐶(𝑡−1))) , 𝑣2 = 𝑉𝑜𝑙𝑢𝑚𝑒 (𝐵𝐵( 𝑃𝐶(𝑡))) 

      
|𝑣1−𝑣2|

|𝑣1+𝑣2|
<  𝛿                            (4)       

 
2.5  Cloud pose transformation 

For a point cluster PCt the associated sensor pose (Step 2.1) is referred as Pt. The local pose of the point cluster observed 

from the sensor’s frame is referred as PLt. The change in global pose of the cluster PGt as observed from the inertial frame is 

used to indicate whether the cluster is moving or static. The global pose of a cluster is thus represented in terms of the local 

pose and the sensor pose as per Eqn. 5. 

 

                                          𝑃𝐺𝑡 =  𝑃𝑡 . 𝑃𝐿𝑡                                                                       (5) 

 

For the corresponding point clusters PC(t-1) and PC(t) (i.e. the local pose in Step 2.4) are denoted as PL(t-1) and PL(t) 

respectively. Herein, a 3D 4x4 transformation matrix T is defined to transform the local pose of the point cluster PC(t-1) from 

PL(t-1) to PL(t) (Eqn. 6). Thus, the transformed point cluster PC*
(t-1) is an approximation of PC(t) in the sensor’s frame. 

 

               𝑃𝐿(𝑡) =   𝑇. 𝑃𝐿(𝑡−1)    ,  𝑇 =  𝑃𝐿(𝑡) . 𝑃𝐿(𝑡−1)
−1   ,  𝑃𝐶(𝑡−1)

∗ =   𝑇. 𝑃𝐶(𝑡−1)                       (6) 

 

Assuming the concerned object is static/non-moving, the global pose of the given clusters PG(t-1) and PG(t) must be equal. 

Under such an assumption the transformation matrix T can be represented solely in terms of the sensor’s pose matrices P(t-1) 

and P(t) (Eqn. 7). 

                                     𝑃𝐺(𝑡−1) =   𝑃(𝑡−1). 𝑃𝐿(𝑡−1)   ,   𝑃𝐺(𝑡) =   𝑃(𝑡). 𝑃𝐿(𝑡)    (using Eqn. 5) 

                              𝑃(𝑡−1). 𝑃𝐿(𝑡−1) =  𝑃(𝑡). 𝑃𝐿(𝑡)     (as 𝑃𝐺(𝑡−1) =  𝑃𝐺(𝑡)) 

                  𝑃(𝑡)
−1. 𝑃(𝑡−1) =  𝑃𝐿(𝑡) . 𝑃𝐿(𝑡−1)

−1  

      𝑇 =  𝑃(𝑡)
−1. 𝑃(𝑡−1)         (Substituting Eqn. 6)                                   (7) 
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The local pose transformation matrix T for a static object is derived using the change in inertial pose of the sensor. 

Hence, the approximated point cluster PC*
(t-1) and PC(t) have the same local pose PL(t), only if the concerned object is non-

moving. In such a case the point clusters completely overlap in the sensor’s frame. However, if the object is moving, the two 

clusters will not overlap as T does not account for the object’s motion. Hence, the extent of overlap between the approximated 

point cluster PC*
(t-1) and the measured point cluster PC(t) is an indication of the object’s sate of motion w.r.t the inertial frame. 

 
2.6 Cluster Overlap Detection 

Every pair of corresponding point clusters in two consecutive pointcloud go through the pose transformation process. 

The extent of overlap between the approximated point cluster PC*
(t-1) and the measured point cluster PC(t) is determined using 

the octree pointcloud change detection algorithm proposed in [20]. The process determines the amount of spatial change 

detected between the corresponding clusters while maintaining a structural consistency using double buffered octrees. If the 

number of points that spatially differ between the two clusters, herein termed as φ, satisfies a normalized threshold constraint 

(Eqn. 8), the corresponding object is identified as moving.  

 

      𝜑 >  
𝑁𝑃𝐶 (𝑡−1)

∗ + 𝑁𝑃𝐶(𝑡)

𝜂
                                                           (8) 

 

The normalization parameter η in Eqn. 8 represents the sensitivity of the detection process. The value of η typically lies 

between 10 to 30. With a high value of η, the constraint gets satisfied for small object movements like within cluster changes 

(e.g. a person waving his/her hand while standing at a fixed place). However, with high sensitivity values, the number of 

false-positive detections increases. The results of detection for the clusters of a pointcloud frame captured at time t are stored 

in a Boolean result vector Rt. A collection of such result vector stores the detection results of the clusters through time. 

 
2.7 Confidence Based Cluster Tracking 

Using the approach detailed in Steps 2.1 to 2.6 the following two observations were made: 

 Moving objects continuously get detected as moving on multiple consecutive frames. However, occasionally they 

get erroneously identified as static due to inconsistent motion cues. 

 Due to the variation in the sensor’s motion, static objects get occasionally detected as moving (i.e, false positive 

detections). 

In order to reduce the number of false positive detections a confidence tracking approach was developed that maintains 

the belief on the objects’ motion state(s). A point cluster is classified as moving, only if it has continuously been detected as 

moving in the last ζ (moving confidence) point cloud frames. The detection results of last ζ frames are stored in ζ result 

vectors and cluster correspondences between the frames are stored in the last ζ-1 correspondence maps. Eqn. 9 represent the 

queues that are updated with every incoming pointcloud frame. During the simulation and experimental tests it was found 

that a value of ζ between 2 and 4 helps in reducing the false positive detections significantly. 

 

   𝑴𝒃 = (𝑴𝒕−(𝜻−𝟏) … . 𝑴𝒕−𝟐 𝑴𝒕−𝟏)     ,     𝑹𝒃 = (𝑹𝒕−𝜻 … . 𝑹𝒕−𝟐 𝑹𝒕−𝟏)                           (9) 

 

The buffer Mb contains the correspondence relations while buffer Rb holds the obtained results (moving 

clusters/objects). The result buffer Rb is analyzed using the correspondence relations from Mb to determine clusters with a 

continuous detection chain in the last ζ frames. If such a chain is found, then the centroid of the cluster is added to a tracking 

vector Tm with a non-moving confidence value β = 0. The non-moving confidence parameter β holds a value that identifies 

the number of consecutive pointcloud frames in which a given tracked cluster has been detected as non-moving. In order to 

prevent entry of a redundant cluster centroid which has already been tracked, a new centroid is added to Tm only if the 

euclidean distance of the centroid to all the existing centroids in Tm is greater than a threshold distance Δcatch-up. However, if 

a centroid match is found (i.e., distance to one of centroids in Tm is less than Δcatch-up) then the coordinate of the existing 
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centroid in Tm is updated with the coordinate of the new centroid for further tracking. The parameter β for the corresponding 

centroid (cluster) is updated according to the following three policies: 

 

(1) If the matched cluster is detected as non-moving then β is incremented by one (β = β + 1). Such an increment is 

observed when a moving cluster momentarily stops moving or goes out of the sensor’s range or a detection miss 

occurs due to partial or complete occlusion of the cluster. 

(2) If the euclidean distance to the matched cluster’s centroid is greater than a threshold Δleave-off then β is incremented 

by one unit (β = β + 1). If the distance to the matched cluster centroid is large, it is assumed that the matched centroid 

is a wrong correspondence for the cluster. 

(3) If the matched cluster is detected as moving, then β is decremented by one unit (β = β - 1). Such a decrement ensures 

that moving clusters which occasionally get detected as non-moving due to motion inconsistencies, continue to be 

classified as moving. 

 
(a) Raw pointcloud          (b) Individual clusters in pointcloud          (c) Moving object detection 

 

Fig. 2: Results of the proposed DATMO model. LiDAR location shown as a black dot within the scans. 

 

A centroid retains its existence in Tm until its maximum value condition β ≤ βmax is satisfied (i.e., if a centroid’s β exceeds 

the threshold then it is removed from Tm). βmax is thus defined as the maximum number of consecutive frames in  

which a centroid in Tm can be detected as non-moving. β also holds a minimum value condition of β ≥ 0 (i.e., if β is equal to 

0 then its value is no longer decreased). β is a variable used to ensure that all the cluster centroids within Tm are continuously 

detected as moving by the detection algorithm (Step 2.6). During this research it was found that a βmax value between 2 and 

4 helps in improving the detection accuracy significantly. The parameter ζ ensures low false positive results while the 

parameter βmax ensures detection consistency and hence both parameters are considered critical for the functioning of the 

proposed DATMO process. 
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3. Results 
The proposed approach was implemented using a gimbal stabilized Humanoid head (Fig 3) with a Velodyne VLP-16 

16 LiDAR and an Intel RealSense tracking camera sensor. The RealSense T265 tracking camera performs an internal V-

V-SLAM algorithm from which precise odometry (position and orientation) data of the VLP-16 sensor was obtained w.r.t 

w.r.t the inertial frame. The sensor setup mounted on a humanoid platform was moved through an office corridor (simulating 

what was thought would be a representative motion of the mobile robot during a typical office task such as distributing the 

mail). The environment had one moving object (i.e., a person walking towards and away from the sensor’s field of view) 

and had multiple static objects (e.g, tables, chairs, cubicles, a bicycle, a white board, etc.). A sample result of the proposed 

moving object detection is shown in Fig 2 which show the generated pointclouds at different steps of the proposed approach, 

up to the point where the cluster of the walking person was found (i.e red bounding box) and tracked. 

During the experimental tests performed with cluster tracking the parameters Δcatch-up and Δleave-off were fixed to 0.2 and 

0.5 meters, respectively. The obtained variation in the number of false positive detections w.r.t the variation in the detection 

sensitivity parameter η is shown in Fig 4. The number of false positives was found to be reduced drastically with the use of 

the proposed confidence based cluster tracking when compared to the results obtained without using cluster tracking. Fig. 4 

also shows that the number of false positive detections increases with increase in the detection sensitivity. The obtained 

variation in the number of false positives w.r.t the variation in the tracking parameters ζ and βmax is shown in Fig 5. It shows 

the increasing trend of the number of false positives with increase in the non-moving confidence parameter. The graph also 

shows that the number of false positive detections reduces significantly when the moving confidence value is increased. For 

each of the numerous experiments conducted, the ground truth about the captured pointcloud data was obtained and used to 

estimate the accuracy of the detection as defined in Eqn. 10. The variation in the detection accuracy with respect to the 

variation in the tracking parameters is shown as a heat map in Fig 6. 

 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100                                                   (10) 

 

 
 

Fig. 3: Humanoid's experimental head      Fig. 4: Number of false positive detections w.r.t η 
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Fig. 5: Number of false positive detections      Fig. 6: Accuracy variation w.r.t ζ and βmax 

                          w.r.t ζ and βmax 

 

4. Conclusions 
A new DATMO model for humanoids navigation in indoor cluttered environments using clustering approaches was 

proposed. The voxel grid covariance based ground plane removal was found to be effective in handling the translation 

variations in the sensors’ motion. The confidence tracking approach was able to handle motion inconsistencies of indoor 

moving objects and kept the number of false positive detections under an acceptable limit. The proposed DATMO pipeline 

takes 80-90ms to run on single core of standard Intel-i9 processor with 8GB of RAM, and hence it is determined that the 

proposed approach can be used in real-time. The algorithm is suitable when the moving objects are either well separated 

from each other or moving close to each other. However, the cluster tracker faces difficulties in distinguishing one moving 

object from another due to the use of nearest neighbour approaches. The approach uses a set of parameters that need to be 

tuned according to diverse application environments. Formal techniques need to be developed for tuning such parameters 

automatically according to the spatial properties of the pointcloud. 

 

References 

[1] F. Erich, M. Hirokawa, and K. Suzuki, “A systematic literature review of experiments in socially assistive robotics using 

humanoid robots,” arXiv preprint arXiv:1711.05379, 2017. 

[2] A. Llamazares, E. J. Molinos, and M. Ocaña, “Detection and tracking of moving obstacles (datmo): A review,” 

Robotica, pp. 1–14. 

[3] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J.J., Leonard, “Past, present, and 

future of simultaneous localization and mapping: Towards the robust-perception age,” IEEE Transactions on Robotics, 

vol. 32, no. 6, p. 1309–1332, 2016. 

[4] P. Siritanawan, M. D. Prasanjith, and D. Wang, “3d feature points detection on sparse and non-uniform pointcloud for 

slam,” in 2017 18th International Conference on Advanced Robotics (ICAR). IEEE, 2017, pp. 112–117. 

[5] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte, “Simultaneous localization, mapping and moving 

object tracking,” The International Journal of Robotics Research, vol. 26, no. 9, pp. 889–916, 2007. 

[6] T.-D. Vu, J. Burlet, and O. Aycard, “Grid-based localization and local mapping with moving object detection and 

tracking,” Information Fusion, vol. 12, no. 1, pp. 58–69, 2011.  

[7] D. F. Wolf and G. S. Sukhatme, “Mobile robot simultaneous localization and mapping in dynamic environments,” 

Autonomous Robots, vol. 19, no. 1, pp. 53–65, 2005. 

[8] C. Mertz, L. E. Navarro-Serment, R. MacLachlan, P. Rybski, A. Steinfeld, A. Suppe, C. Urmson, N. Vandapel, M. 

Hebert, and C. Thorpe, “Moving object detection with laser scanners,” Journal of Field Robotics, vol. 30, no. 1, pp. 17–

43, 2013. 



 

 

 

 

 

 

 

149-9 

[9] A. Asvadi, P. Peixoto, and U. Nunes, “Detection and tracking of moving objects using 2.5 d motion grids,” in 2015 

IEEE 18th International Conference on Intelligent Transportation Systems. IEEE, 2015, pp.788–793. 

[10] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard, “Motion-based detection and tracking in 3d lidar scans,” in 2016 

IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016, pp. 4508–4513. 

[11] A. Azim and O. Aycard, “Detection, classification and tracking of moving objects in a 3d environment,” in 2012 IEEE 

Intelligent Vehicles Symposium. IEEE, 2012, pp. 802–807. 

[12] A. Takabe, H. Takehara, N. Kawai, T. Sato, T. Machida, S. Nakanishi, and N. Yokoya, “Moving object detection from 

a point cloud using photometric and depth consistencies,” in 2016 23rd International Conference on Pattern Recognition 

(ICPR). IEEE, 2016, pp. 561–566. 

[13] http://wiki.ros.org/message filters/ApproximateTime. 

[14] M. Y. Yang and W. F¨orstner, “Plane detection in point cloud data,” in Proceedings of the 2nd int conf on machine 

control guidance, Bonn, vol. 1, 2010, pp. 95–104. 

[15] K. Miadlicki, M. Pajor, and M. Sak´ow, “Ground plane estimation from sparse lidar data for loader crane sensor fusion 

system,” in 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE, 

2017, pp. 717–722. 

[16] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton, and A., Frenkel, “On the segmentation of 

3d lidar point clouds,” in 2011 IEEE International Conference on Robotics and Automation. IEEE, 2011, pp. 2798–

2805. 

[17] D. Ayala, P. Brunet, R. Juan, and I. Navazo, “Object representation by means of nonminimal division quadtrees and 

octrees,” ACM Transactions on Graphics (TOG), vol. 4, no. 1, pp. 41–59, 1985. 

[18] R. B. Rusu, “Semantic 3d object maps for everyday manipulation in human living environments,” KI-K¨unstliche 

Intelligenz, vol. 24, no. 4, pp. 345–348, 2010.  

[19] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic expected time,” 

ACM Transactions on Mathematical Software (TOMS), vol. 3, no. 3, pp. 209–226, 1977. 

[20] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. Steinbach, “Real-time compression of point cloud 

streams,” in 2012 IEEE International Conference on Robotics and Automation. IEEE, 2012, pp. 778–785. 

 


