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Abstract – In this paper, a hybrid approach for situational awareness in roundabouts is presented that can produce traffic participants’ 

behaviour for arbitrary horizons. This real-time implementable strategy consists of dynamic Bayesian network and a continuous variable 

prediction module (CVPM) as its subparts, making it a data-driven approach while providing the facility to incorporate experts’ 

knowledge into the predictions. Being a data-driven approach, the data is obtained using SUMO as a simulation platform, and three 

different CVPMs are experimented with, namely recurrent neural network (RNN), gated recurrent unit (GRU), and long short-term 

memory networks (LSTM). The chosen RNN yields a correlation higher than 0.895 and RMSE less than 0.036 for 10 seconds predictions. 
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1. Introduction 
Automated driving has been an area of interest for both researchers and industries for a long time but lagged behind in 

automation due to the complexity of the problem. Where in other industries the automation can replace the conventional 

manual labour often instantaneously, in driving that is not an option as vehicles are privately owned and operated. This 

results in an extended transition period where potential autonomous vehicles are supposed to operate alongside their human-

driven counterparts. This adds a lot of complexity to the problem as human erratic behaviour translates to a chaotic 

environment. Moreover, the infrastructure where vehicles are deployed in is also not designed for automated vehicles but is 

tailored for a human operator. As a result, not only controlling an automated vehicle is a challenge, but also for that vehicle 

to understand its surroundings and being able to interpret its situation is not a trivial task. Hence, the indispensable need for 

a perception strategy becomes apparent.  

The motivation behind the drive pushing the autonomous vehicles research is quite simple and has 4 main aspects, aside 

the obvious industry race toward being the first producer of fully autonomous vehicles for personal gains. The four main 

aspects can be enumerated as: 

1- Affordable long-range transportation for the public.  

2- Personal transportation for individuals with disabilities. 

3- Diminishing of traffic casualties associated with human error.  

4- Minimization of harmful exhaust emissions. [1] 

Putting that beside the fact that most of traffic accidents are solely caused by human errors rather than hardware failures 

and other occurrences, and out of those caused by human errors, most being due to recognition errors [2, 3] it reinforces the 

need for a perception strategy.   

The research in this area has seen a lot of interest in the past decade mostly due to the new and improved computer 

hardware, making machine learning algorithms plausible at all, as conventional control algorithms are not able to deal with 

the difficulties in a satisfactory way. However, the readers who are not themselves working in this area should understand 

that with all the myriad endeavours that has gone into this subject, there is still much to be discovered and many solutions to 

be found for the vastness and complexity of autonomous driving problem.  

The contribution of this study is in the presentation of a hybrid machine learning situational awareness approach for 

roundabout driving, which is an extension of the work reported in [4]. This approach can incorporate an expert’s knowledge 

(e.g. traffic laws) into traffic behaviour predictions for any variable and arbitrary horizons using a combination of a dynamic 
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Bayesian network (DBN) and a continuous variable prediction module (CVPM) that will be discussed in more detail in 

the upcoming sections. The strategy is applied to the case of roundabout driving which has been experiencing an 

emergence especially in growing urban areas as roundabouts offer a passive solution to traffic control which in turn 

makes them ‘smarter’ in controlling traffic. The lack of active components, for instance a traffic light signal, at 

roundabouts means that they are adaptive to the flow and temporal changes in traffic, but in turn poses a threat to 

inexperienced drivers who are not acquainted with roundabout driving, often causing a chain reaction in traffic accidents.  

Compared to other relevant studies where a narrow scope of autonomous driving is discussed or tackled, this 

approach is very versatile and can be adapted to virtually any driving scenario. As an example, in the study conducted 

by Zhang et al. [5], while the approach is able to make predictions on a single drive cycle, it does not consider context, 

presence of multiple traffic participants, or even lateral motions, and only focuses on a longitudinal motion of a car-

following model. Similarly, in the study conducted by Sun et al. [6] while multiple CVPMs are compared, the approach 

does not consider multiple variables and extension of the same approach for multiple variables will not encompass the 

dependencies between those variables. Similarly, Thorsell’s [7] approach can make single drive cycle predictions 

without considering spatial information. There are many other studies following the same principles, and that is what 

makes this study unique. This approach considers context, can adapt to the situation, and the predictions can be done on 

any variable while their dependencies are conserved. However, for the sake of ease of comparison, this study also focuses 

on velocity predictions. The following sections will go over the basics and the background of the approach, then the 

strategy is discussed, and finally results are declared and discussed, followed by conclusions and future work. 

 

2. Background 
Disclosing the innerworkings of all the components that go into making the predictions possible would be outside 

the scope of this paper, but to understand the work, some background should be declared. There are two main 

components in the prediction strategy which will be discussed in the following subsections, but these two components 

are a DBN and a CVPM as mentioned above. General schematics of these two components and how they are connected 

is illustrated in Fig. 1. 

 
Fig. 1  Overview of Method 

 

In Fig.1, the case of controller is a hypothetical one and as it will be discussed in the conclusion, this prediction 

strategy is a prime target to be used with model predictive controllers (MPCs) to provide them with accurate state 

predictions. The other main components are the DBN, and the CVPM.  

 
2.1. Dynamic Bayesian Network 

A Bayesian network [8] is a graphical representation of probabilistic variables where the connections serve as 

dependencies between those variables. In a driving context, most of the variables can be categorized as probabilistic and 

their values can be classified into mixture distributions. As an example, a traffic light signal has 3 states (4 if considering 

advanced left). Similarly, ‘current lane of driving’ has a limited number of states. Even in some cases, where the actual 

value of a continuous variable is not critical, continuous variables can be turned into a mixture distribution by introducing 

semantic rules. For instance, for a variable such as distance, anything past a threshold can be dubbed “far” and below 
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that threshold “near”. As far as mixture distributions and discrete variables are concerned, DBN is a powerful tool that can 

obtain likelihood of each variable taking a specific state given a set of conditions. As mentioned in the introduction, the 

purpose of the perception middleware is to be able to understand traffic participants behaviour and incorporate expert 

knowledge into understanding the environment. This approach is replicating the learning process of driving for a human. A 

A human driver is not adequately equipped to be able to measure distances and speeds numerically but will always know, 

know, semantically, whether an object is too far or near, or too fast or slow. Also, a human driver by knowledge and 

experience knows that the lane in which a vehicle enters an intersection in will govern its destination. There is always a 

degree of uncertainty, but the human driver can adapt their initial assumption if given a set of observations. 

Bayesian networks can be classified as expert systems in the sense that the topology can be defined by an expert which 

will provide the network with an initial understanding of the relationship between variables. They are also a data-driven 

approach that can learn from large datasets quickly. The dataset will be stored as sets of Gaussian normal distributions of 

P(A|Pa(A)), where A is a probabilistic variable and Pa(A) is the set of its parents (i.e. set of variables with an edge toward 

A). Once fully learned, any joint or conditional probability between variables can be computed. The learning process in 

Bayesian networks is done through EM algorithm, a descendent of the forward-backward algorithm. In this algorithm a set 

of Gaussian normal distributions are fitted to mixture distributions by generating n random Gaussian distributions, finding 

the likelihood of each sample belonging to each distribution and then updating the distribution properties based on classed 

samples. [9] DBNs are Bayesian networks with temporal nodes which are variables with values from the next time-slice in 

the training. However, not every variable in a driving context can be represented as a mixture distribution. Variables such as 

speed are continuous, and their value is often desired. DBN is not adequately equipped to make predictions for continuous 

variables, hence there is the need for a CVPM.  

 
2.2. Continuous Variable Prediction Module 

The continuous variable prediction module can be any data-driven sequence prediction method. In machine learning 

realm, primitively a feed-forward neural network can be equipped with a feedback loop and unit delays to become a recurrent 

neural network (RNN). An RNN can then be trained to take a short history of the variable as the input and produce predictions 

for the next time slice. By repeating the cycle, assuming the predicted value as the true current value and cascading the 

history one step back, each the prediction can be extended to an arbitrary horizon. Although it is common knowledge that as 

the horizon becomes larger the accuracy suffers because of the compounding effect of the errors.  

RNNs are known to struggle with the vanishing gradient problem. The vanishing gradient problem is, in essence the 

stoppage of training due to the shrinking error gradient in the back-propagation algorithm. The opposite of gradient explosion 

problem is where the large gradient will cause the training to diverge from the global optimum. A solution to this problem is 

using newer methods such as the gated recurrent units (GRU) or long short-term memory networks (LSTM) training with 

stochastic gradient descent (SGD), ADAM or other algorithms. Although the workings of these algorithms are outside the 

scope of this paper, in this study we have compared the performance of some of these methods which will be discussed in 

more detail in the results section.  

 

 3. Implementation strategy and results 
 As mentioned in the previous section, the approach taken in this study is a data-driven one. The first step toward 

developing a data-driven prediction strategy is to understand the dataset and know what variables are available to work with. 

As available datasets are often lacking in useful data as data collection is generally time consuming and difficult to the point 

where it is completely implausible, the refuge is to simulation. In this study, a simulation environment was implemented in 

SUMO [10]. To clarify, the only difference between using real data and simulation for the case of making predictions is extra 

pre, and post processing steps which are trivial to the core of the prediction methodology. However, it is important to note, 

the previous statement only applies to law-abiding norm. If the networks are not trained for car crashes, or aggressive 

manoeuvres, they are not able to predict such occurrences.  

 

 



 

 

 

 

 

 

 

155-4 

 3.1. Simulation in SUMO 
The scope of this study is roundabout driving which is emerging in developing cities. SUMO does not support 

roundabouts natively, so the environment was created using a number of road sections connected via zippers in a circular 

shape. The increased number or zippers also acts as a lane-change preventing solution for inside the roundabout. In the 

considered roundabout, the priority for travellers has been increased so that the simulation is as close to reality as 

Each arm has extended for 500 meters as two lanes with a different traffic flow density to introduce variations into the 

A total of 16 flows were introduced at the end of every arm, one introducing one vehicle at every time step on the west 

side, one introducing one vehicle at every 2 time steps on the south side, one introducing one vehicle at every 3 time 

steps on the north side and one introducing one vehicle at every 4 time steps on the east side. In other words, the opposing 

sides have an equal total flow but placing the observer at each side would produce variations in the data. The flows have 

combined random trip destinations so that from every arm the flows generated will travel every four arms, but the 

sequence in which each vehicle is spawned into the simulation is random. A snapshot of the simulation environment is 

illustrated in Fig. 2.  

 

 
Fig. 2 Snapshot from simulation environment 

 
3.2. Dynamic Bayesian Network Topology and Variables 

The data extracted from SUMO has information about positions, speeds, and lanes of the 3000 vehicles in the 

simulation. The position information can be fused with the map of the environment to obtain relative positions of 

vehicles conserving the traffic rules. Due to the extreme size of the dataset, spectral clustering was performed on the set 

of vehicle pairs that were co-present in the simulation. In a 3000 × 3000 sparce grid of cells, the cells with data were 

rearranged to the closest configuration to a diagonal matrix. This rearrangement of data allows for much shorter 

processing times when extracting data for the DBN. The DBN topology is not guaranteed to be optimal and relies on 

the experts’ subjective judgement. In this case, the variables were chosen with two main objectives in mind: 

1. Having the least pre-processing requirements. 

2. Being the most convenient to measure from the environment in a real driving scenario. 
After the spectral clustering, the following variables were extracted from the dataset by fusing the position, speed, 

and lane data with the roundabout layout. The variables, their states, and their layout can be found under Table 1. 
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Table 1: DBN Variables, their states, and their layout 

 

# Variable Name Variable States 

 

1 Lane {1,2} 

2 Start Position {E,N,W,S} 

3 Entered RA1 {True,False} 

4 Lane in RA {1,2} 

5 Destination {E,N,W,S} 

6 Inside RA {True,False} 

7 Stop to Enter {True,False} 

8 Lane Prime2 {1,2} 

9 AccFlag3 {Negative, non-Negative} 

10 AccFlag Prime {Negative, non-Negative} 

 
3.3. CVPM Implementation and DBN Interfacing 

This study experiments with a variety of CVPMs to find the best one for this application. The most common sequence 

predictors used in this art are the vanilla RNN, GRUs and LSTMs, therefore those are the methods of choice for this study. 

The input-output for the three different implementations are the same and consist of a 12-second velocity history, 

complemented by the DBN stream. The DBN stream consists of the likelihood of one setting for binary variables, and the 

mean and the likelihood of the setting with maximum likelihood for non-binary variables. In this specific application, due to 

low number of DBN nodes, it was possible to feed all the variables into the CVPM to complement the velocity history. To 

keep it fair between the three methods, the number of layers and nodes were kept consistent throughout the trials, as well as 

training properties. One thing to keep in mind, however, is that in the case of complementary inputs, the DBN stream in this 

case, the closer the sequence predictor structure to a perceptron, the smoother the output and the higher the accuracy. This is 

validated by the results illustrated in the following figures. Also to keep the results fair, Kalman smoothing was not 

implemented in these results, however, Kalman filter has shown to improve the prediction results in [4]. 

Stacked plot with the RNN, GRU, and the LSTM results are generated and presented in Fig. 3 with the errors illustrated in Fig. 4. 

The results for the RNN are far superior than that of the GRU and LSTM in this specific application and that is beside quicker 

training times and turnaround times. Also, in this specific application, between the GRU and the LSTM, the LSTM has the 

upper hand in terms of accuracy. 

As the vanilla RNN proved to be the most accurate among the methods, we focused on the RNN as the method of choice. 

Fig. 3 illustrates the prediction results for a vehicle that spent a relatively short period in the simulation. The low average 

speed and frequent stops are markers that there was significant amount of traffic present during this trip, however the traffic 

has not caused the traffic to stop completely. That is as opposed to the trip taken in Fig. 5 where the trip takes three times 

longer for the same distance travelled. Either result demonstrates very high prediction accuracy for both low speed traffic 

driving and following the transients. The complementary DBN stream has the effect on velocity prediction where there is 

clear distinction between low speed travel and complete stop, even for extended periods. The way DBN can achieve this is 

introducing a switch with many configurations each having a different weight that the RNN learns through back propagation 

algorithm. The error bounds for normal driving scenario for the RNN are [-0.71,0.94], [-0.97,1.47], [-1.46,2.75], and [-

                                                 
1 RA stands for “Roundabout” 
2 “Prime” refers to the variable in the next time-slice 
3 Acceleration Flag 
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2.11,4.10], and in the case of heavy traffic driving are also measured at [-0.75,1.23], [-1.58,2.25], [-4.62,4.63], and [-

6.64,6.74] m/s for 1, 2, 5, and 10 second predictions respectively. One notable item in these results is that low speed 

predictions are a lot more accurate than the final high-speed transients as the vehicle is jetting off the simulation 

 

Fig. 3 DBN-RNN results for normal roundabout driving scenario 

 

Fig. 4 DBN-RNN Errors for normal roundabout driving scenario 
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Fig. 5 DBN-RNN results for heavy traffic 

The reason for this phenomenon can be explained by analysing the dataset. In this dataset, vehicles that spent longer 

inside the simulation (due to heavier traffic), introduce more samples in the training. Out of these ‘extra’ samples most, if 

not all of them, are zeros or very small values. That is because the travelled length is equal for all vehicles and that would be 

the area underneath the speed curve. The only scenario where these ‘extra’ samples are not zero are for the cases where there 

is one or more lane-changes going into, or out of the roundabout. There are ways to mitigate this issue by introducing low 

traffic periods and merging multiple datasets for different flow densities. However, as some readers may have noticed, the 

main objective of a roundabout prediction strategy is to make predictions for a merging vehicle into the roundabout, and that 

is where the challenge lies, as vehicles inside the roundabout have higher priority and can exit anytime without hesitation. 

In other words, once a vehicle has merged into the roundabout the problem is solved for the most part, and to predict a 

vehicles motion after the roundabout, much simpler solutions can be implemented like the one introduced in [11]. 

Finally, the accuracy and validity of the results presented were measured by cross-correlations between actual data and 

the predicted speed profiles. These metrics for the RNN in the scenario presented in Fig. 3 are shown in Table 2. As expected, 

the higher the prediction horizon, the lower the accuracy, but the results maintain a correlation greater than 0.895 and an 

RMSE less than 0.036. 
Table 2: Accuracy metrics for RNN in scenario presented in Fig 4. 

 

Prediction horizon Correlation RMSE 

1 second 0.97641 0.029334 

2 seconds 0.97792 0.028453 

5 seconds 0.97661 0.029249 

10 seconds 0.96462 0.035995 

 

4. Conclusion and Future Work 
This study proposes a versatile, real-time implementable traffic participants behaviour predictor and situational 

awareness strategy for roundabout driving. The results of this study can be integrated with model predictive controllers 
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similar to the ones in [12] and [13] to improve performance and achieve autonomy in specific driving scenarios where 

expert data is available, and the general layout of the environment is known. Although there is no guarantee that the 

expert-yielded topology for the DBN is the optimal one, the one proposed in this specific use-case proved to be accurate 

and produced valid results for different scenarios, however, to achieve a well-rounded package that can produce accurate 

predictions for any roundabout, two aspects need to be improved. The hypothetical situational awareness package needs 

to be trained with data considering all infrastructure layouts, and also needs to be able to identify the situation before 

generating the table of variables and their states, similar to the one in Table 1. However, that would be an extension of 

this very method and the principles remain the same. 
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