
Proceedings of the 8th International Conference of Control Systems, and Robotics (CDSR'21)

Niagara Falls, Canada Virtual Conference– May 23-25, 2021

Paper No113

DOI: 10.11159/cdsr21.113

306-1

Deep Learning-based Robot Control using Recurrent Neural Networks
(LSTM; GRU) and Adaptive Sliding Mode Control

Raj Patel1, Meysar Zeinali2, Kalpdrum Passi3,

1Department of Mathematics & Computer Science, Laurentian University, Sudbury, Ontario, Canada

rpatel7@laurentian.ca
2School of Engineering, Laurentian University, Sudbury, Ontario, Canada

mzeinali@laurentian.ca
3Department of Mathematics & Computer Science, Laurentian University, Sudbury, Ontario, Canada

kpassi@cs.laurentian.ca

Abstract - A phenomenal increase in computational power made deep learning possible for real-time applications in recent years. Non-

linearity, external disturbances, and robustness are significant challenges in robotics. To overcome these challenges, robust adaptive

control is needed, which requires manipulator inverse dynamics. Deep Learning can be used to construct the inverse dynamic of a

manipulator. In this paper, robust adaptive motion control is developed by effectively combining existing adaptive sliding mode

controller (ASMC) with Recurrent Neural Network such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). A

supervised learning approach is applied to train the LSTM and GRU model, which replaced the inverse dynamic model of a manipulator

in model-based control design. The LSTM-based inverse dynamic model constructed using input-output data obtained from a simulation

of a dynamic model of the two-links robot. The deep-learning-based controller applied for trajectory tracking control, and the results of

the proposed Deep Learning-based controller are compared in three different scenarios: ASMC only, LSTM or GRU only, and LSTM or

GRU with ASMC (with and without disturbance) scenario. The primary strategy of designing a controller with LSTM or GRU is to get

better generalization, accuracy enhancement, compensate for fast time-varying parameters and disturbances. The experimental results

depict that without tuning parameters proposed controller performs satisfactorily on unknown trajectories and disturbances.

Keywords: Robot Learning Control, Deep Learning, Recurrent Neural Network, Long Short-Term Memory, Gated Recurrent Unit,

Adaptive Sliding Mode Control

1. Introduction
Artificial Intelligence and Deep Learning are becoming the key to modern robotics. Deep Learning has demonstrated

incredible success in image and video processing, object detection, recommender systems, and natural language processing.

Deep Learning is a part of a more comprehensive class of machine learning techniques in which the model learns from the

data. Each layer extracts new features where a type of learning includes supervised, unsupervised, and semi-supervised. In a

deep neural network, top layers learn higher-level features where the last layers learn lower-level features. Yann LeCunn et

al. [1] used the back-propagation technique to recognize hand-written digits taken from the US Mail. Krizhevsky, Sutskever

and Hinton, proposed a deep convolutional neural network in [2] that made a significant impact on image recognition. H. Su

et al. applied the Deep Convolutional Neural Network approach to managing redundancy control [3].

 On the other hand, from simulation in the lab to real-world work, robots face extreme challenges. Increasing Human-

Robot Interaction requires higher perception and precision for the robot to ensure the safety of human life. Human behaviour

interpretation is a highly complicated task, for which human-made solutions are tough to formulate [4]. As the industry

grows, robots need to handle various work, which is difficult for many learning algorithms. In such a scenario, a system

having the ability to learn from data plays a significant role. In the robotics and control field, numerous researchers have

conducted extensive research on intelligent control, adaptive sliding mode control, adaptive control, and chattering-free

SMC using fuzzy-logic-based dynamic model of a robot [5]–[9].

The adaptive controller has a problem in handling the unmodelled dynamic and parameter convergence. The well-known

variable structure control method, SMC, has been proposed to satisfy robust tracking but the chattering problem still arises,

113-2

leading to actuator break down or inefficient control performance. M. Zeinali proposed a chattering free SMC using a fuzzy

model combined with Adaptive Sliding Mode Control [10].

In the last decade, the Neural Network-based approach has increased due to its ability to approximate any function. The

combination of classical control and advancement in deep learning-based methods began the development of new techniques

for research. A Neural Network-based approach to learn the flexible manipulator's inverse dynamics presented in Zeinali and

Wang [11]. The Neural Network-based approach needs higher computational power compared to a classical controller. B.

Ozyer introduced an Adaptive Fast Sliding Controller combined with Neural Network and Global Fast sliding Mode

Controller [12]. S. Bansal, et al. used Neural Network in learning quadrotor dynamics for flight control [13]. S. Edhah et al.

used a new greedy Layer-wise approach in which they separated hidden layers to train separately [14]. After training, they

merged all hidden layers as a single network. However, application of deep learning techniques to estimate the inverse

dynamic of the manipulator and build a robust controller is fairly new and needs more investigation, in particular,

combination of ASMC with deep learning-based model needs more research and have not been fully investigated in the

literature.

In this paper a robust adaptive motion control is proposed by effectively combining of existing adaptive sliding mode

controller (ASMC) [10-11] with Recurrent Neural Network such as Long Short-Term Memory (LSTM) and Gated Recurrent

Unit (GRU). A supervised learning approach is applied to train the LSTM and GRU model, which replaces the approximately

known inverse dynamic model of a manipulator in model-based control design. As an increasing Neural Network layer gets

an accurate and generalized model, the loss function gradient diminishes to zero, making it hard to train, resulting in the

vanishing gradient problem. The main reason for the vanishing gradient is transforming a large variation in input data into a

small variation input (e.g., 0 to 1, -1 to 1), which means a large change in input data results in a minimal change and the

derivative of that becomes close to zero [15].

Humans have biological intelligence which processes information incrementally while keeping an internal model of what

it is processing, built from prior knowledge and continuously updated as new knowledge comes in [16]. Recurrent Neural

Network uses the same idea, keep the information in a cell. RNN-based models have a problem remembering Long Term

dependencies [17], which is solved by the advanced versions of RNN called Long short-term memory [18]. N. Liu et al. used

an LSTM-based deep learning algorithm to model robot inverse dynamics for Smart Cities and Factories [19]. This paper

organized as follows: Section 2 illustrates problem formulation and the Adaptive Sliding Mode Controller structure. Section

3 includes a brief description of LSTM and the proposed deep learning structure. Simulation results and comparison of

different models included in Section 4. Section 5 concludes the paper and future work.

2. Problem Definition

The n-link manipulator's general dynamic model can be defined by following a second-order system equation in joint space

angles [10].

 𝜏 = 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐹(𝑞, 𝑞̇) + 𝐺(𝑞) + ⅆ(𝑡) (1)

where 𝑞, 𝑞̇, and 𝑞̈ are the joint position, velocity, and acceleration vectors, respectively. 𝑀(𝑞) ∈ R𝑛×𝑛, 𝐶(𝑞, 𝑞̇) ∈ R𝑛×𝑛,

𝐹(𝑞̇) ∈ R𝑛×1, 𝐺 ∈ R𝑛×1, ⅆ(𝑡) ∈ R𝑛×1, 𝑎𝑛ⅆ 𝜏 refers to inertia matrix, which is positive definite, Coriolis terms, Viscus and

Coulomb friction coefficient, gravitational term, bounded disturbances, and torque, respectively. Viscus (𝐹𝑣) and Coulomb

(𝐹𝑐) friction term defined as the following equation:

 𝐹(𝑞, 𝑞̇) = 𝐹𝑣𝑞̇ + 𝐹𝑐 (2)

Assuming ℎ(𝑞, 𝑞̇) = 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐹(𝑞, 𝑞̇) + 𝐺(𝑞), the equation (1) can be defined in the following way:

113-3

 𝜏 = 𝑀(𝑞)𝑞̈ + ℎ(𝑞, 𝑞̇) + ⅆ(𝑡) (3)

Due to the presence of external disturbance, payload variation, and friction terms, it is extremely difficult to model the exact

dynamic of the robot mathematically, therefore, dynamic model is an approximation of actual robot and the components

defined in (1) can be rewritten as follows:

 𝜏 = (𝑀̂(𝑞) + △ 𝑀(𝑞)) 𝑞̈ + (𝐶̂(𝑞, 𝑞̇) + △ 𝐶(𝑞, 𝑞̇)) 𝑞̇ + (𝐹̂(𝑞, 𝑞̇) + △ 𝐹(𝑞, 𝑞̇)) + (𝐺(𝑞) + △ 𝐺(𝑞)) + ⅆ(𝑡) (4)

 And

𝑀(𝑞) = 𝑀̂(𝑞) + △ 𝑀(𝑞); 𝐶(𝑞) = 𝐶̂(𝑞, 𝑞̇) + △ 𝐶(𝑞, 𝑞̇); 𝐹(𝑞) = 𝐹̂(𝑞, 𝑞̇) + △ 𝐹(𝑞, 𝑞̇); 𝐺(𝑞) = 𝐺(𝑞) + △ 𝐺(𝑞) (5)

Here, 𝑀̂, 𝐶̂, 𝐹̂, 𝑎𝑛ⅆ 𝐺 are estimated values of inertia matrix, Coriolis terms, friction terms, and gravity terms whereas △ 𝑀,
△ 𝐶, △ 𝐹, 𝑎𝑛ⅆ △ 𝐺 are an unknown portion of these terms. In this work, it is assumed that the friction term 𝐹(𝑞) is

completely unknown without the loss of gravity. Therefore, equation (1) can be written as follows:

 𝜏 = 𝜏̂(𝑞, 𝑞̇, 𝑞̈, 𝑡) + 𝛿(𝑞, 𝑞̇, 𝑞̈, 𝑡) (6)

 𝜏̂(𝑞, 𝑞̇, 𝑞̈, 𝑡) = 𝑀̂(𝑞)𝑞̈ + 𝐶̂(𝑞, 𝑞̇, 𝑡)𝑞̇ + 𝐺(𝑞) (7)

Here, 𝛿(𝑞, 𝑞̇, 𝑞̈; 𝑡) is an unknown function that combines various uncertain terms into one lumped uncertainty term, and

defined as follows

 𝛿(𝑞, 𝑞̇, 𝑞̈, 𝑡) =△ 𝑀(𝑞)𝑞̈ + △ 𝐶(𝑞, 𝑞̇, 𝑡) 𝑞̇ + △ 𝐺(𝑞) + 𝛥𝐹(𝑞, 𝑞̇, 𝑡) + ⅆ(𝑡) (8)

 Equation (7) is the nominal dynamics of the robot. In this paper, first, the goal is to construct the nominal dynamics of the

manipulator, using deep-learning techniques, and drive a formulation for the controller using this deep learning–based model

instead of the components given in (7), and then use the learning capability of this AI-based dynamic model and capture the

unknown dynamic of the robot over time true off-line and online training To design the controller and analyze the closed-

loop system's stability, it is assumed that the following assumption holds.

Assumption: The uncertainty vector 𝛿(𝑞, 𝑞̇, 𝑞̈, 𝑡) and its partial derivatives are bounded in Euclidian norm as:

 ‖𝛿(𝑞, 𝑞̇, 𝑞̈, 𝑡)‖ ≤ 𝜌(𝑞, 𝑞̇, 𝑞̈, 𝑡)

(9)

where 𝜌(𝑞, 𝑞̇, 𝑞̈, 𝑡) is the unknown bounding function of the uncertainties, ‖ . ‖ is Euclidian norm. For the detailed information

about the stability, the reader is recommended to refer [10-11].

2.1 Controller Design

 The controller proposed in this paper is built based on adaptive sliding mode control presented in reference [5-6], as:

 𝜏𝐴𝑆𝑀𝐶 = 𝑀̂𝑞̈𝑟 + 𝐶̂(𝑞, 𝑞̇, 𝑡)𝑞̇𝑟 + 𝐺(𝑞) − 𝐾𝑆 − Γ ∫ 𝑆 ⅆ𝑡 (10)

In above equation it is assumed that the friction component of robot dynamic is included in the lumped uncertainty term and

it is estimated using adaptive term of the controller. In equation (10) 𝐾 and 𝛤 are design parameters and they are symmetric

positive definite diagonal matrix and 𝑆(𝑞, 𝑡) is the sliding variable which is defined as follows:

 𝑆(𝑞, 𝑡) = (
𝑑

𝑑𝑡
+ 𝛬)2(∫ 𝑒ⅆ𝑡) = 𝑒̇ + 2𝛬𝑒 + 𝛬2 ∫ 𝑒ⅆ𝑡 (11)

113-4

And 𝑒 = 𝑞 − 𝑞𝑑, 𝑒̇ = 𝑞̇ − 𝑞̇𝑑 (12)

where 𝛬 is an n×n symmetric positive definite diagonal constant matrix and 𝑒 = 𝑞 − 𝑞𝑑, 𝑒̇ = 𝑞̇ − 𝑞̇𝑑 are the tracking error

and the rate of error, respectively. 𝑞𝑑 and 𝑞 are the desired and measured joint variables, respectively. The integral of error

is included to ensure zero offset error. Control law given in equation (10) has two component: i) a model-based component,

i.e., ˆ ˆˆ =m r rMq Cq G   , which can be constructed based on the available knowledge of the dynamic model of the

robot manipulator; and ii) a sliding function-based proportional-integral component =   PI KS Sdt , which

replaces the discontinuous term in traditional sliding mode, and is constructed based on dynamic behavior of

sliding function, for detail please refer to [5-6]. In this work the goal is to replace the model-based component:

 ˆ ˆˆ =m r rMq Cq G   (13)

with the component calculated using deep learning techniques and is called 𝜏𝑁𝑁 in this paper. In fact, 𝜏𝑁𝑁 is the

data-driven parameterized model of the robot constructed using deep leaning techniques and through off-line training based

on data collected from the robot, in which parameters of the model are the weights of the network. Deep learning-based

component is a nonlinear function of joint variables and is as:

 𝜏𝑁𝑁 = 𝑓(𝑞, 𝑞̇, 𝑞̈) (14)

Where, the input variables are position, velocity, and acceleration of each joint (q,q, q) , and the output of the neural network

is the torque 𝜏𝑁𝑁 of the corresponding joint. Replacing the model-based component with neural network-based component

in equation (10), control law cab be written as:

 𝜏𝐴𝑆𝑀𝐶 = 𝜏𝑁𝑁 − 𝐾𝑆 − Γ ∫ 𝑆 ⅆ𝑡 (15)

The block diagram of the proposed controller is shown in Figure 1.

Figure 1: Block diagram of the controller

3. Proposed Deep-Learning Methodology

3.1 Recurrent Neural Network
Depends on the problem, there are numerous versions of RNN presented by researchers such as one-to-one, one-to-

many, many-to-many, and many-to-one, whereas some advanced versions include Long Short-Term Memory and Gated

Recurrent Unit. In some exceptional cases like a singular-plural problem in speech recognition, the current cell calculation

also depends on the next cell's upcoming input. A particular version of Recurrent Neural Network known as Bidirectional

Recurrent Neural N plays a significant role in accurate prediction in such cases.

113-5

A. Long Short-Term Memory (LSTM)

Nowadays, there has been incredible success using Recurrent Neural Network in various problems such as speech

recognition, image captioning, language modelling. The traditional neural network-based models have a shortcoming in

remembering older situations. In contrast, Recurrent Neural Network-based models such as LSTM can persist information

to use with sequence datasets, making them unique. Long Short Term Memory networks are a unique kind of recurrent neural

networks introduced by Hochreiter & Schmidhuber [18] in 1997. In theory, classic RNNs can keep track of arbitrary long-

term dependencies in the input sequences. Because of the computations involved in the development of backpropagation

method, which uses finite-precision numbers while training a classic (or "vanilla") RNN, the gradients which are back-

propagated can "vanish" or "explode".

As shown in Figure 2, a sequence input layer and a LSTM layer are the core component of the LSTM Network. LSTM looks

at the input x and outputs a value h, and a loop allows information to pass from one stage to another. As shown in Figure 3,

the horizontal line running through the top of the diagram is responsible for persisting information over time. With only a

few linear interactions, it runs straight down the entire chain.

Figure 2: Sequential nature of LSTM

Figure 3: Structure of LSTM cell. This figure is revised from [18]

Mathematically LSTM can be represented by the following equations:

113-6

 𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (16)

 𝑢𝑡 = 𝜎(𝑤𝑢[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑢) (17)

 𝑐̃𝑡 = tanh(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (18)

 𝑜𝑡 = 𝜎(𝜔𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (19)

 𝑐𝑡 = 𝑢𝑡∗ 𝑐̃𝑡 + 𝑓𝑡∗𝑐𝑡−1 (20)

 ℎ𝑡 = 𝑜𝑡∗ tanh(𝑐𝑡) (21)

Where 𝑓𝑡, 𝑢𝑡 , and 𝑜𝑡 are forget gate, update gate, and output gate, respectively. 𝑥𝑡 is the input to the current cell. Here, ℎ𝑡−1

and 𝑐𝑡−1 are the output from the last LSTM cell. 𝜎 represents a sigmoid activation function, and tanh stands for tangent

activation function. 𝑤𝑓 , 𝑤𝑢, 𝑤𝑐 , 𝑎𝑛ⅆ 𝑤𝑜 are weight matrix, and 𝑏𝑓 , 𝑏𝑢, 𝑏𝑐 , 𝑎𝑛ⅆ 𝑏𝑜 refer to bias vectors. 𝑓𝑡 is multiplied with

𝑐𝑡−1 which means based on that how much previous information is useful in current prediction. Also, ℎ𝑡 is the output of

each LSTM cell (that is the output torque calculated using the network) and ℎ𝑡−1 is output from previous cell and used in

the inner computation of LSTM cell.

B. Gated Recurrent Unit (GRU)

 GRU is another recurrent neural network that learns meaningful representation from sequence data [20]. The GRU is

similar to LSTM without an output gate. GRU cell contains reset gate (𝑟𝑡), update gate (𝑧𝑡), and candidate gate (ℎ̂𝑡).

 𝑟𝑡 = 𝜎𝑠(𝑊𝑥𝑟𝑋𝑡 + 𝑏𝑟 + 𝑊ℎ𝑟ℎ𝑡−1) (22)

 𝑧𝑡 = 𝜎𝑠(𝑊𝑥𝑧𝑋𝑡 + 𝑏𝑧 + 𝑊ℎ𝑧ℎ𝑡−1)

(23)

 ℎ̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ𝑋𝑡 + 𝑏ℎ + 𝑊ℎℎ(𝑟𝑡 ⨀ ℎ𝑡−1)) (24)

 ℎ𝑡 = (1 − 𝑧𝑡) ⨀ ℎ𝑡̂ + 𝑧𝑡 ⨀ ℎ𝑡−1 (25)

Figure 4: Structure of GRU cell. This figure is revised from [20]

Where 𝑟𝑡 , 𝑧𝑡 , 𝑎𝑛ⅆ ℎ̂𝑡 are stands for reset gate, update gate, and candidate gate, respectively. Moreover, ℎ𝑡 is the output of

each GRU cell (that is the output torque calculated using the network) and ℎ𝑡−1 is output from previous cell and used in the

113-7

inner computation of GRU cell. The weight matrix for input gate to reset gate, update gate, and candidate gate are defined

as 𝑊𝑥𝑟 , 𝑊𝑥𝑧, 𝑎𝑛ⅆ 𝑊𝑥ℎ. Here 𝜎𝑠 is sigmoid activation function.

3.2 Proposed Deep Learning Architecture

 Figure 5: Deep Learning Structure.

As shown in Figure 5, the proposed architecture contains a sequence input layer, LSTM layer, fully connected layer, and

dropout layer. Here, the sequence input layer has 6 neurons (position, velocity, and acceleration for Joint 1 and 2), LSTM

with 200 neurons, fully connected layer with 50 neurons. The dropout layer utilized to prevent the overfitting situation with

a dropout ratio of 0.5. The state activation function and gate activation function are tanh and sigmoid, respectively. Glorot

is used as an input weight initializer for recurrent and fully connected layers.

Sigmoid and Hyperbolic tangent activation function can be defined as following:

 𝜎(𝑥) =
1

1+ 𝑒𝑥 (26)

 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥 (27)

All inputs are normalized using z-score normalization. In z-score normalization, the input value is normalized based on a

mean and standard deviation of input.

 𝑥′ =
𝑥− 𝑥̅

𝜎𝑥
 (28)

4. Simulation
To evaluate performance, we compared our approach with existing approaches on various uncertainties and disturbances

to measure adaptive capability, error convergence, and robustness of the controller. The exact dynamic model of the

manipulator is not known because of uncertainty and external disturbance. In this context, the dynamic model of a 2-DOF

robot is as follows

 [
𝜏1

𝜏2
] = [

𝑀̂11 𝑀̂12

𝑀̂21 𝑀̂22

] [
𝑞̈1

𝑞̈2
] + [

𝐶̂11 𝐶̂12

𝐶̂21 𝐶̂22

] [
𝑞̇1

𝑞̇2
] + [

𝑔1

𝑔2
] (29)

where, 𝑀̂11 = 𝑎1 + 2𝑎3 cos(𝑞2) + 2𝑎4 sin(𝑞2), 𝑀̂12 = 𝑎2 + 𝑎3 cos(𝑞2) + 𝑎4 sin(𝑞2),

113-8

𝑀̂21 = 𝑀̂12, 𝑀̂22 = 𝑎2, 𝐶̂11 = −ℎ𝑞̇2 + 𝑣1, 𝐶̂12 = −ℎ(𝑞̇1 + 𝑞̇2), 𝐶̂21 = ℎ𝑞̇1, 𝐶̂22 = 𝑣2,

ℎ = 𝑎3 sin(𝑞2) − 𝑎4 cos(𝑞2) , 𝑔1 = 𝑎5 cos(𝑞1) + 𝑎6 cos(𝑞1 + 𝑞2),

𝑔2 = 𝑎6 ∗ cos(𝑞1 + 𝑞2) , 𝑎1 = 𝐼1 + 𝑚1𝑙𝑐1
2 + 𝐼𝑒 + 𝑚𝑒𝑙𝑐𝑒

2 + 𝑚𝑒𝑙1
2, 𝑎2 = 𝐼𝑒 + 𝑚𝑒𝑙𝑐𝑒

2

𝑎3 = 𝑚𝑒𝑙1𝑙𝑐𝑒 cos(30) , 𝑎4 = 𝑚𝑒𝑙1𝑙𝑐𝑒 sin(30) , 𝑎5 = (𝑚1𝑙𝑐1 + 𝑚𝑒𝑙1)𝑔, 𝑎6 =
𝑚𝑒𝑙𝑐𝑒𝑔

cos (
𝜋
6)

𝐻𝑒𝑟𝑒, 𝐾 = [
400 0

0 200
] , 𝜁 = [

25 0
0 15

] , Γ = [
20000 0

0 10000
] , Λ = 50, ⅆ(𝑡) = [

250 0
0 100

]

Combining LSTM or GRU with ASMC as follows

𝜏𝐿𝑆𝑇𝑀 = 𝜏𝐺𝑅𝑈 = ℎ𝑡 (32)

 𝜏𝐿𝑆𝑇𝑀+ 𝐴𝑆𝑀𝐶 = 𝜏𝐿𝑆𝑇𝑀 − 𝐾𝑆 − Γ ∫ 𝑆 ⅆ𝑡 (33)

 𝜏𝐺𝑅𝑈+𝐴𝑆𝑀𝐶 = 𝜏𝐺𝑅𝑈 − 𝐾𝑆 − Γ ∫ 𝑆 ⅆ𝑡 (34)

Figure 6: This figure is revised from [5].

LSTM and GRU are trained on 27 trajectories with a sampling time of 0.003 sec for 500 epochs and tested with 0.001 sec

for 10 sec on 3 new trajectories. The initial learning rate and 𝐿2 regularization are 0.005 and 0.0005, respectively.

113-9

Table 2. Model performance with and without external disturbance (in degree)

Model RMSE for Joint 1 RMSE for Joint 2 Average RMSE Disturbance

ASMC 0.0413 0.0616 0.0514 No

LSTM 4.7291 22.6367 13.6829 No

GRU 5.0640 17.4393 11.2516 No

LSTM + ASMC 0.1608 0.1810 0.1709 No

GRU + ASMC 0.1598 0.1790 0.1694 No

ASMC 0.0429 0.0685 0.0557 t = 7 sec

LSTM 5.3851 49.0522 27.2186 t = 7 sec

GRU 8.5020 35.4534 21.9777 t = 7 sec

LSTM + ASMC 0.1613 0.1824 0.1718 t = 7 sec

GRU + ASMC 0.1603 0.1804 0.1703 t = 7 sec

Figure 7(a): ASMC controller

performance with and without disturbance.

Figure 7(b): ASMC controller Tracking

error with and without disturbance.

113-10

Figure 7 describes the Adaptive Sliding Mode Controller with and without disturbance. The external disturbance 𝑇𝑑

applied at t = 7 sec and in 0.1 sec it follows the desired trajectory again, which illustrates that the ASMC controller can

handle external disturbance situation. Figure 8 depicts the comparison of ASMC, LSTM with ASMC, and GRU with ASMC.

At t = 7 sec, error increases due to the disturbance for LSTM with a peak value of 0.4 degree and ASMC with 2.5 degree.

Using only the LSTM or GRU model results in higher tracking error. After combining with ASMC, both of the models

precisely following the desired trajectory. Following the disturbance, recurrent neural network-based models have less error

than ASMC, as shown in Figure 8(b).

Figure 7(c): ASMC controller Torque

with and without disturbance.

Figure 8(a): Comparison of ASMC, LSTM

with ASMC only, and GRU with ASMC (with

disturbance).

Figure 8(b): Comparison of Error (with

disturbance)

Figure 8(c): Comparison of Torque (with

disturbance)

113-11

5. Conclusion
To conclude, to verify and test the proposed controller, the trajectory tracking results of ASMC is compared with a

combination of LSTM or GRU and ASMC. Our experimental results show that without tuning the parameters for the Deep

Learning models, control law combining LSTM or GRU with ASMC generates acceptable results for scenarios with and

without disturbance. The results show that ASMC controller has lower tracking error, but with more fluctuation and a higher

torque value whereas the proposed controller generates torque based on knowledge of dynamic not based on tracking error,

and this ,in turn, reduces the fluctuation and chattering in control torque and tracking error. In this Deep Learning-based

model, it is found that 0.003, and 0.005 learning rate are the optimum values and we also noted that increasing the epoch

rises the training time. Deep learning model construction and data cleaning positively influence the output value of the

network. Using position, velocity, and acceleration data, the deep learning model can precisely estimate the torque value

required to follow the desired trajectory. This study shows that up to 90% of the required torque can be generated with LSTM

or GRU model, instead of using Lgrangian model of the robot.

References
[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation

Applied to Handwritten Zip Code Recognition.”, Neural Computation 1, 1989, pp. 541-551

[2] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural networks”, Proc.

Advances in neural information processing systems, 2012, pp. 1097-1105

[3] H. Su, W. Qi, C. Yang, A. Aliverti, G. Ferrigno, and E. De Momi, “Deep Neural Network Approach in Human-Like

Redundancy Optimization for Anthropomorphic Manipulators”, IEEE Access, vol. 7, pp. 124207-124216, 2019, DOI:

10.1109/ACCESS.2019.2937380.

[4] A. I. Károly, P. Galambos, J. Kuti, and I. J. Rudas, “Deep Learning in Robotics: Survey on Model Structures and

Training Strategies”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 266-279, Jan.

2021, DOI: 10.1109/TSMC.2020.3018325.

[5] M. Zeinali, and L. Notash, “Adaptive sliding mode control with uncertainty estimator for robot manipulators”,

Mechanism and Machine Theory, Volume 45, Issue 1, 2010, pp. 80-90

[6] M. Zeinali, “Adaptive Chattering-Free Sliding Mode Control Design for Robot Manipulators Based on Online

Estimation of Uncertainties and Its Experimental Verification”, JOURNAL OF MECHATRONICS 3 (2), 85-97,

2015.

[7] O. Carman and P. Husek, “Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism”, Expert

Systems with Applications., Volume 39, 2012, pp. 10269-10277

[8] D. Zhao, S. Li, and F. Gao, “A new terminal sliding mode control for robotic manipulators.”, IFAC Proceedings

Volumes, Volume 41, Issue 2, 2008, pp. 9888-9893

[9] F.T. Mrad and S. Ahmad, “Adaptive control of flexible joint robots using position and velocity feedback”,

International Journal of Control, Volume 55, 1992, pp. 1255-1277

[10] M. Zeinali, “Adaptive chattering-free sliding mode control design using fuzzy model of the system and estimated

uncertainties and its application to robot manipulators”, 2015 International Workshop on Recent Advances in Sliding

Modes (RASM), Istanbul, 2015, pp. 1-6, DOI: 10.1109/RASM.2015.7154652.

[11] M. Zeinali and H. Wang, “New Methodology to Design Learning Control for Robots Using Adaptive Sliding Mode

Control and Multi-Model Neural Networks”, Proceedings of the 5th International Conference of Control, Dynamic

Systems, and Robotics (CDSR'18) Niagara Falls, Canada – June 7 – 9, Paper No. 140 DOI: 10.11159/cdsr18.140,

2018.

[12] B.Ozyer, “Adaptive fast sliding neural control for robot manipulator.", Turk J Elec Eng & Comp Sci, 28, 2020, pp.

3154-3167

javascript:void(0)
javascript:void(0)

113-12

[13] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin, “Learning quadrotor dynamics using neural

network for flight control”, 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, 2016, pp.

4653-4660, DOI: 10.1109/CDC.2016.7798978.

[14] S. Edhah, S. Mohamed, A. Rehan, M. AlDhaheri, A. AlKhaja, and Y. Zweiri, “Deep Learning Based Neural Network

Controller for Quad Copter: Application to Hovering Mode”, 2019 International Conference on Electrical and

Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 2019, pp. 1-5,

DOI:10.1109/ICECTA48151.2019.8959776.

[15] Sepp. Hochreiter, “The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions”,

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems., 1998, 6. 107-116.

DOI:10.1142/S0218488598000094.

[16] F. Chollet, “Deep Learning with Python”, 2018, p. 196

[17] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is difficult”, IEEE

Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, March 1994, DOI: 10.1109/72.279181.

[18] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural Computation, vol. 9, no. 8, pp. 1735-1780,

Nov. 1997, DOI: 10.1162/neco.1997.9.8.1735.

[19] N. Liu, L. Li, B. Hao, L. Yang, T. Hu, T. Xue, and S. Wang, “Modeling and Simulation of Robot Inverse Dynamics

Using LSTM-Based Deep Learning Algorithm for Smart Cities and Factories”, IEEE Access, vol. 7, pp. 173989-

173998, 2019, DOI: 10.1109/ACCESS.2019.2957019.

[20] K. Cho, B. V. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase

representations using RNN encoder-decoder for statistical machine translation.”, arXiv preprint arXiv:1406.1078

(2014).

https://ieeexplore.ieee.org/author/37087120205
https://ieeexplore.ieee.org/author/37087120309
https://ieeexplore.ieee.org/author/37087121064
https://ieeexplore.ieee.org/author/37087120707
https://ieeexplore.ieee.org/author/37087119627
https://ieeexplore.ieee.org/author/37086959822
https://ieeexplore.ieee.org/author/38066995400

