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Abstract - A nonlinear system is approximated using the linear parameter-varying (LPV) model described by piecewise-linear Box-

Jenkins (BJ) model at each operating point. Both the input and the output measurements are corrupted by unknown stochastic 

disturbance and measurement noise.  A data-based approach is used to extract the true input from the corrupted input measurement. 

The system and its associated Kalman filter(KF) are identified, without any a-priori knowledge of the disturbance and measurement 

noise statistics, by using emulator-generated data by minimizing the KF residual so that identified models are robust to model 

perturbations, accurate, consistent, and reliable. A fault-tolerant controller is thus developed. An adaptive filter, which is a series 

combination of the inverse of the signal model and the desired signal model, is driven by the signal estimate and the residual, ensuring 

that its ouput tracks the desired signal despite model perturbations and without any cumbersome controller redesign. An internal 

model-based robust state-feedback controller is proposed to accurately track a desired trajectory despite model perturbations and 

stochastic disturbances. The internal model is driven by the error between the reference input and the adaptive filter output. The 

proposed scheme was successfully evaluated on a simulated autonomously- guided aerial vehicle.  
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1. Introduction 
A KF-based state feedback robust controller is proposed for a Multiple-Input and Multiple-Output (MIMO) nonlinear 

system such as terrestrial and aerial vehicles for accurately tracking a desired path in x, y and z directions despite model 

perturbations and unknown stochastic disturbance and measurement noise corrupting both the input and the output [1-3]. 

The model whose input and output are corrupted is termed as an errors-in variables one [4-5]. As the analysis, design, 

estimation, identification, and control of nonlinear system are not mathematically tractable in a true nonlinear setting, a linear 

parameter-varying (LPV) model, is used to approximate the nonlinear system [6]. The resulting piecewise-linear models help 

develop computationally simple, efficient, and robust schemes for identification, design of KF, fault detection and isolation, 

fault tolerance and condition-based maintenance.  

Predictive analytics is of paramount importance in resolving a host of problems in a variety of fields including 

engineering, financial and medical and relies on a wide range of tools such as statistical modelling and analytical techniques, 

machine learning, artificial intelligence, and deep learning algorithms [7-8]. The true input is estimated from the 

corrupted input by exploiting the smoothness of the true input and the randomness of the corrupted input using 

two-stage frequency domain identification [8]. For notational convenience, the estimated true input is termed 

henceforth merely as input. The output error defined as the sum of disturbance and measurement noise and is assumed to 

be bounded. The signal and the disturbance are both modelled as outputs of linear time-invariant systems driven by the input 

signal, and a Gaussian zero-mean white noise process, respectively. It is assumed that the signal, disturbance, and 

measurement noise are all uncorrelated with each other. 

A piecewise-linear Box-Jenkins (BJ) MIMO system relating the input and corrupted output is obtained as the best 

approximation to the nonlinear model. The BJ model of the system is an augmented model of the signal and the disturbance 

models [9-10]. This model covers several imporatant practical systems, including for example, autonomous vehicles and 

autonomously-guided drones flying at different altitudes and subject to varying wind gusts that may accelerate or decelerate, 

push or pull the drone away from the desired trajectory. These devices are currently enjoying an ever-increasing field of 

mailto:sreeramanr@sce.carleton.sa
https://en.wikipedia.org/wiki/Machine_learning
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important applications.  A state feedback controller is designed using the internal model principle to ensure an accurate 

tracking of the reference waveform, despite the presence of model perturbations caused by a wide class of unavoidable 

stochastic disturbances, and of the measurement noise corrupting the signal [11]. The objective is to ensure that the output 

track accurately the desired reference trajectory. Using inverse dynamics, the desired input is estimated.  The proposed 

controller is designed and implemented using the KF estimates of the signal, the states, the output error and the disturbance 

model estimate.  A state-feedback controller based on the KF-based state feedback must meet the stability and performance 

requirements without the need for continuous adaptation when the plant is perturbed in the neighborhood of the nominal 

operating point generated by the emulator-perturbed experiments. 

The feedback controller is implemented as follows: 

 An internal model of the reference is included in the controller. Note that an internal model of a signal is a transfer 

matrix whose zero-input response is a copy of the signal. The denominator of the internal model and that of the signal 

are identical to each other. 

 The internal model is driven by the tracking error, which is error between the reference trajectory and the estimate of 

the signal, rather than that of the estimate of the output, which is the signal corrupted by the disturbance and 

measurement noise  

 The closed-loop system is asymptotically stable despite model perturbations 

 The state feedback law is implemented using the KF state estimate, as per the separation principle-based design 

strategy. 

 Unlike in the conventional approach, it is unnecessary to include the internal model of the disturbance as the KF 

separates the estimate of the signal from that of the output which is formed of the signal, the disturbance and measurement 

noise. Further, it is not necessary here to employ the feedforward of the measured disturbance.  

In system identification, the criterion for determining whether the identified model has captured completely the static 

and dynamic behaviors of the system is that the residual of the KF associated with the system be a zero-mean white noise 

process [9-10]. If the equation error is a zero-mean white noise process, the estimate will be unbiased and efficient; otherwise, 

it will be biased. In view of the above-stated key properties, the residual then becomes a zero-mean white noise process if 

and only if the system and the identified model embodied in the KF are identical. The identification objective of ensuring 

the residual is a zero-mean white noise process, will ensure not only that the KF is accurately identified but also that the 

Kalman gain is optimal, thereby avoiding the need to specify the covariance of the disturbance and the measurement noise 

and to use the Riccati equation to solve for the Kalman gain.  

Novel Emulators: The static and dynamic behaviors of a physical system change as a result of variations in the 

parameters of some of its subsystems such as sensors, actuators, plant, disturbance models and controllers. As the parameters 

of these subsystems are not generally accessible to generate data, instead, novel emulators which are product of first-order 

all-pass are used, are connected in cascade with the output, input or both, of the subsystems. An emulator mimics the 

variations in the associated subsystems including the disturbance model, some of which have not been seen by the system, 

thus enriching the data set used for both identification and control purposes. An emulator induce gain or phase variations in 

the subsystem it is connect to. Emulator parameters are perturbed to mimic various normal and abnormal, or faulty, operating 

scenarios resulting from variations in these subsystems. The emulator-generated data is employed in a) the identification of 

robust systems and signal models and their associated KFs using the two-stage identification scheme, and b) the design of 

robust controllers the robust system model and the associated KF are identified using the emulator-generated data; and the 

signal and the output error are estimated. From the identified models, the signal model and the associated KF are identified. 

Physical systems are invariably subject to model perturbations. In the absence of model perturbations, the controller tracks 

accurately the desired reference waveform ensuring that the tracking error is asymptotically zero. Thanks to identification 

using emulator-generated data, the identified models are robustly stable. However, the performance of the controller may 

not be robust to model perturbations as the rise time, overshoot and settling time may vary. To overcome this problem, the 

residual of KF estimate of the signal is adapted to these variations. If the input to the KF is an ideal unperturbed signal, then 

its residual will be zero in finite time. On the other hand, with a perturbed input the residual will be zero asymptotically. An 

adaptive signal is obtained using the KF residual and the input signal so that the adaptive filter output is the ideal unperturbed 
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signal. As such, the adaptive filter output will be the ideal signal independent of whether the input signal is perturbed or not, 

this ensuring robust performance. The computationally-burdensome controller redesign that would be needed in a 

conventioanl LQR approach is ths avoided.  The adaptation strategy plays the role of a ‘model-reference’ adaptive controller 

without an online controller adaptation. 

The proposed scheme finds applications in many areas of control theory and in diverse applications including robust 

control of autonomous vehicles to track accurately a desired trajectory using the signal estimated from the output corrupted 

by disturbance and measurement noise, and not from the noisy estimate of the output. The motivation of the work stems 

primarily from the need to detect accurately and reliably leakage in pipelines using drones that are controlled to specifically 

track a desired trajectory that represents the pipeline track to be monitored with a view to collecting data for specific 

applications. By way of example, the desired trajectory could be a long pipeline running in a dangerous and/or 

environmentally-unfriendly area, and collecting data from sensors placed at some suitable locations along the pipeline, in 

order to timely detect possible leaks in the pipeline  

The proposed feedback controller scheme is evaluated on a simplified simulated model of a drone moving in a horizontal 

plane to track accurately the desired trajectory in spite of wind gusts and model perturbations.  

Main contributions: To the best of the authors' knowledge, the contributions include the following: 

a) The key theoretical contribution lies in using the KF to estimate the signal component from the output formed of an 

additive sum of the signal, the stochastic disturbance and measurement noise.  

b) Rigorous mathematical foundations for the proposed scheme are given. It is shown that the following key properties of 

the KF hold if and only if the identified model embodied in the KF is identical to the system model 

o The residual model of the KF maps the system input and output to the KF residual. The signal model is a matrix 

fraction description relating the system input and output of the residual model 

o The two KFs, one associated with the system and the other with the signal model, are employed to develop fault-

tolerant and condition-based maintenance systems .The residuals of the KFs of the system and the signal monitor 

the status of the overall system and the signal model, respectively, thereby isolating a fault from other variations in 

the output error and thus lowering the false alarm probability. A fault is asserted only if the residuals of the KFs for 

both the system and especially the signal vary. 

c) The use of the powerful and novel concept of emulators which are connected to the subsystem’s input, or output or to 

both to mimic likely operating scenarios, such as normal and abnormal or faulty operating scenarios, including variations 

in the disturbance and measurement noise, that have not been seen by the system. The emulator parameters are varied to 

generate a set of emulator-perturbed input-output data and a set of perturbed models  

d) Using emulator-generated input-output data, a two-stage identification scheme is proposed using the key property of the 

KF for obtaining robust and accurate models of the system and the signal, and their associated KFs.  

e) A novel robust combined feedforward-feedback controller is implemented using the internal model principle that 

ensures accurate tracking of the reference trajectory despite the presence of stochastic disturbances and measurement 

noise. The feedforward controller is implemented without the need for a separate measurement of the disturbance 

because the feedback controller needs only the internal model of the reference and not that of the disturbance.  

f) A novel adaptive filer scheme is developed to ensure robust performance 

2. System Model         
2.1 Mathematical Model of The System 

The Multiple-Input and Multiple-Output (MIMO) nonlinear state-space model of a system is: 
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where   nk Rx  , ( ) pk Ru is the scalar control input ,   qk Ry is a vector formed of all measured (accessible) outputs, 

  qk Rv is a measurement noise and   p

w k Ru is an inaccessible  input that generates the stochastic disturbance   qk Rw

,  . nRf ,  . qRg   are
 
nonlinear smooth and differentiable functions . The output ( )ky is the output that is corrupted by 

disturbance and measurement noise. 

 
2.2   Linear Parameter-Varying (Lpv) Model: 
2.2.1 Input Measurement Model 

The measurement input   pk Ru  is a sum of the unknown true input 
0 ( )ku and the combined disturbance and 

measurement noise ( )v ku :  

   0( ) ( )vk k k u u u  (2) 

 

Let the state space model  , ,v v vA B C  of the corrupting input ( )v ku  be: 
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Predictively analytics: The inaccessible true input 
0 ( )ku  is assumed to be a smooth input such as a sum of sinusoids 

while the noisy ( )v ku  exhibits random fluctuation. The inaccessible 
0 ( )ku  is extracted from ( )ku  using the frequency-domain 

approach by exploiting their spectral characteristics such as the smooth waveform
0 ( )ku has line-spectra, and noisy ( )v ku  has 

wildly-varying spectra. The estimated true input, is derived from the accessible input ( )u k  using a predictive analytics 

approach, involving an artificial intelligence or machine learning algorithm [8-10]. The estimated true denoted simply as 

input replaces the true input 
0 ( )tu in the rest of this paper. As a result, the system model relates the true input and the corrupted 

output  ky , which is a sum of the signal ( )ks , the output disturbance ( )kw , and the measurement noise ( )kv : 

          ( )z z z z z z    y s w v s  (4) 

 

Where  k is the output error;  

The state-space model of the signal   qk Rs ,  , ,s s sA B C , is;  
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The state-space model of the disturbance   qk Rw ,  , ,w w wA B C , is;  
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w RA , sn xp

s RB ; wn xp

w RB  ; sqxn
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wn  are 

respectively the orders of the signal  ks  and disturbance models;  

Assumptions 

 The signal model  , ,s s sA B C and disturbance model  , ,w w wA B C  are controllable and observable 
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 The disturbance model  , ,w w wA B C is asymptotically stable  

 The input  w ku  driving the disturbance model is zero mean white Gaussian process  

 The measurement noise  kv is zero mean white Gaussian process 

 The signal  ks ,the disturbance  kw and measurement noise  kv are uncorrelated  

 
2.2.2 State-SPACE Box-Jenkins MODEL 

The linearized (MIMO) state-space model (A, B, C)  at an operating point i  is an augmented model of the signal and 

output disturbance given by: 

 
,( 1) ( ) ( )

( ) ( ) ( )
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k k k
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where nxnRA , 2nx pRB  , qxnRC ;   nk Rx is the state;
    2
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w
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u u wk k R u u u is a augmented input  formed of 

input ( ) q

w k Ru  and
 ( ) q

w k Ru  
is a zero-mean Gaussian white noise process that is inaccessible;   qk Rv  is a measurement 

noise that  is a zero-mean Gaussian white noise process; 
0 0

;
0 0

s

w w
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3.   Controller Design  
The measurement output  ky   (4) is assumed to be an additive combination of the signal  ks , the stochastic 

disturbance  kw  and the measurement noise ( )kv .   

 
3.1 Internal Model-Based Controller 

 Using inverse dynamics, the desired input  d ku is estimated so end effector tracks the desired output trajectory

 d ky .  The proposed controller is designed and implemented using the KF estimates  

 The signal models of systems such as aerial vehicles, and quadrotor are generally unstable, and need to be pre- 

 stabilized so that the system may be reliably identified.  A state feedback controller is designed using the internal 

model principle to ensure an accurate tracking of the reference waveform, despite the presence of model 

perturbations caused by a wide class of stochastic disturbances, and measurement noise corrupting the signal.  

 An optimal state-feedback controller for the Box-Jenkins model is determined assuming the states of the signal 

model are available . The assumed states of the signal model are substituted by those estimated by the associated 

Kalman filter. The feedback control input to the signal model becomes in Fig. 2: 

     ˆ ˆ( ) (       )  s s I Ik k k  u F x F x  (8) 

 The resulting closed loop Box-Jenkins model  ,cl cl clA B ,C  given by: 
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 4.  Novel Accurate Emulator-Based Identification 
An accurate emulator-based model identification scheme is proposed and employed here. An emulator, which is 

modelled as a product of first-order all-pass filters and which induces phase and gain changes, is connected in cascade to the 

input, output or both, of the signal model to emulate a set of likely operating regimes around the nominal operating point. 

The identified model is obtained as the best fit over all emulated operating regions, thereby ensuring both accuracy and 

robustness of the identified model. A high-performance robust controller is designed for the identified model using a mixed 

sensitivity H
 approach.  

 In the first stage, a robust model of the system fault-free nominal system  0 0 0, ,A B C  and its associated Kalman filter 

 0 0 0 0 0 0, ,   A K C B  K C are identified from the set of the emulator-generated input-output data using the structure of 

the residual model of the Kalman filter. Then the estimate 0 ( )ks of the signal ( )ks  and the estimate  ˆ k  of the output 

error  k  and the disturbance model are derived.  

 In the second stage, using the key properties established the signal model  0 0 0,s s s,A B C  and its associated Kalman filter  

 0 0 0 0 0 0,s s s s s s,   A K C B  K C  are obtained  

 

5.   Kalman Filter: Properties, Design and Applications to Status Monitoring 
We shall now state some vital KF properties that help design the required KFs in an accurate and robust way. We shall also 

discuss the KF application of status monitoring that is so vital to many industrial areas.  

 
5.1 KF Properties 
5.1.1 Residual model 

The frequency-domain expression relating the input ˆ( ) pz Ru  and the output ( ) qz Ry  to the residual ( ) qz Re   is given by 

the following model termed the residual model:  

    1 1( ) ( ) ( ) ( ) ( )z F z z z F z z z  e D y N u   (10) 

where  zD   and  zN  are matrix polynomials, ( )F z  is the scalar characteristic polynomial termed Kalman polynomial,

0 0 0( ) det( )F z z I A + K C ; 0 0 0( ) det( )D z z I A + K C ;      1
0 0 0 0 0( )z F z z



  D I C I A + K C K  is a qxq  matrix; 

    1
0 0 0 0 0( )z F z z



 N C I A + K C B  is qxp  matrix; qxqRI  is an identity matrix. The rational polynomials  1( )F z z
D  

and  1( )F z z
N  are associated with the system output ( )zy  and the input ˆ( )zu ., respectively 

Remarks: The residual model of the KF forms the backbone of the proposed identification scheme.  
 

5.1.2 Key KF properties 

These are fully established in [10-11] and are restated herein for clarification. 

Lemma 2: The residual is a zero-mean white noise process with minimum variance if and only if the model of the system, 

denoted  , ,A B C  and the identified model embodied in the KF, denoted  0 0 0, ,A B C are identical. 

    0 0 0, , , ,A B C A B C  (10) 

Corollary: If    0 0 0, , , ,A B C A B C , the residual will not be a zero-mean white noise process as there will be an additive 

term,  f ke  referred to as a fault indicative term: 

 0( ) ( ) ( )fk k k e e e  (11) 

Where
0 ( )ke a zero-mean white noise is process;  
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The fault indicator term in frequency domain  f ze , represent perturbations coming from the system model  zG , or the 

stochastic disturbance model ( )w zG  or both. The size of the fault is determined by the norm of fault indication term ( )f ze ; 

The fault diagnosis scheme is developed using the fault indicator term forms  f ze . 

The following Lemmas are developed by assuming that Lemma 1 holds.  

Derivation of the signal and its model: The following lemma 3 shows that the estimates of the signal and its model may 

be derived from the residual modelError! Reference source not found.. 

Lemma 3: 

The estimates of the signal model, the signal and the output error are: 

 
   

   

( ) ( ) ( )ˆ ˆ
( ) ( ) ( )

ˆ ˆˆ ˆ ˆ( ) ( ); ( ) ( )

w s

s

w s

s

z D z z
z z

D z D z D z

z z z z z z

 

  

N N
G = G

s G u y s

 (12) 

Let the state space model be  0 0 0ˆ ˆˆ, ,s s sA B C  associated with the transfer function  ˆ
s zG  

 Remark: There are two approaches to identifying the signal model and the signal. One approach is by deriving them 

from the residual model of the Kalman filter as shown in Lemma 2 given by (12) and the other approach identify system 

model using the input û  and the output y  and determining its minimal realization:  

The identified system model  ˆ zG is non-minimal (12) and the signal model  ˆ
s zG  is its minimal realization. 

 
5.2 Kalman-Filter Design for the Signal:   

The residual model of the KF for the signal model becomes: 

 

 
( ) ( )

ˆ( ) ( ) ( )
( ) ( )

s s

kfs

s s

z z
z z z

F z F z
 

D N
e s r  (13) 

Lemma 5: The residual ( )kfs ke is asymptotical zero if and only if the model of the closed loop system that has generated 

the input-output data  ( ) ( )k , kr s , denoted  , ,cl cl clA B C  and the identified model  0 0 0, ,cl cl clA B C embodied in the KF are 

identical, that is    0 0 0, , , ,cl cl cl cl cl clA B C A B C : 

  

  limit ( ) 0kfs
k

k


e  (14) 

Lemma 6: The residual ( )kfs ke  is not asymptotical zero if    0 0 0, , , ,cl cl cl cl cl clA B C A B C ; 

 limit ( ) ( ) 0kfs f
k

k k


 e e  (15) 

The KF estimate of the perturbed signal using adaptive filter,  adp ks  is given by 

    ˆ ( )adp kfs kfsk k ks = s e  (16) 

5.3 Application to Status Monitoring: Conventional And Proposed Approaches 

The residuals ( )ke and ( )kfs ke of the KFs (11) and   are employed to monitor the status of the overall system and to 

detect and isolate faults in the signal and disturbance models and the sensors. The proposed scheme provides a sound 

framework for developing fault-tolerant systems as well as condition-based maintenance systems. 

The implementation of the KF-based robust combined feedforward-feedback controller shown in Fig 1:    
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Fig 1: KF-based feedforward-state-feedback controller 

 

Proposed approach: The estimates of the closed-loop signal model, the signal and the states are determined using the 

key properties of the KF. The disturbance and measurement noise-free KF estimates ate employed instead of their noisy 

counterparts, namely the noisy output and the noisy states, respectively, for implementing the feedback controller.  The 

tracking error driving the internal model is the error between the desired and the estimated signals, and the state-feedback 

is implemented using the estimates of the states of the KF. The internal model includes only of the reference as the 

deterministic disturbance, is unknown   

 

6.  Evaluation of Proposed Scheme on a Simulated Drone 
6.1 Illustrative Example with the KF-Based Adaptive Filter 

An illustrative example of tracking a sinusoidal input, ( ) sin( )r k k  despite model perturbations using the proposed 

KF-based adaptive filter. 
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Fig. 2 nominal and perturbed signal: role and benefit of adaptation 

Fig. 2 shows the performance of the robust combined feedforward-feedback controller using the online adaptive filter 

under model perturbation. Subfigures A, B, and C show the nominal unperturbed signal, KF residual which is negligibly 

small, and the KF estimate. Subfigures D, E and F show the perturbed signal, KF residual which is non-negligible and the 

Kalman filter estimate 
 

6.2 Comparison with Conventional Controllers 

The proposed scheme based on the KF estimate  of the signal is significantly superior to the  conventional approach in 

tracking a given reference despite the unknown stochastic disturbance and the zero-mean white measurement noise process. 

The signal buried in the output is estimated in order to  develop the controllers without the need for the measurement of the 

disturbance and measurment noise. Subfirues of Fig. 2 clearly show the superior performance of the proposed scheme over 

the conventional one 

The tracking error of the conventional scheme, even with the availability of the measusurement of the disturbance and 

measurement noise, is a random process. Tracking a desired trajectory in two-dimensional plane exhibit unwanted random 

deviations around the given desired trajectory.  On the other hand, the proposed scheme provides a proven framework for 

autonomous vehicles to reliably and accurately track a given trajectory, all without the onerous requirement of the knowledge 

of the dusturbance and measurement noise statistics. 
 

6.3 Appplications: Autonomous Terrestal And Aerial Vehicles 

A vital application of the the proposed controller scheme would be for autonomous terrestrial and aerial vehicles to track 

a desired trajectory. Here, the controller may be designed and implemented by being inspired from the taining and testing 

schemes used with artificial neural network and in artificial intelligence [17-20].   

Training phase: In the case of autonomous vehicle or drones, an experienced human operator is used for training. The 

human operator plays the role of the. The traing phase is conducted when the weather is ‘good’ with no snow and there is 

good visibility, as in this case, the desired trajectory is clearly seen, and disturbances such as wind gusts can be adequately 

modelled as zero-mean random processes. The input that  drives the drone or the autonomous vehicle and the output, namely 

the navigational states such as position, velociry and acceleration, are all measured as a function of the location coordinates. 

The input and output data are then used to identify the system, the signal models and their associated KFs using the emulator-

based two-stage identification. Further, the model of the reference trajectory is determined and its internl model derived. 

Finally, the robust controller is designed. The training phase is successful if and only if the residual of the KF is a zero-mean 

white noise process and the estimate of the signal is the reference trajectory. 
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Testing phase:  In the testing phase, which is an autonomously-operational phase, the navigational states and the input are 

measured, and fed to the KFs. The combined feedforward-feedback is implemented using the estimated signal and identified 

signal model.    
 

7.   Conclusions 
The KF-based The combined feedforward-feedback using the internal model principle is developed for a wide class of 

systems nonlinear systems approximated by piecewise Box-Jenkins model. The KF is shown to enjoy the key properties of 

estimating the signal, its model, the output error and the disturbance model even in low signal-to-noise ratio scenarios and 

with a spectral overlap between the disturbance and the signal. The robust stability and performance of the identified system, 

signal model, and controller is developed merely by adapting the KF residual without any time-consuming controller 

redesign.  The proposed scheme has been shown to be underpinned by a rigorous mathematical foundation. A number of key 

properties of the KF have been derived and shown to hold if and only if the identified model embodied in the KF is identical 

to the system model. The striking feature of this novel controller is that there are no random deviations around the desired 

reference trajectory, even though the statistics (covariance) of the disturbance and the measurement noise were completely 

left out its design. Further, the performance is maintained even when there are model perturbations. With ample 

encouragement from this initial study, work is currently underway to develop a quadrotor that can provide autonomous help 

for real-life drones to track a specified trajectory reliably and accurately, despite wind drafts, by using the proposed 

feedforward-feedback control strategy. 
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