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Abstract - A Kalman filter(KF)-based identification, internal model-based controller for accurate tracking a specified trajectory despite 

the sensor errors, and fault tolerance is proposed. This study was mainly motivated by the need for precision, resolution and accuracy 

required in robotic applications such as robotic surgery. The computed torque approach is used to map a nonlinear model into a linear 

one. The sensor errors of the orientation input and the position corrupted by unknown input and output stochastic disturbance and 

measurement noise. Predictive analytics is used to estimate the true input by exploiting its smoothness and the randomness of the noisy 

input.  The system is described using the Box-Jenkins(BJ) model, which is an augmented model of the true output, termed signal and the 

disturbance. The BJ model and the associated KF are identified without the a priori knowledge of the statistics of the disturbance and 

measurement noise. Using the key properties of KF the signal, the output error, the signal model, and the disturbance models, the KF 

associated with the signal model is accurately identified. An internal model-based state-feedback and feedforward controller is designed 

to accurately track the desired trajectory. The hardware sensors are replaced by KF-based sensors. The KF ensures fault tolerance. The 

proposed scheme was successfully evaluated on a physical robot. 

 

Keywords: robotic surgery, Euler Lagrange Equation, identification,  Box-Jenkins model, Kalman filter, soft sensor. 

 

 

1. Introduction 
The prime motivation for this study is to achieve accurate tracking of the desired robot arm trajectory in the face of 

unknown disturbances and measurement noises [1-5]. This is vital in, for example, robotic surgery, of either the non-invasive 

or the minimally-invasive type, where delicate operations, requiring the utmost accuracy, are carried out on vital organs, 

such as eyes, heart, brain, spinal cord, throat and knees [3].  

 
1.1 Sensors for Input and Output Measurement 

The actuators at the joint angles control the position of the end effectors. The orientation is made of the joint angles, 

namely the roll , pitch  and yaw :   3, , R    , that are termed as input, and the coordinate axes   3, ,x y z R   are 

the position of the end-effector. Using the inverse kinematics, the input values are selected so that the output tracks a specified 

trajectory. To ensure accurate tracking, hardware sensors are used to measure both the input and output and they include: (a) 

Accelerometer to measure the inertial acceleration, (b) Gyroscope to measure angular velocity about the defined axis, and 

(c) Magnetometer to be used along with the gyroscope to get better estimates of the robot’s orientation. 

The hardware sensors are required to ensure precision, resolution and accuracy, but they are maintenance-prone and are 

affected by disturbances and measurement noise. Thus, these are replaced by accurate, reliable, and consistent KF-based soft 

sensor, which are proposed here.  
 

1.2 Predictive Analytics 
Predictive analytics is of paramount importance in resolving a host of problems in a variety of fields including 

engineering, financial and medical and relies on a wide range of tools such as statistical modelling and analytical techniques, 

machine learning, artificial intelligence, and deep learning algorithms [6-8]. Here, the true input is estimated from the 
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corrupted input by exploiting the smoothness of the true input and the randomness of the corrupted input using two-stage 

frequency domain identification [8]. It is assumed that dominant peaks in the spectrum of the corrupted input are associated 

with the true input and the model that generates true input such as constants or sinusoids has a rational transfer function with 

poles and zeros. The resulting system model relates true input and the true output corrupted by disturbance and measurement 

noise. For notational convenience, estimated true input is termed merely as input. 

 
1.3 Dynamic Model Of A Robot 

A dynamic model of the robot relating the estimated true input and the output is derived using the Euler-Lagrange 

equation. The states of the system are the joint variables, their first and second derivatives. The model of the robot is an 

unstable second-order nonlinear one that relates the second-order derivatives of the joint angles to the nonlinear forces and 

torques including the centripetal/Coriolis force, gravitational force, and the viscous friction. 

 
1.3.1 Feedback Linearization Approach 

One of the most common approaches to the design of robot controllers is a computed-torque controller, also known as 

the inverse dynamics controller. It is based on the feedback linearization principle which is an approach that maps a 

nonlinear model into a linear one and treats it as such [5]. An exact linear model is obtained by introducing new variables 

termed control inputs to replace all nonlinear terms including the applied forces, applied torques, Coriolis forces, and 

gravitational load.  

 
1.3.2 System Model: Box-Jenkins Model 

An augmented model of the system, termed Box-Jenkins model formed of a) the signal model relates the estimated 

input and disturbance and measurement noise-free output, b) the model of the stochastic disturbance driven by random 

disturbance input. The output is the sum of the signal, the stochastic disturbance and measurement noise.  

 
1.3.3. Kalman Filter and Its Key Properties 

The key properties of the KF are exploited to estimate the signal from the output corrupted by disturbance and 

measurement noise and obtain derivative-free estimates of the joint. The following key properties are restated here for 

convenience [15-17]: 

P1: The residual of the Kalman filter is a zero-mean white noise process if and only if there is no mismatch between the 

actual model of the system and its identified model embodied in the Kalman filter, and its variance is minimum. 

P2: The estimate is optimal in the sense that it is the best estimate that can be obtained by any estimator in the class of 

all estimators that are constrained by the same assumptions.  

P3: The signal is extracted from the output corrupted by stochastic disturbance and measurement noise. The signal 

model is derived from the residual model of the KF.  
 

1.4 Identification of the Robot Model  

The KF associated with the system plays a crucial role in the system identification, fault detection and isolation, and 

estimation of the signal, the output error (sum of the disturbance and measurement noise), signal and disturbance model in 

view of its following key properties: 

 The above-stated property P1.  If there is a model mismatch, then the residual will not be a zero-mean white noise 

process and an additive term termed fault-indicative term. The fault-indicative term is a filtered version of the 

deviation in the linear regression model of the system or that of the signal.  The fault indication term is employed in 

fault detection and fault isolation 

 If the identified nominal system model is accurate, then as per property P1, the following estimates derived using  the 

KF are accurate in the sense that they are true and free from the disturbance and measurement noise, unlike the system 

output:  

o Estimates of the signal and its model  

o Estimates of the output error and disturbance model 

https://en.wikipedia.org/wiki/Feedback_linearization
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 The KF for the signal model relating the estimated signal  and the input is accurately identified.  

The static and dynamic behaviors of the physical systems change as a result of variations of the parameters of the 

subsystems such as sensors, actuators, pumps, and disturbance models. As the parameters of the subsystems are not generally 

accessible, novel emulators are used to mimic these model perturbations. An emulator takes the form of a static gain or an 

all-pass filter to induce gain or phase variations in the subsystem it is connect to. Emulator parameters are perturbed to mimic 

various normal and abnormal, or faulty, operating scenarios resulting from variations in these subsystems.  Emulators are 

connected to the accessible inputs and outputs in cascade with the subsystems such as the actuator and sensor comprising the 

signal model, and disturbance models during the offline system identification. The emulator-generated data covers both 

normal and abnormal operating scenarios including various types of faults. The emulator-generated data is employed in a) 

the identification of the system, the KF-based identification, and fault isolation. The fault-free or nominal system and the 

associated KF are identified using the emulator-generated data. In system identification, the criterion for determining whether 

the identified model has captured completely the static and the dynamic behavior of the system is that the residual of the KF 

associated with the system is a zero-mean white noise process. If the equation error is a zero-mean white noise process, the 

estimate will be unbiased and efficient; otherwise, it will be biased. In view of the above-stated property, the residual then 

becomes a zero-mean white noise process if and only if the system and the identified model embodied in the KF are identical. 

The structure of the residual model of the KF, and not that of the linear regression model of the system, is employed in 

identification. The identification objective of ensuring the residual (innovation sequence) is a zero-mean white noise process, 

will ensure not only that the KF is accurately identified but also that the Kalman gain is optimal, thereby avoiding the need 

to specify the covariance of the disturbance and the measurement noise and to use the Riccati equation to solve for the 

Kalman gain.  

 
1.5 Kalman Filter-Based Feedback-Feedforward Controller 

In the literature, many approaches to the design of a controller for tracking such as proportional (P), proportional-integral 

and derivative (PID), adaptive, and nonlinear [9-14]. A  KF-based combined feedback and feed forward controller  is 

designed here using the internal principle for the the feedback controller [18]: 

 An internal model of the reference is included in the controller. Recall that an internal model of a signal is a transfer 

matrix whose zero-input response is copy of the signal.  

 The internal model is driven by the tracking error, which is error between the reference trajectory and the estimate of 

the signal, rather than the estimate of the output, which is the signal corrupted by the disturbance and measurement 

noise  

 The closed-loop system is asymptotically stable despite model perturbations 

The feedforward controller rejects quickly the disturbance without waiting for the deviation in the output to occur. 

Thanks to its predictive nature, this controller is pro-active. It overcomes sluggish dynamics and delays without 

compromising the stability of the system.  
 

1.6 Derivative-free soft sensor  

The KF-based soft sensor is employed to estimate accurately the joint variables and their first and second derivarives 

despites the srochastic disturbance and measurement noise. The proposed soft sensor is an extension of the scheme 

proposed in [19] to the output measurements corrupted by disturbances and the measurement noise. Thanks to the 

availability of accurate estimation of the joint variables and their derivatives, nonlinear terms, which are functions of joint 

variables and their derivatives, can be computed and the computer torque approach can be used to map the nonlinear 

system to the linear one. 
 

1.7 Main Contributions:  
The main contribution is the development of the combined state-feedback and feedforward controller to track accurately 

the desired trajectory despite deterministic and unknown stochastic disturbance and measurement noise. Other specific 

contributions include the following: 
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a) An internal model-based state-feedback and feedforward controller to track the desired trajectory despite the 

deterministic disturbance is developed, and the closed loop system is derived 

b) Using predictive analytics, the true input is extracted from the corrupted input  

c) The Kalman filters for the system and the signal models of the resulting closed-loop system obtained in a) is identified 

without the use of any a-priori knowledge or use of the statistics of the disturbance and measurement noise. Using the 

above KF’s key properties, the signal and the states of the signal model are estimated.  

d) Finally, the KF-based controller to track accurately the desired trajectory despite the stochastic disturbance and 

measurement noise is obtained 

The proposed autonomous control scheme was evaluated successfully on a physical robot constructed by the 

graduate students of the Universidad Mayor de San Andres, La Paz Bolivia. 
 

2. Kinematics and Inverse Kinematics 

2.1 Homogeneous Transformation 

We will develop the kinematic model by sequentially starting from the first joint, then the second one, and so on till the 

last one where the present joint i  and the previous one ( 1i  ) are denoted by joint variables   3, ,i i i ix y z R q  and 

  3

1 1 1 1, ,i i i ix y z R    q  where 
iq  is defined with respect to the  thi  Cartesian coordinate space, and the previous joint 

variables 
1iq  , which is defined with respect to the   1

th
i   Cartesian coordinates. The joint variables are 

iq  obtained from 

subjecting 
1iq  to rotation and translation 3

1

i

i R d .   

 
1 1 1

i i

i i i   q R q d        (1) 

Where  1 3i

i SO R  is the orthonormal rotational transformation; and 3

1

i

i R d is the distance between the origins along 

the x -axis, y -axis and z -axis. At the joint i  the Denavit–Hartenberg (DH) transformation 4 4

1

i x

i R A , which is invertible, 

relates the joint variables
iq , and the previous joint variables 

1iq  by: 

      1
1 1 1 1 1

1 1;
0 1 0 1

T Ti i i i i
i ii i i i i
i i


    

 

   
   
    

R d R R d
A A   (2) 

The DH transformation relating
iq and

1iq  is: 

  
11 1

1 1;
1 1 1 1

i i i ii i

i i

 

 

       
       
       

q q q q
= A = A   (3) 

 
2.2 The inverse kinematics 

Let   3, ,d d d dx y z R p  denote the position of the end-effector in Euclidian space and is described with respect to a 

reference frame with coordinates axes denoted x , y , and z . The function  .   relating
dp  and the joint angles 

  3

1 2 3, ,d d d d R   q  controlled by the actuators of the robot are nonlinear and are given by: 

  d dp q   (4) 

 

In order to meet this requirement, the joint angle
dp has to be determined for a given desired trajectory

dp . Hence the 

inverse kinematics is posed as an optimization problem: 

  
2* min

d
d d d 

q
q p q   (5) 

The optimal solution *

dq  is employed and the desired motions of the end effector remain within the workspace.  
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3. Dynamic Model of a Robot Manipulator 
 

 The dynamic model is generally derived using the Euler–Lagrange formulation, based on the derivation of the kinetic 

and the potential energy. A robot is in general formed of links and combination prismatic and revolute joints. A robot with 
6  degrees of freedom, 3 for position and 3 for orientation, and n  joints which are described by state variables formed of 

generalized position
 1 2 .

T n

nq q q R q
, velocity

 1 2 .
T n

nq q q R q
 and the acceleration

 1 2 .
T n

nq q q R q

, and the generalized toque/force
 1 2 .

T n

n R   
. The dynamic model takes the following general form [1-5]: 

    ,+ M q q N q q    (6) 

Where
  nxnRM q

 is the inertia matrix;
       , , nR  N q q = V q q F q G q

; 
 , nRV q q

is centripetal/Coriolis force, 

  nRG q
 gravitational force, the viscous friction 

  nR F q
 and  is the generalized force/torque input that controls the 

joint torques in each actuator. It is assumed that 
 M q

is an invertible positive definite matrix. Multiplying both sides of (6) 

by
 1

M q
yields:  

     1 ,
q = M q N q q    (7) 

 
3.1 Computed-Torque Controller 

The computed torque approach is widely used in autonomous unmanned systems such as robots and drones, and is based 

on the feedback linearization principle which is an approach that maps a nonlinear model into a linear one [1], [5-6].  The 

control objective is that the end effector tracks a desired trajectory. 
  3, ,d d d dx y z R p

.   

A new variable termed control input
 1 2 .

T n

nu u u R u
  is introduced with a view to eliminating the nonlinear 

terms q in (7), i.e. . This gives:   

     1 , u = M q N q q   (8) 

The expression for the torque input   derived using (8): 

    , M q u+ N q q   (9) 

The torque input   is applied to physical robot model (8)  

Substituting u  yields Error! Reference source not found. becomes:  

    t tq = u   (10) 

3.2 Box-Jenkins model 

The Box-Jenkins model covers several imporatnt practical systems, including for example, autonomous vehicles such 

as drones and aerial vehicles. The Auto-Regressive and Moving Average (ARMA), Moving Average (MA), and Auto 

Regressive (AR) models are all special cases of the Box-Jenkins model.   
 

3.2.1 Signal model 

The discrete-time state space model  , ,p p pA B C  of  (10) is:  

                              
     

   

1pi p pi p i

i p pi

k k u k

q k k

  x A x B

= C x
                                                          (11) 

Where
( ) pn

pi t Rx
;

p pn xn

pi RA
; 

1pn x

pi RB
; 

1 pxn

pi RC
;

2pin 
 iu R ; iq R .  This model

 , ,pi pi piA B C
 is termed as 

signal model, and iq   is termed as a signal. The signal model is unstable. 

https://en.wikipedia.org/wiki/Feedback_linearization
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Stochastic disturbance: The stochastic disturbance is modelled as an output of a linear time-invariant system 

 , ,dri dri driA B C  driven by a zero-mean Gaussian white noise process  iw k . The state-space model of the stochastic 

disturbance is:  

 
     

   
dri dri dri dri i

ri dri dri

k k w k

d k k

 



x A x B

C x
  (12) 

Where drn

dri Rx ; dr drn xn

dr RA ; drn

dr RB ; drnxn

dr RC . 

 
3.2.2 Measurement Output  

Let the output measurement is        1 2 .
T n

nk y k y k y k R   y . The thi output  iy k   is expressed as a sum of the 

joint’s variable  iq k , the stochastic disturbance  rid k and deterministic disturbance,  ddid k  and the measurement noise 

 iv k  and is given by: 

        i i ri iy k q k d k v k =   (13) 

The measurement noise is the result of measurement errors in sensors. The output error  i k  is defined as a sum of 

 rid k ,  ddid k and  iv k  that corrupts  qie k , i.e.: 

 
           

     
i i i ri ddi i

rdi ri ddi

k y k q k d k d k v k

k d k d k





    

 
  (14) 

 
3.2.3 Open Loop System: Box-Jenkins Model  

The augmented state-space model 
 , ,i i iA B C

 that generates measurement output, ( )iy k R   is formed of the signal model 

Error! Reference source not found., the stochastic disturbance model Error! Reference source not found. and the 

deterministic disturbance model Error! Reference source not found.  given by:  

 
 

     

1 ( ) ( )i i i i i

i i i i

k k k

y k k v k

  



x A x B r

C x +
  (15) 

Where 2
( )

( )
( )

i

i

i

u k
k R

w k

 
  
 

r , 2 ixn

i pi dri R   C C C : ipi n

i

dri

R
 

  
 

x
x

x
; 

0

0
i ipi n xn

i

dri

R
 

  
 

A
A

A
; 2

0

0
ipi n x

i

dri

R
 

  
 

B
B

B
;  

This model, termed as the Box-Jenkins model, is unstable:  

Assumptions: (a) It is assumed that the signal iq  , stochastic disturbance rid  and the measurement noise iv  are mutually 

uncorrelated implying that the inputs iu and iw  are uncorrelated too.  And (b) The disturbance models
 , ,dri dri driA B C

 is 

asymptotically stable, 
 ,ddi ddiA C

is marginally stable, and the output error i  is bounded. 
 

4. Kalman Filter-Based Controller Design   
4.1 Internal Model Principle 

The internal model principle is formulated only for the case when the disturbance is deterministic and there is no 

measurement noise [12-13]. After identification of the KFs for the system and the signal model, The KF estimates the signal 

buried in the stochastic disturbance and measurement noise and a novel combined KF and internal model approach is 

employed.  
 

4.1.1 Control Objective 

The objective here s to design a state-feedback controller to meet the following objectives: 

 The closed-loop system is asymptotically stable 
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 The output of the closed-loop system tracks the reference  diq k  despite the deterministic disturbance
ddid  in the 

absence of a zero-mean stochastic disturbance and measurement noise, that is the expected value of the tracking error 

is asymptotically zero: 

   limit ( ) 0tri
k

E e k


  (16) 

Where  ( )triE e k
is expected value of the tracking error [13]; A combined feedback-feedforward controller is designed 

using the internal model principle. The feedback controller ensures tracking of the desired reference despite the deterministic 

disturbance ddid  and perturbation in the system, while the feedforward controller takes an anticipatory (or predictive) action 

by injecting the reference in a feedforward manner [6].  

The control input 
 iu k

 is generated by the combination of the feedback control
 ifbu k

 and the feedforward controller 

output
 iffu k

 and is given by: 

      i ifb iffu k u k u k    (17) 

The key building blocks of the combined feedback-feedforward controller are developed next. 
 

4.1.2 Internal Model  

Let 
 , ,I I IA B C

be the internal model of the reference waveform ( )idq k  and the deterministic disturbance ( )ddid k : 

      1I I I I Ik k u k  x A x B   (18) 

Where

0
;

0
I Iri n xn

I

ddi

R
 

  
 

A
A

A

1Iri n x

I

ddi

R
 

  
 

B
B

B
 ; 

I In xn

I R C I  ;
 Iu k

  is input that drives the internal model: 

 , ,I I IA B C
generates the class of all reference and disturbance waveforms 

 
4.1.3 Feedback Controller 

The state-feedback strategy is obtained using the separation principle governing the estimation of the states, and the 

implementation of state-feedback strategy. First, the state-feedback strategy is derived using the linear quadratic optimization 

approach assuming that the states of the signal model are all available. Then the states of the signal model are substituted by 

those estimated by the associated KF [14]. The state feedback law is:  

 ( ) ( ) ( )fbi p p I Iu k k k  F x F x   (19) 

4.1.4 Feed-Forward Controller 
Even in the presence of model perturbations, the feedforward controller can mitigate the effect of the output error on the 

performance of the combined controller. The feedforward controller rejects quickly the output error without waiting for the 

deviation in the output to occur, hence its anticipatory action. The output error and the reference input are both injected into 

the feedforward path to reject the effects of the output error on the output, thereby ensuring that the output is generated by 

the reference input alone, i.e. not by the output error. The feedforward controller is given by: 

   ( ) 1id di pH q z G z    (20) 

Where idH is the inverse of the signal model 
 , ,p p p p pFA B B C

at the frequencies of the reference signal ( )diq z  

 
4.1.5 Closed-Loop System   

Substituting the feedback 
 ifbu k

  and feedforward control strategies
( )fbiu k

given in (19), and
( )ffiu k

 (20),  (17) becomes:  

    ( ) ( )i p p I I ri diu k k k H q k   F x F x   (21) 

 

Substituting 
 iu k

 in the open-loop model (15) yields: 
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1 0
( )

1

p p p p Ip p p

di rdi

I p II I I I

cl

i p p i

k k
q k k

k k

y k k





          
                  

 

A B F B Fx x B

B C Ax x B B

C x

  (22) 

Fig. 1 shows the block diagram representation of the closed-loop system. 

state feedback

Kalman 

filter

state estimate

input signal

signal estimate

output

 internal model

feedforward

i

iq
iu

iy

ˆ
p pF x

ˆ
iq

pG

pF

 ,I IA B
itre

idH

I IF x

ˆ
pxˆ

iq



ffiu
output error






iu

e
dq

 
Fig. 1: Block diagram representation of the closed-loop system 

 

Thanks to the availability of the estimates of the KF of the signal model states
ˆ ( )p kx

, the signal ( )iq k  as well as the 

output error ( )i k , a novel combined feedback-feedforward controller is implemented.  

The proposed controller scheme, including its tracking control performance, was evaluated on a physical two-link robot 

manipulator whose block diagram is shown in Fig. 1. A two-link robot manipulator is a basic classical and simple example 

of a robot for the evaluation of the modeling, identification and control tasks. It acts like human arms.  
 

5. Kalman Filter-Based Combined Controller: An Illustrative Example.  

5.1 System identification: Three important Lemmas  

The KF residual model forms the backbone of the proposed system identification scheme that is at the core of the 

proposed combined controller. The KF plays a vital role in the identification tasks, including the estimation of the joint 

variable iq   from the corrupted output iy , and in  the implementation of the controller to ensure an accurate tracking of the 

desired trajectory. The system identification hinges on 3 important new Lemmas, whose details and proofs can be found in 

[12-16]. Lemma 1  sets out the conditions for the identification of the signal and signal model. Lemma 2 deals with the 

estimation of the signal model
 ˆ

pG z
, signal

 ˆ
iq z

Error! Reference source not found., and output error  (14), and finally 

Lemma provides the whitening property by showing that the KF whitens the output error (14). 
 

5.2 Illustrative example 

The proposed combined state-feedback and feedforward controller was evaluated on the on the physical robot 

manipulator. The control objective is for the end effector   2,d d dx y R p  , where     1 2 cosd dx k a a k  ,

    2 sind dy k a k  so that the end-effector traces a circular trajectory in the  ,x y -plane.  Using the inverse kinematic 

equation,(5), input trajectory namely the roll
d , and pitch

d  and thrust
thdf  estimated by the inverse kinematics equation so 

that it tracks the desired translation trajectory ( , , )d d dx y z . The internal model  , ,I I IA B C is: 

    
2cos 1 1

1 ( )
1 0 0

I I trk k e k
    

     
   

x x   (23) 

The stochastic disturbance Error! Reference source not found. 

 
     

     

0.3960 -0.8025 1

1 0 0

1.4160 0

dri dri i

ri dri

k k w k

d k k

   
    
   



x x

x

  (24) 
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Fig. 2 shows the signal  cl

is k
and the output  cl

iy k
 of the closed-loop system. Subfigures A and B show the corrupted 

outputs while C and D shows the signal outputs and the true signals. 

 
Fig. 2 Outputs using proposed internal model-based controller 

 

6.   Kalman Filter-Based Estimation of the Signal and its Derivatives 

The dynamic model of the robot model is a function of the joint variable, namely the signal q , its first derivative q  and 

its second derivative q .  The joint variables ad their derivatives need to be estimated from the output corrupted by 

disturbances and measurement noise. A new KF-based derivative-free soft sensor proposed in [17] for accurate estimation 

replacing the maintenance-prone and noise-corrupted hardware sensors is generalized here to a wider class of robotic systems 

when the output is corrupted by stochastic and deterministic signals and measurement noise. The model of the soft sensor 

and the associated KF are identified directly without any a-prior knowledge or use of the covariance of the disturbance and 

measurement noise  The KF estimates using the key properties of the signals, and their derivatives 1̂ , 1

ˆ


, 1

ˆ


, 2̂ , 2

ˆ


and 2

ˆ


 from 

the output of the joint angles buried in the stochastic disturbance and measurement noise are accurate, thanks in great part to 

the use of the data-enriching emulators.  
 

7.   Conclusions 
In this paper, a new internal model for tracking the desired trajectory, and the KF-, based combined feedforward-

feedback controller was proposed, and developed for a wider class of systems governed by the general Box-Jenkins model. 

The KF estimates accurately the pertinent signals and their derivatives from the output corrupted by deterministic and 

stochastic disturbance and measurement noise. The tracking error is selected as the error between the reference trajectory 

and the KF estimate of the signal, rather than the noisy output. Further, the state-feedback law was implemented using the 

accurate and reliable noise-free estimates of the states of the identified KF. As a result, the trajectory of the end-effect was 

accurate and did not exhibit any random deviations about the reference trajectory. As a by-product of this study, a soft sensor 

using derivative-free Kalman filtering was developed and used to estimate the signal and their derivatives, replacing thereby 

the maintenance and noise-prone hardware sensor.  The proposed controller was successfully evaluated both by simulation 

and on a physical robot and shown to be significantly superior to the conventional controller, and its tracking error was also 

shown to be negligibly small. This gives ample encouragement to expand the proposed design to several other important 

application areas, including industrial and medical ones. 
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