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Abstract - Waste heat recovery systems are designed to capture thermal energy from mechanical systems that would normally be 

transferred to their surroundings. Due to the stochastic nature of waste heat sources, control systems implemented to maintain process 

setpoints often have issues working with the apparent nonlinear, time-varying system. This work proposes using a Trans-critical Organic 

Rankine Cycle (TORC), where an organic working fluid is evaporated above its critical point, as a waste heat recovery system. The 

TORC system in this work is modelled as a 13-dimensional dynamic model with additive gaussian noise. An Extended Kalman Filter 

(EKF) is implemented to construct a full state estimate given a subset of noisy measurements which can be obtained with conventional 

sensors. Two different control systems are then implemented on this system. The first, a Cerebellar Model Articulation Control (CMAC), 

involves a proportional control output and a Neural Network learned output which satisfy the Lyapunov stability criterion. The second, 

an Iterative Linear Quadratic Regulator (ILQR), uses linearized points along a trajectory with a quadratic cost-function minimizing 

algorithm to choose control outputs. It was found that both the CMAC and ILQR can reliably track process setpoints and exhibit 

significantly less drift than linear control methods such as Proportional-Integral-Derivative Control. 
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1. Introduction 
Rankine Cycles are a common process for converting thermal energy from a heat source into mechanical energy which 

can then be further converted into electrical energy. Typically, a design goal for a Rankine Cycle is to maximize the thermal 

efficiency of the cycle, which is the ratio of power output from the cycle versus power input to the cycle, based around the 

expected temperature of the heat source. In this work a Rankine Cycle for capturing energy from low-quality heat sources, 

such as geothermal or industrial waste heat, is modelled and used in a dynamic simulation. This system, called a Transcritical 

Organic Rankine Cycle (TORC) originally modelled by Samiuddin et al. [1] shown in Fig. 1, utilizes three design components 

to improve the thermal efficiency of the cycle. 

 

Fig. 1: Flow Diagram of the TORC System 

The first design point is operating the evaporator in the supercritical-fluid phase of the working fluid, which allows for 

a larger enthalpy drop across the expander and thus a larger power output [2]. The second is using an organic working fluid 

instead of the more commonly used H2O as these typically have lower critical points that can be achieved with low-quality 
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heat sources and cheaper components. The last design point introduced in the model is the inclusion of a recuperator to 

transfer heat remaining in the working fluid back into itself before the evaporator. 

The resulting dynamic model of the TORC system is a Nonlinear Time-Varying (NTV) system of equations 

represented in a 13-dimensional state. Since most common control systems in industry such as Proportional-Integral (PI) 

control are derived under the assumption that the system is Linear Time Invariant (LTI) it is likely they will not be able 

to reliably track process setpoints which are imposed on the system for performance and safety reasons. There have been 

proposed controls for similar Rankine Cycle systems in literature [1][2][3][4][5] which have included both Multiple-

Input-Multiple-Output (MIMO) and Single-Input-Single-Output (SISO).  

This work proposes using an Extended Kalman Filter (EKF) as a nonlinear state estimator to construct an optimal 

full state estimate out of a subset of noisy direct measurements of the state. Two control schemes are then implemented 

using the state estimate and compared to a typical PI control scheme. The first control method, an Iterative Linear 

Quadratic Regulator [6], is a locally optimal MIMO control method which iteratively converges a control policy using 

linearized points along a trajectory in order to minimize a quadratic cost function. The second control method, the 

Cerebellar Model Articulation Controller [7], uses a linear SISO control and a Neural Network learned output to 

determine control values. 

 

2. Dynamic Modelling of the System 
Modelling of the TORC is based on the work done by Samiuddin et al. [1] and involves three main dynamic 

components: the evaporator, the recuperator, and the condenser. The pump, valve, and expander components are 

modelled as static components. In each component the relevant fluid properties are determined by the pressure and 

enthalpy of the fluid. These are calculated in the simulation using the CoolProp library [8]. 

The complete TORC model, whose equations can be found in [1], has a 13-dimensional state 

 

𝑥 = [𝑃𝑒𝑣 𝑇𝑜𝑢𝑡,𝑒𝑣 𝑇𝑤,𝑒𝑣 𝑇𝑜𝑢𝑡,ℎ−𝑟𝑒𝑐 𝑇𝑜𝑢𝑡,𝑐−𝑟𝑒𝑐 𝑇𝑤,𝑟𝑒𝑐 𝐿1 𝐿2 𝑃𝑐 𝑇𝑜𝑢𝑡,𝑐 𝑇𝑤1 𝑇𝑤2 𝑇𝑤3]𝑇 (1) 

three control variables are included in the system, given by 

 

𝑢 = [𝑋𝑝𝑢𝑚𝑝 𝜇𝑣𝑎𝑙𝑣𝑒 𝑁𝑓𝑎𝑛]𝑇 (2) 

and state transitions are computed in the form 

 

�̇� = 𝛷(𝑥, 𝑢, 𝜙)−1𝛤(𝑥, 𝑢, 𝜙) + 𝑊~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛴𝑠𝑦𝑠) (3) 

Where 𝛷 and 𝛤 are nonlinear functions derived from the dynamic components mass and energy balance equations. 

𝑊 is a random variable representing a zero mean gaussian noise added to the system with covariance 𝛴𝑠𝑦𝑠 as a diagonal 

matrix arbitrarily chosen as 10% of the initial state.  

Six measurements of state elements are made directly from the working fluid pressure and outlet temperature 

elements,  

𝑦 = 𝐶𝑥 + 𝑉~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛴𝑚𝑒𝑎𝑠) (4) 

Where 𝑉 is a random variable representing zero mean gaussian noise added to the system. 𝛴𝑚𝑒𝑎𝑠 is a diagonal 

matrix chosen with common standard deviations for temperature and pressure measurements. 

For the purpose of demonstrating controls, 3 state references to converge the system to were arbitrarily chosen as 

𝑃𝑒𝑣 = 8 𝑀𝑃𝑎 (5) 

𝑇𝑜𝑢𝑡,𝑒𝑣 = 630 𝐾 (6) 

𝑇𝑤2 = 310 𝐾 (7) 

       

3. State Estimation 
Optimal state estimation of the TORC uses an Extended Kalman Filter (EKF) which solves the constrained 

optimization problem 
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𝐽 = 𝐸 [∫ ‖𝑥(𝜏) − �̂�(𝜏)‖
t=T

𝑡=𝑡1

𝑑𝜏] (8) 

�̇� = 𝑔(𝑥, 𝑢) + 𝑊~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛴𝑠𝑦𝑠) (9) 

𝑦 = ℎ(𝑥) + 𝑉~𝑁𝑜𝑟𝑚𝑎𝑙(0, Σ𝑚𝑒𝑎𝑠) (10) 

Where 𝑥(𝑡) and �̂�(𝑡) are the state and estimated state, respectively. 𝑔(𝑥, 𝑢) is the state transition function with additive 

noise according to a zero mean gaussian 𝑊 with covariance 𝛴𝑠𝑦𝑠. ℎ(𝑥) is the state measurement function which is also 

subject to additive noise by zero mean gaussian 𝑉 with covariance 𝛴𝑚𝑒𝑎𝑠. In discrete form, the solution results in the 

following algorithm: 

 

Given 𝑦1, … , 𝑦𝑇  

Initialize �̂�0, Σ̂0 

For t = 1, …, T: 

  

�̅�𝑡 = 𝑔(�̂�𝑡−1, 𝑢𝑡) (11) 

𝐺𝑡 =
𝑑

𝑑𝑥
𝑔(�̂�𝑡−1, 𝑢𝑡) (12) 

Σ̅𝑡 = 𝐺𝑡Σ̂𝑡−1𝐺𝑡
𝑇 + Σ𝑠𝑦𝑠 (13) 

𝐻𝑡 =
𝑑

𝑑𝑥
𝑦(𝑥) (14) 

𝐾𝑡 = Σ̅𝑡𝐻𝑡
𝑇(𝐻𝑡Σ̅𝑡𝐻𝑡

𝑇 + Σ𝑚𝑒𝑎𝑠)−1 (15) 

�̂�𝑡 = �̅�𝑡 + 𝐾𝑡(𝑦𝑡 − ℎ(�̅�𝑡)) (16) 

Σ̂𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)Σ̅𝑡 (17) 

Where �̂� and Σ̂ are the estimated mean and covariance of the system, respectively, and 𝑦𝑡 are the actual system 

measurements at a given time. Eqs. (12) and (14) represent Jacobians of the state transition function 𝑔(𝑥, 𝑢) and the state 

measurement function ℎ(𝑥). For the TORC, the state transition Jacobian is calculated numerically using two-point forward-

difference differentiation while the measurement Jacobian is static due to the measurements of the system being direct. 

 
4. Iterative Linear Quadratic Regulator 

The ILQR [6] considers a cost function and system, respectively, of the form 

𝐽 =
1

2
(𝑥𝑇 − 𝑟𝑇)𝑇𝑄𝑓(𝑥𝑇 − 𝑟𝑇) +

1

2
∑((xt − 𝑟𝑡)𝑇𝑄(xt − 𝑟𝑡) + 𝑢𝑡

𝑇𝑅𝑢𝑡)

𝑇−1

𝑡=0

 (18) 

𝑥𝑡+1 = 𝑔(𝑥𝑡, 𝑢𝑡) (19) 

 
Where 𝑄𝑓 and 𝑄 are positive-semi-definite weighting matrices for the final state and the state over time, respectively. 

𝑅 is a positive-definite weighting matrix for the control effort. 𝑟𝑡 is the state reference at any given time. By linearizing the 

system around an arbitrary nominal state 𝑥𝑡 and control 𝑢𝑡 a modified system can be considered 

 

𝛿𝑥𝑡+1 = 𝐴𝑡𝛿𝑥𝑡 + 𝐵𝑡𝛿𝑢𝑡 (20) 

In this linearization 𝛿𝑥𝑡 and 𝛿𝑢𝑡 are deviations from the nominal values. 𝐴𝑡 and 𝐵𝑡 are Jacobians of Eq. (19) with respect 

to 𝑥𝑡, 𝑢𝑡, calculated numerically. Solving the Linear Quadratic Regulator optimal control problem with this modified system 

results in the following algorithm: 
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Initialize 𝑥𝑡 at its nominal points and 𝛿𝑥𝑡 as zero for all t = 0, …, T 

Initialize 𝑢𝑡 at its nominal points and 𝛿𝑢𝑡 as zero for all t = 0, …, T-1  

While not converged: 

For t = 0, …, T-1: 

  

𝑥𝑡+1 = 𝑔(𝑥𝑡, 𝑢𝑡) (21) 

𝐴𝑡 =
𝑑

𝑑𝑥
𝑔(𝑥𝑡, 𝑢𝑡) (22) 

𝐵𝑡 =
𝑑

𝑑𝑢
𝑔(𝑥𝑡, 𝑢𝑡) (23) 

Initialize: 

𝑆𝑇 = 𝑄𝑓 (24) 

𝑣𝑇 = 𝑄𝑓(𝑥𝑇 − 𝑟𝑇) (25) 

 

For t = T-1, …, 0: 

𝜃𝑡 = (𝐵𝑡
𝑇𝑆𝑡+1𝐵𝑡 + 𝑅)−1 (26) 

𝐾 = 𝜃𝑡𝐵𝑡
𝑇𝑆𝑡+1𝐴𝑡 (27) 

𝐾𝑣 = 𝜃𝑡𝐵𝑡
𝑇 (28) 

𝐾𝑢 = 𝜃𝑡𝑅 (29) 

𝛿𝑢𝑡 = −𝐾𝛿𝑥𝑡 − 𝐾𝑣𝑣𝑡+1 − 𝐾𝑢𝑢𝑡 (30) 

𝑆𝑡 = 𝐴𝑡
𝑇𝑆𝑡+1(𝐴𝑡 − 𝐵𝑡𝐾) + 𝑄 (31) 

𝑣𝑡 = (𝐴𝑡 − 𝐵𝑡𝐾)𝑇𝑣𝑡+1 − 𝐾𝑇𝑅𝑢𝑡 + 𝑄(𝑥𝑡 − 𝑟𝑡) (32) 

𝑢𝑡 = 𝑢𝑡 + 𝛿𝑢𝑡  

For t = 0, …, T-1: 

 

𝛿𝑥𝑡+1 = 𝐴𝑡𝛿𝑥𝑡 + 𝐵𝑡𝛿𝑢𝑡 (33) 

For the TORC, 𝑄 is chosen as a modified identity matrix with the diagonal values corresponding to states given a 

reference changed to  

 

𝑄𝑖,𝑖 =
(𝑟𝑖)

−2

∑ (𝑟𝑗)
−2𝑛

𝑗=0

 (34) 

 

Where 𝑛 is the dimension of the state and 𝑟𝑖 is the reference for a given state (or 0 if there is no reference). This is 

done to normalize the weightings of the states which are converging to a reference. The control weighting 𝑅 is chosen 

as a normalized diagonal matrix of the maximum control limits. The TORC ILQR control implementation will use a 3-

step-ahead prediction to plan control inputs. This is done to allow the control to compensate for changes resulting from 

the time-varying external heat source. 

 

5. Cerebellar Model Articulation Controller 
The CMAC follows the formulation from [1], where a Relative Gain Array analysis was performed and found the 

best SISO control pairings to be similar. The CMAC implementation in this work differs by having the input to the 

CMAC structure be a full state estimate from the EKF rather than the subset of noisy measurements. The structure of 

the CMAC is similar having the control output is determined by 
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𝑢𝑖 = 𝑢𝑛𝑜𝑚,𝑖 + 𝐾𝑝,𝑖𝑒𝑖 + 𝛤𝑖(𝑞)�̂�𝑖 (35) 

Where 𝑢𝑛𝑜𝑚 is a nominal control point chosen arbitrarily to introduce a bias, 𝐾𝑝𝑒 is the proportional control output from 

from a normal linear controller, and 𝛤(𝑞)�̂� is the output of the neural network, with 𝑞 being the chosen inputs of any 

dimension. The neural network structure quantizes the input 𝑞 to determine active cells on each layer, as shown in  

Fig. 2. 

 

Fig. 2: CMAC Structure for Q=3, M=3, N=2 

The CMAC is comprised of 𝑀 layers, each with 𝑁 inputs from the dimensionality of 𝑞, and 𝑄 quantizations. This results 

in 𝑀𝑄𝑁 possible cells and corresponding weights. For a given input 𝑞 only one cell per layer will be active by the definition 

of the activation function 

 

γ(𝑞) = {
𝑓(𝑞), 𝑖𝑓 𝑞 𝑖𝑠 𝑖𝑛 𝑐𝑒𝑙𝑙 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (36) 

The vector 𝛤(𝑞) is then given by the activation of each cell per layer by their assigned function 𝑓(𝑞). For the TORC 

this is chosen as a spline function. Training of the neural network is done by a modified gradient descent algorithm [9] called 

e-modification, shown in Eq. (37) 

 

�̇̂� = 𝛽(𝛤𝑇(𝑞)𝑒 − 𝜈|𝑒|�̂�) (37) 

Where 𝛽 and 𝜈 are positive constants. 

 

6. Simulation Results 
For testing, the TORC simulation was subject to an external heat source modelled as a time-varying temperature and 

mass flow rate shown in Fig. 3. 

 

Fig. 3: External Heat Source Conditions 

Sinusoids were chosen arbitrarily to produce a recognizable pattern in the control efforts and state as well as provide 

enough variation. As a comparison, the results of ILQR and CMAC control are plotted with similar results from a PI 

controller which was derived for the TORC system by Relay Autotuning [10]. 
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6.1. State Estimation Results 
For static control values and fluctuating external heat source conditions, the EKF was able to measure the state of 

TORC more accurately than the noisy direct measurements. The average error over the runtime was reduced by a factor 

approximately 47%, shown in Fig. 4. 

 

 

Fig. 4: Noisy Measurement vs. EKF Estimate Average Error 

For states where no direct measurement is available the EKF performance was significantly worse, as shown 

in Fig. 5. The largest errors were found to be in the estimates of the condenser region lengths, shown in Fig. 6, 

indicating that their observability may be dependent on the state. 

 

Fig. 5: EKF Average Error for Unmeasured State Elements 

 

Fig. 6: EKF Estimates for Condenser Region Lengths 

6.2. Controller Reference Tracking Results 
Shown below in Fig. 7, Fig. 8, and Fig. 9 are the results of the reference tracking for the ILQR, CMAC, and PI 

controllers. While the ILQR controller typically converges the fastest, its performance is similar to the CMAC once the 

neural network has had a chance to converge. In comparison, the PI controller takes the longest to converge and is most 

susceptible to drastic changes due to the external heat source. 
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Fig. 7: Pev Reference Tracking Performance 

 

Fig. 8: Tout, ev Reference Tracking Performance 

 

Fig. 9: Tw2 Reference Tracking Performance 

 

Table 1: Comparison of Control Methods Total Average Error over a Test Runtime 

 PI ILQR CMAC 

Total Average Error 
2.698 % 0.654 % 0.899 % 

 
7. Conclusion 

In this work two control schemes were implemented on a TORC which show significant improvement in setpoint 

tracking over conventional PI controllers. The proposed EKF state estimator is shown to be effective in constructing a full 

state estimate given a subset of noisy measurements. The two control schemes, a MIMO ILQR optimal controller and a SISO 

CMAC neural network controller, are shown to have similar performance and are able to converge the NTV system to the 

reference much faster than a PI control scheme. 
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