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Abstract - This paper investigates a problem of localizing a gas leak source based on the Hamiltonian approach. In general, it is 

difficult to accurately localize a gas leak source due to the fact that a sensor can only measure local information. To detect the location 

of a gas leak source using an autonomous mobile robot, an optimization problem is formulated, and the optimal control input is derived 

based on the Hamiltonian. This optimal control is calculated in a receding-horizon manner after each local measurement from the 

onboard sensor. The proposed method guarantees the optimality of the solution, and a simulation result is provided to validate the 

proposed method. 
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1. Introduction 
The Bhopal gas tragedy that occurred on December 3, 1984, immediately claimed the lives of at least 3,800 people 

and exposed more than 500,000 people to methyl isocyanate gas that was leaked by a chemical plant in Bhopal, India [1]. 

This tragedy is one of the worst chemical disasters in history and its effects on the exposed people in the months following 

the tragedy were unpleasant to say the least: ocular, respiratory, and neurobehavioral health effects were observed in 

several epidemiological studies [1]. On March 23, 2005, an explosion caused by vapours being released from an 

overflowed blowdown drum and ignited by a heat source shook the BP Texas City refinery, killing 15 people and injuring 

180 [2]. On October 23, 2015, a major natural gas leak of a well connected to the Aliso Canyon underground storage 

facility in California resulted in a large amount of natural gas being released into the atmosphere [3]. Processed natural gas 

is composed primarily of methane and ethane, which are a danger to the environment and their negative effects on air 

quality, climate, and human health could be detrimental [3]. These accidents [1] – [3] and countless others are testaments 

of the dangers of gas leaks throughout the decades; the impacts of gas leaks can be minimized if the source is localized in a 

timely manner and contained [4]. Considering not only these accidents but also the safety of human, there exists a need for 

an autonomous mobile robot equipped with some sensors that can easily, safely, and fast localize the gas leak source when 

compared to other means (e.g., stationary sensors, humans, etc.). 

There have been several research studies [4] – [7] that aim at developing complex algorithms for mobile agents to 

localize the gas leak source. A nonparametric Bayesian-based motion planning algorithm for autonomous plume source 

term estimation and source seeking is presented [4]. In a Bayesian-based source term estimation process, robots coordinate 

and use a Gaussian-plume probability model, then concurrently search for, and navigate towards the source using model-

based, bioinspired source seeking approaches like biased-random-walk and surge-casting. Rather than relying on direct or 

filtered sensor measurements, the algorithm developed makes use of coordination between several robots and the estimated 

plume model for faster and more reliable source seeking than other traditional motion planners. According to the 

simulations and experimental results presented, the proposed algorithms are faster and more robust than traditional 

methods. Authors in [5] developed a potential-field algorithm that integrates prior activities to provide collision-free 

monitoring in locations containing obstacles, such as urban and suburban environments. The experimental results, which 

used a drone fitted with an Enif system, demonstrate that chemical concentrations can be effectively mapped. A 

decentralized multi-agent information theoretic (DeMAIT) control algorithm is presented that leverages Bayesian and 

information theoretic motion planning for effectively and accurately estimating and localizing a gas leak source [6]. 

Experiments were conducted that involved a small autonomous fleet of robots equipped with chemical gas concentration 
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sensors to search an area known to have a gas source leak and localize the source. Simulations confirmed the premise that 

the DeMAIT algorithm generated a higher average location success rate than the other two methods that were used for 

comparison in the study, specifically the raster-scanning [5] and clustering method [4]. A hybrid gas traceability algorithm 

consisting of modified versions of the Trilateration Method and Simplex Algorithm, and a combination method is designed 

[7]. Specifically, the algorithm takes advantage of the quick iteration capability from the Trilateration Method, the Simplex 

Algorithm’s conservative optimization technique, and the combination method considerably enhances the success rate and 

search efficiency of gas traceability. According to the simulation results presented, the algorithm’s traceability is 100 

percent in most of the trials conducted within 100 to 500 minutes of the simulation.  

Although these studies show promising results and most have been verified by experimental results, these methods 

lack the optimality in their solutions. In this research, we thus plan to develop an optimal solution of the gas leak source 

localization problem. For this purpose, an optimization problem is formulated, and the Hamiltonian is constructed to derive 

an optimal control for a mobile agent. To verify the soundness of the result, a simulation result is provided. 

 

2. Problem Description 
In this paper, we propose a method of localizing a gas leak source by means of a mobile robot, where a sensor can 

only detect a local gas plume. An illustrative example for this problem is visualized in Fig. 1.  

 

 

 
Fig. 1: Shows the UAV traveling towards the gas plume to localize the gas source leak. 

 

For simplicity, we consider a mobile robot platform, which has a simple first-order, discrete-time dynamics given by 

                , where      is the current position of the robot,      is a control input, and   is a discrete-time 

index.  

The main problem to be tackled in this paper can be mathematically formulated as follows:     

    ∑                   
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(1) 

where                  is expected obtainable information (or gas plume concentration) at time  ,     is a fixed length of 

time horizon (or window), and      is a maximum control input. Since the objective function in (1) has a time frame from 

the current time    to a future time       , the solution of this optimization problem will guide a robot moving to an area 
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where a high gas plume is expected. Thus, our major goal is to obtain an optimal control input    for the optimization 

problem (1). To this end, a Hamiltonian is constructed, and the optimal control input will be derived in the next section. 

 

3. Main Results 
For the obtainable information function, it is defined by 

 

            ∫              
 

 (2) 

 

where          is a measured intensity of the gas plume, which depends on the current position of the robot    

and control input   . The obtainable information function is then calculated by an area integral with a pre-

defined domain   according to a given sensor model. 

 

 

Then, we formulate the Hamiltonian using (2) as follows. 

                      
    

 

 
                     

where the superscript    denotes a transpose operator. 
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Taking the partial derivatives, 

  

     
         

 

     
∫              
 

 (4a) 

  

     
         (4b) 

  

     
  

 

     
∫              
 

         (4c) 

 

Finally, solving for the optimal control from (4c), which gives the control input that maximizes the information gain 
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 (5) 

 
The optimal control (5) will drive the robot to head toward a location where the highest intensity of gas plume is 

expected. This optimal control    will be calculated in a receding-horizon fashion [8-13] with a given horizon length   , 

meaning in each time step, the robot measures the gas plume using an onboard sensor, constructing a function          , 
followed by    as shown in (5). 

 

4. Simulation 
In this section, we provide a simulation result for the verification of the proposed method. In Fig. 2, the concentration 

of the gas increases linearly and diagonally from the bottom left corner to the top right corner. The mobile robot is 

equipped with a sensor to detect the gas concentration, where a square represents the sensing measurement range. The 

sensor model determines how much new information can be gained if the robot were to move in a particular direction. Our 

algorithm prioritizes moving in directions of higher information gain. In this case, it prioritizes moving to areas with a 

higher gas concentration. The robot with three different initial locations shown in Fig. 2A illustrates how the robot will 

move towards the gas leak source on the top right of the map. Fig. 2B illustrates four (labeled A-D) of the many possible 

choices the robot can travel to maximize the concentration. Based on the ground truth map we know that if the robot moves 

in the direction of choice D, then the robot will get closer to the gas leak source.  
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Fig. 2: (A) Illustration shows the path that the unmanned vehicle takes to locate the gas leak source. The concentration of gas varies 

linearly and diagonally from the lower left corner to the top right corner of the map. (B) Illustration shows where the robot was initially 

placed in the environment, indicated by the red box. It shows four possible locations that the robot could travel to, locations denoted by 

A, B, C, and D, but only D will result in getting closest to the source: therefore, maximizing the information gain.  

 
The weight function for Fig. 2 is the sum of the robot coordinates and is given by 

 

                
where    and   , respectively,  denote a direction along   and   axis in a Catesian coordinate. 

This means that the highest information will increase as the robot travels diagonally from left to right. Notice that in 

real environments, the robot does not have information about          which, however, can be induced at each time step 

from the local measurement by the onboard sensor. The optimal control input is then obtained by applying (5). Letting 

(  
       

      indicate the position of the robot at the next time step with a given initial position (  
       

     . From 

the control dynamics constraint, we know that   
       

          , and a similar equation can be written for   
    . 

Then, with a unit horizon length        we have 
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Substituting control dynamics constraints into (6c) yields, 
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Taking the partial derivative with respect to      yields, 
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Finally, the normalized optimal control input is obtained by 
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The result indicates that if the robot is given the same control input for its   
  and   

  coordinate, then it will optimally 

locate the gas concentration leak.  

The algorithm was simulated in MATLAB with an initial robot position of [20, 5] and the results are presented in Fig. 

3. Fig. 3A shows the ground truth map of the leak concentration, Fig. 3B shows the egocentric map, and Fig. 3C shows the 

poses of the robot taken to locate the gas leak source on the top right corner.  From Fig. 3C we can observe that the robot 

travels in a diagonal direction from left to right until it reaches the top boundary, and then it moves strictly to the right until 

it reaches the coordinates for the gas leak source.  
 

 
Fig. 3: The ground truth map (A) shows that the gas leak concentration varies diagonally, with high concentration in the top right 

corner where the gas leak source is located and low concentration in the bottom left corner. The egocentric map (B) shows the cells that 

were explored by the robot. The poses of the robot (C) are shown to indicate the path that the robot took to locate the source.  
 

4. Conclusion 
This paper investigated an optimal control strategy of an autonomous mobile robot to localize a gas leak source. Based 

on the Hamiltonian formulation, the optimal solution is derived in a receding-horizon fashion, guaranteeing the optimality 

of the solution. This approach can be beneficial especially compared to greedy-based approaches, which are commonly 

used methods in gas leak detection problems.  

As future research, we plan to investigate an integrated approach to take care of more complicated scenarios such as 

environments filled with obstacles as well as the gas concentrations being more sophisticated, which will lead to more 

usefulness and practicality of the proposed method. 
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