
Proceedings of the 9th International Conference of Control Systems, and Robotics (CDSR'22)

Niagara Falls, Canada – June 02-04, 2022

Paper No. 123

DOI: 10.11159/cdsr22.123

123-1

Continuous Appropriately-Oriented Collision Detection Algorithm for
Physics-Based Simulations

Alexander Schock, Robert Langlois
1
,

1
Carleton University

1125 Colonel by Drive, Ottawa, Canada

AlexRSchock@cmail.carleton.ca; Robert.Langlois@carleton.ca

Abstract - The presented algorithm enables the continuous detection of the appropriate collision surface for a point penetrating into a

convex bounding area in two-dimensional space. The appropriate collision surface is resolved through the transient evaluation of the

separating axis theorem which tracks the last bounding area surface to lose separation from the point, thus collision. This ensures

faithful application of collision restitution forces. The algorithm is presented in two forms: looping conditional statements, and binary

matrix operations. The initial implementation of the algorithm is also presented and discussed.

Keywords: Continuous collision detection, dynamic collision detection, separating axis theorem, physics-based simulations.

1. Introduction
Collision detection algorithms which detect the interference between two or more objects in both static and dynamic

environments are integral components of physics-based simulations. Further, these algorithms subsequently enable the

application of collision responses. As simulations are increasingly becoming the main choice for modelling and design

evaluation, emphasis is placed on the real-world fidelity that these simulations can provide. The pursuit of real-world

fidelity consequently requires increasingly-accurate models, and collision detection is no exception.

Broadly speaking, collision detection algorithms are separated into two phases of detection: ‘broad-phase' detection to

detect potential collision pairs at the object level, and ‘narrow-phase' detection which directly evaluates collision at the

feature level [1]. Narrow-phase collision detection can be further classified into two types: spatial partitioning

representations (SPR) and bounding volume hierarchies (BVH) [2]. For physics-based forward dynamics simulations,

BVHs are advantageous as the bounding volumes can be used to represent the bodies in the simulated environment.

As shown in Figure 1, bounding volume hierarchies have been the subject of typical progressive generalization. Early

research proposed coordinate system axis-aligned bounding boxes (AABBs). Axis-alignment was relaxed with oriented

bounding boxes (OBBs) [3]. Further refinement followed in the form of discrete orientation polytopes (k-DOPs) [4], or

fixed-direction hulls (FDH) [5] through the intersection of intervals associated with a set of object-fixed axes. The furthest

generalization of the bounding volume is the convex hull. With convex hulls, the interval characteristic is relaxed such that

a tight bounding volume is achieved through a set of arbitrary surfaces forming a convex hull.

Figure 1: Types of bounding volume [4].

Figure 2: Separating axis for two disjoint polygons.

123-2

At the narrow phase, the collision pair must be evaluated for overlap. Typically, this can be done using the separating

axis theorem (SAT) [3], [6]. The SAT is effectively the rejection of overlap (collision) if a separating axis (plane) between

the collision pair can be obtained as shown in Error! Reference source not found..

Where overlap is detected, collision models then apply the necessary forces to simulate a collision response. Typically,

the minimum translation vector (MTV) strategy is used to direct the collision restitution forces in the direction of the

smallest distance to remove collision. This is taken as the shortest distance between a reference point on one colliding body

relative to the surface of the other body. However, the MTV is indiscriminate in the direction of collision force application.

The direction can change unexpectedly near corners or thin objects. This can significantly hinder the fidelity of the

simulation.

In this paper, we present an alternate scheme to the MTV for directing the restitutive collision forces for physics-based

simulations. We present a narrow-phase collision detection algorithm which continuously evaluates separation, thereby

enabling the appropriate orientation of collision forces. Consequently, real-world fidelity of collision is better achieved.

To establish context and present the development of the algorithm, the rest of this paper is organized into the

following sections. Section 2 establishes the simulation environment. Section 3 develops the algorithm in two-dimensional

space. Then, the initial application of the algorithm is discussed in Section 4. Section 5 offers concluding remarks.

2. Collision Environment
In this paper, the simulation environment is a planar two-dimensional space having a Cartesian coordinate system. In

the collision pair, we prescribe ‘target’ bodies represented by convex bounding volumes, and ‘initiator’ bodies represented

by points in space.

Collision is unilaterally evaluated and applied on the initiators. This collision scheme stems from typical simulations

which produce the response of a studied object as it interacts with its environment. The target bodies form the simulation

environment and normally have motions known for the duration of the simulation. The initiators are the bodies for which

motions are propagated by the system dynamics, including their interaction with the target bodies.

The presented algorithm evaluates the collision of initiators onto a single target to produce a response which affects

the initiators. Subsequently, the algorithm can be independently applied to all targets in the system.

First, let the target be the planar convex bounding area with vertices defined in a clockwise order as illustrated in

Figure 3. The position of the ith vertex is

 ⃑
() {

 ()

 ()
} (1)

where the target bounding area is defined by number of vertices.

Figure 3: Propagated body position vector.

Figure 4: Target-initiator separation.

Next, let the initiator be a point in space . The position of the jth initiator is

123-3

 ⃑
() {

 ()

 ()
} (2)

where the number of initiators in the simulated system is .

In defining the initiators as points, we can represent any type of convex, concave, rigid, and even deformable body as

a combination of initiators. Further, it pinpoints exactly where restitutive forces will be applied to these bodies, and greatly

simplifies the evaluation of separation through the SAT, as will be discussed in Section 3.

3. Oriented Collision Configuration Algorithm
The continuous appropriately-oriented collision configuration algorithm is underpinned by three key notions. First,

there is a distinction between penetration and collision. Penetration is the overlap between the target and initiator as

determined by the SAT. The penetration configuration describes where separation exists between the target and initiator.

On the other hand, collision implies the feature of the target physically interacting with the initiator. The collision

configuration describes which surface is in contact with the initiator, thereby orienting the restitutive forces. Second, the

SAT evaluates separation along axes normal to the surfaces to relate separation (otherwise penetration) to the surface

features of the target. Third, the transient evolution of the penetration configuration enables the determination of the correct

collision surface. At the time where the initiator penetrates the target, separation is lost along a surface which corresponds

to the collision surface.

3.1 Separating Axis Theorem
Fundamentally, the algorithm is the continuous evaluation of the SAT. In theory, infinite separating axes exist where

two objects are not exactly separated. A classic approach to circumvent this issue is to establish a finite set of potential

separating axes which lie parallel to the surfaces of the convex bounding area polygon.

To evaluate the existence of a potential separating axis along a surface of the target, we must project the vertices of the

target and the initiator to an axis orthogonal to the surface. Separation will exist where the projected initiator is disjoint

from the projected target vertices. The axes used to evaluate separation are the target surface normal unit vectors ̂. Since

the vertices of the target are defined in a clockwise order, we can first develop the set of unit vectors parallel to the target's

surfaces as:

 ̂
(⃑

 ⃑
)

‖ ⃑
 ⃑

‖
 (3)

where ̂ denotes the ith unit vector parallel to the ith surface of the target, and i wraps around to one.

Rotating ̂ counter-clockwise by 90-degrees yields unit vectors orthogonal to the surfaces of the target:

 ̂ [

] ̂ (4)

where the matrix is the counterclockwise rotation of ̂ to obtain the ith ̂ .

To evaluate separation between the jth initiator and target along the ith surface normal, we project all vertices along

with the jth initiator to the ith surface normal. Separation exists when the following equation is satisfied:

 (̂ ⃑) (̂ ⃑
) (5)

where ‘ ’ is the dot product. If Equation (5 is satisfied, the jth initiator's projection lies outside of the range formed by the

target's vertices. Thus, separation exists as illustrated in Figure 4. Equation (5 can be greatly simplified to

123-4

 ̂ (⃑
 ⃑

) (6)

because is a maximal point on the projection of the target's vertices to ̂ .Therefore, only the ith vertex must be

projected when evaluating separation against the ith surface. In conjunction with the ‘outwards' facing orientation of ̂ ,

Equation (6 yields a value greater than zero where separation exists. It should be noted that separation may also exist when

the initiator's projection is less than the minimal value of the target's projected vertices. However, we disregard this case

because separation will be determined with the evaluation of Equation (6 along the other surface normals.

We can conclude that the initiator has penetrated the target if Equation (6 produces negative values for all ̂ .

3.2 Penetration Configuration
Equation (6 establishes the separation between the initiator and target. Where no separation exists, the initiator has

penetrated the target. It is useful to express the evaluation of Equation (6 as a matrix:

 [

] (7)

with

 {
 ̂ (⃑

 ⃑
)

 ̂ (⃑
 ⃑

)
 (8)

where is the binary penetration configuration matrix. Each entry indicates the separation status of the jth initiator

from the target along the ith surface normal of the target. By Equation (8, a value of one indicates penetration along the

ith surface feature of the bounding area. In contrast, a value of zero indicates separation.

Naturally, if the only objective is to detect penetration of the jth initiator, then it is easily calculated as

∑

 (9)

If Equation (9 holds, then the initiator has penetrated the target since the sum of surface penetrations is equal to the

number of surfaces. In other words, no separation exists.

However, this is the limit of information provided by the separating axis theorem. It does not provide the necessary

information to appropriately orient the restitutive collision forces required to emulate the real-world impenetrability of the

simulated bodies. Here is where the presented algorithm extends the application of the SAT to determine the continuous

collision configuration of the system.

3.3 Collision Configuration
As previously stated, there is a distinction between the penetration and collision configuration of a collision pair. The

penetration configuration provides the necessary information to determine if the initiator overlaps the target. In contrast,

the collision configuration provides the necessary information to apply restitutive collision forces in the appropriate

direction.

Typically, the minimum translation vector (MTV) strategy is used to determine the collision configuration. In fact, it

can be easily determined from the negative values in Equation (6 as

123-5

 (̂ (⃑
 ⃑

)) (10)

where the index i corresponding to the minimum value of Equation (10 is the target's closest surface to the penetrated

initiator. Consequently, the restitutive force can be applied in the direction of ̂ . However, with the MTV, there are

common edge-cases which negatively affect the fidelity of the collision model. As shown in Figure 5, near the vertices of

the target, and for thin targets, there is an undesirable effect where the restitutive force is applied through the wrong

surface.

Figure 5: Minimum translation vector edge cases.

Figure 6: ‘Collision-without-penetration’ edge-cases for

bounding area.

The main objective of the proposed algorithm is to remedy this problem in order to achieve higher fidelity in

simulations. To this end, the algorithm must determine and retain the correct target collision surface for the duration of

initiator penetration into the target.

At the onset of initiator penetration into the target, the last possible axis of separation is lost. By comparing the

penetration configurations before and after the onset of penetration, we can determine with which surface the initiator has

collided. We let take on time dependent values () and () at reference time and current time . Thus, we can

characterize the time-dependent change in penetration configuration as

 [

] () () (11)

where is the matrix which represents the transient change in the penetration configuration. This matrix represents the

change in penetration at the current time with respect to the reference time . Each element can take on one of three

values with specific implications:

 {

 ̂

 ̂

 ̂

 (12)

Detection of the collision surface is possible when considering Equations (9, (11 and (12 together. Where Equation (9

is satisfied for the jth column of and () then there is overlap between the jth initiator and target. At the time of collision

Equations (11 and (12 show which surface is the last feature to lose separation as represented by . Alternatively

stated, the collision surface corresponds to the last surface normal to undergo `loss of separation'. Therefore, we introduce

the binary collision configuration matrix :

 [

] (13)

with

123-6

 { ∑

 (14)

where indicates the collision surface. Thus far, , and provide the necessary information to detect the

appropriate collision surface as presented in Equations (13 and (14. Yet, they do not account for the continuous retention of

the collision configuration. For example, once a collision surface is determined, if the initiator is still in penetration on the

next time step, then the change in penetration , which does not satisfy the first case in Equation (14 for collision.

Therefore, it is necessary to treat as a time-dependent value, similar to (), which takes on a reference configuration at

time and a calculated configuration at the current time . Given the reference configuration () the current collision

configuration () adopts the reference configuration if penetration is retained in the current time step. This can be

expressed through the addition of a case to Equation (14:

 ()

{

 ∑

 () ∑

 (15)

As a result, the appropriate collision configuration is retained while the initiator is in penetration.

3.4 Collision Fidelity and Edge-case Management
Since the algorithm operates on the requirement that the initiator must be in penetration for collision to exist, a

significant edge case presents itself: the restitutive collision force may not be strong enough to maintain impenetrability of

the initiator onto the target. Consequently, the initiator may pass through the target. This edge-case is of particular concern

for target bounding areas that are thin or contain acute angles, as shown in Error! Reference source not found.. To

maintain collision fidelity, it is important to address this edge-case. However, it implies that collision can exist without of

penetration.

The presented algorithm has constructed conditions for the determination of the collision configuration. As it relates to

the presented edge case, conditions must also be constructed for the release from collision. To this end, we can establish a

set of conditions where separation from the target does not incur a release from collision. As such, we introduce the binary

surface range matrix () as

 () [

] (16)

with

 {
 ̂ ⃑

 ̂ ⃑
 ̂ ⃑

 (17)

The surface range matrix () is constructed from the projection of the incident vertices and and the jth

initiator to the axis ̂ , which lies parallel to the ith surface of the target. If the initiator lies within the range of the

projected incident vertices, then the initiator is ‘on range'. For the ith surface, is the first condition to be met for

collision retention without penetration. Collision between the jth initiator and ith surface can only continue to occur on its

span; the range formed by its incident vertices.

123-7

The second condition considers the axis of separation. By Equation (12, separation, therefore an axis of separation,

occurs where . Normal release from collision occurs if separation exists along the same surface as the collision

surface in the reference collision configuration. Otherwise, in order to retain collision after separation on the ith surface,

the separation must not occur along the same surface as the collision surface. Therefore, we set the second condition as

 (18)

which further implies the third condition

 () (19)

where the initiator must be in collision at the reference configuration such that a collision configuration can be retained.

These three conditions resolve the case of collision without penetration for time steps where there is a reference

collision configuration. It is important to note that this improvement is not a catch-all solution. While it mitigates some

shortcomings of using penalty methods in conjunction with collision detection, it cannot address scenarios where the

initiator passes from one side of the target to the other in a time step; or for surfaces with obtuse corners as the

condition may be violated under sliding conditions.

3.5 Implementation
There are two ways to program the algorithm. The first method is through the looping of conditional statements, while

the second method applies matrix operations to express logic statements. Nevertheless, both algorithms follow the same

scheme for the evaluation of the penetration configuration. The pseudocode for the penetration configuration is:

Penetration Configuration Algorithm

 Current penetration matrix

1: for () do

2: for () do

3: if (̂ (⃑
 ⃑

)) do

4: ()

5: else

6: ()

7: end if

8: end for

9: end for

 Current range matrix

10: for () do

11: for () do

12: if (̂ ⃑
 ̂ ⃑

 ̂ ⃑
) do

13: ()

14: else

15: ()

16: end if

17: end for

18: end for

 Current penetration change matrix

19: () ()

123-8

Then, with the information provided by the penetration configuration algorithm, the collision configuration can be

constructed. As previously mentioned, the two schemes are:

Collision Configuration Algorithm 1 Collision Configuration Algorithm 2

 Collision configuration matrix Collision guard matrices

1: for () 1:
 ()

2: for () 2: for ()

3: if ((())) & () 3: if ((()))

4: () 4:

5: else if ((())) 5: else if (()
 (() () ()))

6: () 6:

7: else if (()) & () & () 7: else

8: () 8:

9: else 9: end if
10: () 10: end for

11: end if 11:

12: end for Retained collision

13: end for 12: ()
 Contact mechanics New collision

14: Act on current collision configuration 13: ()

 Update reference configurations Collision configuration matrix

15: () () 14: ()
16: () () Contact mechanics

 15: Act on current collision configuration

 Update reference configurations

 16: () ()

 17: () ()

where Algorithm 1 is a nested loop of conditional statements. In contrast, Algorithm 2 uses matrix operations on binary

matrices to obtain the collision configuration matrix. In a worst-case scenario, Algorithm 1 must exhaustively evaluate

conditional statements. However, Algorithm 2 requires the introduction of the unitary matrix
 of size with

ones in all entries, collision guard matrices and of size [] with columns which take on values of one or

zero, and the Hadamard element-wise matrix multiplication ‘ ’.

For Algorithm 2, the guard matrices ensure that the retained collisions and new collisions are applied to the

appropriate initiators. Guard ensures that retained collisions are applied only to initiators which are in collision at both

 () and at (). The Hadamard multiplication effectively acts as an element-wise logical ‘AND’ statement in this

case. Likewise, new collisions are applied only to initiators which come into penetration in the current time step. This is

achieved through the subtraction of from .

When considering initiators interacting with a target with vertices, the processing of the penetration, range, and

penetration change matrices are the same for both implementations. However, the key difference lies within the processing

of the current collision configuration. While the second algorithm requires the construction of guard matrices, it requires

fewer conditional statement evaluations and enables the algebraic construction of the current collision configuration. Since

the Hadamard products, additions, and subtractions are all element-wise operations, the second algorithm may lend itself

well to parallelization optimizations for larger systems.

Nevertheless, once the collision configuration has been constructed by either algorithm, it can be passed to the model

which generates the collision restitution forces. Subsequently, the current collision configuration is passed to the reference

collision configuration for the next time step.

123-9

4. Sample Application
The algorithm was originally developed as part of a contact mechanics model for larger scope of research in dynamic

interface analysis (DIA) – the characterization and analysis of the dynamic interaction between ship decks and vertical

take-off aircraft under varying hydrodynamic, aerodynamic, and mechanical conditions. The research yielded the software

package SRAMSS-2D (Skid-equipped Rotary-wing Aircraft Manoeuvring and Securing Simulation), which simulates the

landing, securing, and manoeuvring of ship-embarked rotary-wing aircraft with skid tube landing gear [7].

As shown in Figure 7, finite element (FE) techniques were chosen to represent the skid landing gear since the tubing

configuration of skid landing gear resembled FE meshing when modelled using beam-type elements. Considering that

external forces were applied at the FE nodes and stiff skid landing gear present complex and often intermittent contact

between with ship deck, a suitable collision detection scheme was necessary.

Figure 7: Generic aircraft with 6-node finite element landing

gear. Nodes 1 and 6 are designated as initiators.

Figure 8: Contact mechanics subroutine calls in SRAMSS-2D.

The presented algorithm was developed in order to satisfy: the penalty method for generating restitutive forces which

act proportional to the penetration depth; point initiators representing the FE nodes such that the collision forces could be

applied to the FE node forcing vector; and retain collision fidelity to achieve more accurate simulations. Further, the

unilateral nature of the algorithm arose from the fact that the motion of the bounding area representing the ship deck was

known for the duration of the simulation. Therefore, only the collision forces acting on the FE landing gear were required,

which greatly improved computational performance. Additionally, by culling potential initiators to only include FE nodes

(initiators) expected to make contact, performance was further increased.

For blind forward time propagation, the two implementations of the collision configuration algorithm are satisfactory.

However, a more nuanced implementation in SRAMSS-2D was required. The numerical integration scheme used by

SRAMSS-2D, the DLSODAR.f subroutine written in Intel® FORTRAN [8], [9], had the ability to reject propagated time

steps. This posed potential problems when passing the current penetration and collision configurations to the reference

configurations. The issue was solved by passing different flags to the contact mechanics subroutine CMECH.f90 when

called, as shown in Figure 8, to perform only the necessary calculations.

Flag 0 was used for the initial call of the subroutine prior to the solution advancing loop to determine the initial

reference configurations. After successful numerical integration through the current time step, the subroutine was called

with Flag 1 to evaluate the current penetration and collision configurations, then assigned them to the reference

configurations for subsequent time step integrations. During numerical integrations of the time step, Flag 2 was used. The

current collision configuration was calculated to generate the collision forces within the system. Since the subroutine was

repeatedly called during integration, reference configurations were not updated due to possible intermediate time-step

rejections. The subroutine was called with Flag 3 during integrator root function evaluations. Root functions, expressed in

terms of the actual separation values of Equation (6, were leveraged to terminate time-steps exactly at collision in order to

separate the in-collision and out-of-collision dynamical subsystems. This bypassed numerical integration through the

discontinuities presented by collision.

123-10

Remarkably, the algorithm's implementation in SRAMSS-2D realizes significant potential in the broader scope of

physics-based simulations. Multiple initiators were used to represent the FE nodes of the modelled skid-type landing gear.

This suggests that the initiators, as presented in this work, can be combined to represent complex bodies with no

restrictions on convexity or deformability so long as the desired models are applied to capture the internal forces at play

between initiators. Some examples of potential applications include the modelling of very flexible tires over terrain with

prominent features and simulating mechanically-complex robotic grippers. In any case, it extends unilateral collision

detection using the SAT to collision pairs where the initiator may have convex features.

5. Conclusion
Collision detection is a crucial component in a wide variety of computer and engineering applications. The

continual advancements in computational power have enabled the development of higher-fidelity simulation packages.

As a result, for physics-based simulations, the collision detection and response schemes must also be refined.

This work has presented a scheme for the continuous detection and retention of the appropriate collision surface

between a convex bounding area and point. This is achieved through the continuous evaluation of the SAT. The

governing notion that the last feature of the target to lose separation from the initiator constitutes the collision feature,

is what enables the appropriate collision surface determination.

Ultimately, the presented algorithm provides realistic collision detection for contact mechanics models in physics-

based simulations. Moreover, limiting the initiator in the collision pair to a single point enables the construction of

complex bodies with known locations and orientations for the application of collision restitution forces. With the

growing trend in application of finite element methods, the presented algorithm realizes many useful applications.

6. References

[1] S. Kockara, T. Halic, K. Iqbal, C. Bayrak and R. Rowe, "Collision detection: A survey," in IEEE International

Conference on Systems, Man and Cybernetics, Montreal, 2007.

[2] M. Figueiredo, L. Marcelino and T. Fernando, "A Survey on Collision Detection Techniques for Virtual

Environments," Centre for Virtual Environments, University of Salford, Salford, UK, 2002.

[3] S. Gottschalk, "Separating Axis Theorem," Department of Computer Science, UNC Chapel Hill, Chapel Hill, US,

1996.

[4] C. Ericson, Real-Time Collision Detection, CRC Press, Inc., 2004.

[5] M. Fi, P. Konecn, K. Zikan and P. Konen, "Lower Bound Distance in 3D," 2001.

[6] S. Gottschalk, M. Lin and D. Manocha, "OBBTree: A Hierarchical Structure for Rapid Interference Detection," in

Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New York, 1996.

[7] A. Schock and R. Langlois, "Spacial Simulation of Shipboard Operations for Skid-equipped Rotary-wing Aircraft," in

Canadian Society for Mechanical Engineering International Congress, Charlottetown, P.E.I., 2020.

[8] A. C. Hindmarsh, "ODEPACK.f," Center for Applied Scientific Computing, L-561, Livermore, 2008.

[9] A. C. Hindmarsh, "A Systematized Collection of ODE Solvers," IMACS Transactions on Scientific Computation, vol.

1, 1983.

