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Abstract - The presented algorithm enables the continuous detection of the appropriate collision surface for a point penetrating into a 

convex bounding area in two-dimensional space. The appropriate collision surface is resolved through the transient evaluation of the 

separating axis theorem which tracks the last bounding area surface to lose separation from the point, thus collision. This ensures 

faithful application of collision restitution forces. The algorithm is presented in two forms: looping conditional statements, and binary 

matrix operations. The initial implementation of the algorithm is also presented and discussed. 
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1. Introduction 
Collision detection algorithms which detect the interference between two or more objects in both static and dynamic 

environments are integral components of physics-based simulations. Further, these algorithms subsequently enable the 

application of collision responses. As simulations are increasingly becoming the main choice for modelling and design 

evaluation, emphasis is placed on the real-world fidelity that these simulations can provide. The pursuit of real-world 

fidelity consequently requires increasingly-accurate models, and collision detection is no exception. 

Broadly speaking, collision detection algorithms are separated into two phases of detection: ‘broad-phase' detection to 

detect potential collision pairs at the object level, and ‘narrow-phase' detection which directly evaluates collision at the 

feature level [1]. Narrow-phase collision detection can be further classified into two types: spatial partitioning 

representations (SPR) and bounding volume hierarchies (BVH) [2]. For physics-based forward dynamics simulations, 

BVHs are advantageous as the bounding volumes can be used to represent the bodies in the simulated environment. 

As shown in Figure 1, bounding volume hierarchies have been the subject of typical progressive generalization. Early 

research proposed coordinate system axis-aligned bounding boxes (AABBs). Axis-alignment was relaxed with oriented 

bounding boxes (OBBs) [3]. Further refinement followed in the form of discrete orientation polytopes (k-DOPs) [4], or 

fixed-direction hulls (FDH) [5] through the intersection of intervals associated with a set of object-fixed axes. The furthest 

generalization of the bounding volume is the convex hull. With convex hulls, the interval characteristic is relaxed such that 

a tight bounding volume is achieved through a set of arbitrary surfaces forming a convex hull.  

 

Figure 1: Types of bounding volume [4]. 

 

Figure 2: Separating axis for two disjoint polygons. 
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At the narrow phase, the collision pair must be evaluated for overlap. Typically, this can be done using the separating 

axis theorem (SAT) [3], [6]. The SAT is effectively the rejection of overlap (collision) if a separating axis (plane) between 

the collision pair can be obtained as shown in Error! Reference source not found.. 

Where overlap is detected, collision models then apply the necessary forces to simulate a collision response. Typically, 

the minimum translation vector (MTV) strategy is used to direct the collision restitution forces in the direction of the 

smallest distance to remove collision. This is taken as the shortest distance between a reference point on one colliding body 

relative to the surface of the other body. However, the MTV is indiscriminate in the direction of collision force application. 

The direction can change unexpectedly near corners or thin objects. This can significantly hinder the fidelity of the 

simulation. 

In this paper, we present an alternate scheme to the MTV for directing the restitutive collision forces for physics-based 

simulations. We present a narrow-phase collision detection algorithm which continuously evaluates separation, thereby 

enabling the appropriate orientation of collision forces. Consequently, real-world fidelity of collision is better achieved. 

To establish context and present the development of the algorithm, the rest of this paper is organized into the 

following sections. Section 2 establishes the simulation environment. Section 3 develops the algorithm in two-dimensional 

space. Then, the initial application of the algorithm is discussed in Section 4. Section 5 offers concluding remarks. 

 

2. Collision Environment 
In this paper, the simulation environment is a planar two-dimensional space having a Cartesian coordinate system. In 

the collision pair, we prescribe ‘target’ bodies represented by convex bounding volumes, and ‘initiator’ bodies represented 

by points in space.  

Collision is unilaterally evaluated and applied on the initiators. This collision scheme stems from typical simulations 

which produce the response of a studied object as it interacts with its environment. The target bodies form the simulation 

environment and normally have motions known for the duration of the simulation. The initiators are the bodies for which 

motions are propagated by the system dynamics, including their interaction with the target bodies.  

The presented algorithm evaluates the collision of initiators onto a single target to produce a response which affects 

the initiators. Subsequently, the algorithm can be independently applied to all targets in the system. 

First, let the target be the planar convex bounding area with vertices   defined in a clockwise order as illustrated in  

Figure 3. The position of the ith vertex    is  

 ⃑   
( )  {

  ( )

  ( )
}               (1) 

where the target bounding area is defined by    number of vertices. 

 

Figure 3: Propagated body position vector. 

 

Figure 4: Target-initiator separation. 

Next, let the initiator be a point in space  . The position of the jth initiator is 
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 ⃑   
( )  {

  ( )

  ( )
}               (2) 

where the number of initiators in the simulated system is   . 

In defining the initiators as points, we can represent any type of convex, concave, rigid, and even deformable body as 

a combination of initiators. Further, it pinpoints exactly where restitutive forces will be applied to these bodies, and greatly 

simplifies the evaluation of separation through the SAT, as will be discussed in Section 3. 

 

3. Oriented Collision Configuration Algorithm  
The continuous appropriately-oriented collision configuration algorithm is underpinned by three key notions. First, 

there is a distinction between penetration and collision. Penetration is the overlap between the target and initiator as 

determined by the SAT. The penetration configuration describes where separation exists between the target and initiator. 

On the other hand, collision implies the feature of the target physically interacting with the initiator. The collision 

configuration describes which surface is in contact with the initiator, thereby orienting the restitutive forces. Second, the 

SAT evaluates separation along axes normal to the surfaces to relate separation (otherwise penetration) to the surface 

features of the target. Third, the transient evolution of the penetration configuration enables the determination of the correct 

collision surface. At the time where the initiator penetrates the target, separation is lost along a surface which corresponds 

to the collision surface. 

 

3.1 Separating Axis Theorem 
Fundamentally, the algorithm is the continuous evaluation of the SAT. In theory, infinite separating axes exist where 

two objects are not exactly separated. A classic approach to circumvent this issue is to establish a finite set of potential 

separating axes which lie parallel to the surfaces of the convex bounding area polygon. 

To evaluate the existence of a potential separating axis along a surface of the target, we must project the vertices of the 

target and the initiator to an axis orthogonal to the surface. Separation will exist where the projected initiator is disjoint 

from the projected target vertices. The axes used to evaluate separation are the target surface normal unit vectors  ̂. Since 

the vertices of the target are defined in a clockwise order, we can first develop the set of unit vectors parallel to the target's 

surfaces as: 

 ̂  
( ⃑     

  ⃑   
)

‖ ⃑     
  ⃑   

‖
              (3) 

where  ̂  denotes the ith unit vector parallel to the ith surface of the target, and i wraps around to one. 

Rotating  ̂ counter-clockwise by 90-degrees yields unit vectors orthogonal to the surfaces of the target: 

 ̂  [
   
  

]  ̂               (4) 

where the matrix is the counterclockwise rotation of  ̂  to obtain the ith  ̂ . 

To evaluate separation between the jth initiator and target along the ith surface normal, we project all vertices along 

with the jth initiator to the ith surface normal. Separation exists when the following equation is satisfied: 

   ( ̂   ⃑  )  ( ̂   ⃑   
) (5) 

where ‘ ’ is the dot product. If Equation (5 is satisfied, the jth initiator's projection lies outside of the range formed by the 

target's vertices. Thus, separation exists as illustrated in Figure 4. Equation (5 can be greatly simplified to 
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   ̂  ( ⃑   
  ⃑   

) (6) 

because    is a maximal point on the projection of the target's vertices to  ̂ .Therefore, only the ith vertex must be 

projected when evaluating separation against the ith surface. In conjunction with the ‘outwards' facing orientation of  ̂ , 

Equation (6 yields a value greater than zero where separation exists. It should be noted that separation may also exist when 

the initiator's projection is less than the minimal value of the target's projected vertices. However, we disregard this case 

because separation will be determined with the evaluation of Equation (6 along the other surface normals. 

We can conclude that the initiator has penetrated the target if Equation (6 produces negative values for all  ̂ . 

3.2 Penetration Configuration 
Equation (6 establishes the separation between the initiator and target. Where no separation exists, the initiator has 

penetrated the target. It is useful to express the evaluation of Equation (6 as a matrix: 

  [

       

  
       

]                        (7) 

with 

    {
   ̂  ( ⃑   

  ⃑   
)   

   ̂  ( ⃑   
  ⃑   

)   
 (8) 

where   is the binary penetration configuration matrix. Each entry     indicates the separation status of the jth initiator 

from the target along the ith surface normal of the target. By Equation (8, a     value of one indicates penetration along the 

ith surface feature of the bounding area. In contrast, a value of zero indicates separation. 

Naturally, if the only objective is to detect penetration of the jth initiator, then it is easily calculated as 

∑   

  

   

     (9) 

If Equation (9 holds, then the initiator has penetrated the target since the sum of surface penetrations is equal to the 

number of surfaces. In other words, no separation exists. 

However, this is the limit of information provided by the separating axis theorem. It does not provide the necessary 

information to appropriately orient the restitutive collision forces required to emulate the real-world impenetrability of the 

simulated bodies. Here is where the presented algorithm extends the application of the SAT to determine the continuous 

collision configuration of the system.  

3.3 Collision Configuration 
As previously stated, there is a distinction between the penetration and collision configuration of a collision pair. The 

penetration configuration provides the necessary information to determine if the initiator overlaps the target. In contrast, 

the collision configuration provides the necessary information to apply restitutive collision forces in the appropriate 

direction. 

Typically, the minimum translation vector (MTV) strategy is used to determine the collision configuration. In fact, it 

can be easily determined from the negative values in Equation (6 as 
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   ( ̂  ( ⃑   
  ⃑   

)) (10) 

where the index i corresponding to the minimum value of Equation (10 is the target's closest surface to the penetrated 

initiator. Consequently, the restitutive force can be applied in the direction of  ̂ . However, with the MTV, there are 

common edge-cases which negatively affect the fidelity of the collision model. As shown in Figure 5, near the vertices of 

the target, and for thin targets, there is an undesirable effect where the restitutive force is applied through the wrong 

surface. 

 

Figure 5: Minimum translation vector edge cases. 

 

Figure 6: ‘Collision-without-penetration’ edge-cases for 

bounding area. 

The main objective of the proposed algorithm is to remedy this problem in order to achieve higher fidelity in 

simulations. To this end, the algorithm must determine and retain the correct target collision surface for the duration of 

initiator penetration into the target. 

At the onset of initiator penetration into the target, the last possible axis of separation is lost. By comparing the 

penetration configurations before and after the onset of penetration, we can determine with which surface the initiator has 

collided. We let   take on time dependent values  (  ) and  ( ) at reference time    and current time  . Thus, we can 

characterize the time-dependent change in penetration configuration as 

  [

       

  
       

]   ( )   (  ) (11) 

where   is the matrix which represents the transient change in the penetration configuration. This matrix represents the 

change in penetration at the current time   with respect to the reference time   . Each element     can take on one of three 

values with specific implications: 

    {
  
  
   

                            ̂ 

                   ̂ 

                    ̂ 

 (12) 

Detection of the collision surface is possible when considering Equations (9, (11 and (12 together. Where Equation (9 

is satisfied for the jth column of and  ( )  then there is overlap between the jth initiator and target. At the time of collision 

Equations (11 and (12 show which surface is the last feature to lose separation as represented by      . Alternatively 

stated, the collision surface corresponds to the last surface normal to undergo `loss of separation'. Therefore, we introduce 

the binary collision configuration matrix  : 

  [

       

  
       

]                        (13) 

with 
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    {  ∑   

  

   

           

           

 (14) 

where       indicates the collision surface. Thus far,  ,   and   provide the necessary information to detect the 

appropriate collision surface as presented in Equations (13 and (14. Yet, they do not account for the continuous retention of 

the collision configuration. For example, once a collision surface is determined, if the initiator is still in penetration on the 

next time step, then the change in penetration       , which does not satisfy the first case in Equation (14 for collision. 

Therefore, it is necessary to treat   as a time-dependent value, similar to  ( ), which takes on a reference configuration at 

time    and a calculated configuration at the current time  . Given the reference configuration  (  )  the current collision 

configuration  ( ) adopts the reference configuration if penetration is retained in the current time step. This can be 

expressed through the addition of a case to Equation (14: 

   ( )  

{
  
 

  
 

 

  ∑   

  

   

           

   (  ) ∑   

  

   

   

           

 (15) 

As a result, the appropriate collision configuration is retained while the initiator is in penetration. 

3.4 Collision Fidelity and Edge-case Management 
Since the algorithm operates on the requirement that the initiator must be in penetration for collision to exist, a 

significant edge case presents itself: the restitutive collision force may not be strong enough to maintain impenetrability of 

the initiator onto the target. Consequently, the initiator may pass through the target. This edge-case is of particular concern 

for target bounding areas that are thin or contain acute angles, as shown in Error! Reference source not found.. To 

maintain collision fidelity, it is important to address this edge-case. However, it implies that collision can exist without of 

penetration. 

The presented algorithm has constructed conditions for the determination of the collision configuration. As it relates to 

the presented edge case, conditions must also be constructed for the release from collision. To this end, we can establish a 

set of conditions where separation from the target does not incur a release from collision. As such, we introduce the binary 

surface range matrix  ( ) as 

 ( )  [

       

  
       

]                        (16) 

with 

    {
   ̂   ⃑   

  ̂   ⃑   
  ̂   ⃑     

           
 (17) 

The surface range matrix  ( ) is constructed from the projection of the incident vertices    and      and the jth 

initiator to the axis  ̂ , which lies parallel to the ith surface of the target. If the initiator lies within the range of the 

projected incident vertices, then the initiator is ‘on range'. For the ith surface,     is the first condition to be met for 

collision retention without penetration. Collision between the jth initiator and ith surface can only continue to occur on its 

span; the range formed by its incident vertices. 
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The second condition considers the axis of separation. By Equation (12, separation, therefore an axis of separation, 

occurs where       . Normal release from collision occurs if separation exists along the same surface as the collision 

surface in the reference collision configuration. Otherwise, in order to retain collision after separation on the ith surface, 

the separation must not occur along the same surface as the collision surface. Therefore, we set the second condition as 

      (18) 

which further implies the third condition 

   (  )    (19) 

where the initiator must be in collision at the reference configuration such that a collision configuration can be retained. 

These three conditions resolve the case of collision without penetration for time steps where there is a reference 

collision configuration. It is important to note that this improvement is not a catch-all solution. While it mitigates some 

shortcomings of using penalty methods in conjunction with collision detection, it cannot address scenarios where the 

initiator passes from one side of the target to the other in a time step; or for surfaces with obtuse corners as the       

condition may be violated under sliding conditions. 

3.5 Implementation 
There are two ways to program the algorithm. The first method is through the looping of conditional statements, while 

the second method applies matrix operations to express logic statements. Nevertheless, both algorithms follow the same 

scheme for the evaluation of the penetration configuration. The pseudocode for the penetration configuration is: 

Penetration Configuration Algorithm 

 Current penetration matrix 

1: for (         ) do 

2: for (         ) do 

3: if ( ̂  ( ⃑   
  ⃑   

)   ) do 

4:    ( )    

5: else 

6:  ( )    

7: end if 

8: end for 

9: end for 

 Current range matrix 

10: for (         ) do 

11: for (         )  do 

12: if ( ̂   ⃑   
  ̂   ⃑   

  ̂   ⃑     
) do 

13:    ( )    

14: else 

15:    ( )    

16: end if 

17: end for 

18: end for 

 Current penetration change matrix 

19:    ( )   (  ) 
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Then, with the information provided by the penetration configuration algorithm, the collision configuration can be 

constructed. As previously mentioned, the two schemes are: 

Collision Configuration Algorithm 1 Collision Configuration Algorithm 2 

 Collision configuration matrix  Collision guard matrices 

1: for (         ) 1:       
 (  ) 

2: for (         ) 2: for (         ) 

3: if (   (  ( ))    ) & (     ) 3: if (   (  ( ))    ) 

4:    ( )    4:        

5: else if (   (  ( ))    ) 5: else if (  ( )
 (  (  )    ( )  (    ))   ) 

6:    ( )    6:        

7: else if (   (  )   ) & (     ) & (     ) 7: else 

8:    ( )    8:        

9: else 9: end if 
10:    ( )    10: end for 

11: end if 11:          

12: end for  Retained collision 

13: end for 12:     (  )     
 Contact mechanics  New collision 

14: Act on current collision configuration 13:      (     ) 

 Update reference configurations  Collision configuration matrix 

15:  (  )   ( ) 14:  ( )        
16:  (  )   ( )  Contact mechanics 

  15: Act on current collision configuration 

   Update reference configurations 

  16:  (  )   ( ) 

  17:  (  )   ( ) 

where Algorithm 1 is a nested loop of conditional statements. In contrast, Algorithm 2 uses matrix operations on binary 

matrices to obtain the collision configuration matrix. In a worst-case scenario, Algorithm 1 must exhaustively evaluate 

conditional statements. However, Algorithm 2 requires the introduction of the unitary matrix    
 of size         with 

ones in all entries, collision guard matrices       and    of size [     ] with columns which take on values of one or 

zero, and the Hadamard element-wise matrix multiplication ‘ ’. 

For Algorithm 2, the guard matrices ensure that the retained collisions and new collisions are applied to the 

appropriate initiators. Guard    ensures that retained collisions are applied only to initiators which are in collision at both 

   (  ) and at   (  ). The Hadamard multiplication effectively acts as an element-wise logical ‘AND’ statement in this 

case. Likewise, new collisions are applied only to initiators which come into penetration in the current time step. This is 

achieved through the subtraction of    from   . 

When considering    initiators interacting with a target with    vertices, the processing of the penetration, range, and 

penetration change matrices are the same for both implementations. However, the key difference lies within the processing 

of the current collision configuration. While the second algorithm requires the construction of guard matrices, it requires 

fewer conditional statement evaluations and enables the algebraic construction of the current collision configuration. Since 

the Hadamard products, additions, and subtractions are all element-wise operations, the second algorithm may lend itself 

well to parallelization optimizations for larger systems. 

Nevertheless, once the collision configuration has been constructed by either algorithm, it can be passed to the model 

which generates the collision restitution forces. Subsequently, the current collision configuration is passed to the reference 

collision configuration for the next time step. 
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4. Sample Application 
The algorithm was originally developed as part of a contact mechanics model for larger scope of research in dynamic 

interface analysis (DIA) – the characterization and analysis of the dynamic interaction between ship decks and vertical 

take-off aircraft under varying hydrodynamic, aerodynamic, and mechanical conditions. The research yielded the software 

package SRAMSS-2D (Skid-equipped Rotary-wing Aircraft Manoeuvring and Securing Simulation), which simulates the 

landing, securing, and manoeuvring of ship-embarked rotary-wing aircraft with skid tube landing gear [7]. 

As shown in Figure 7, finite element (FE) techniques were chosen to represent the skid landing gear since the tubing 

configuration of skid landing gear resembled FE meshing when modelled using beam-type elements. Considering that 

external forces were applied at the FE nodes and stiff skid landing gear present complex and often intermittent contact 

between with ship deck, a suitable collision detection scheme was necessary. 

 

Figure 7: Generic aircraft with 6-node finite element landing 

gear. Nodes 1 and 6 are designated as initiators. 

 

Figure 8: Contact mechanics subroutine calls in SRAMSS-2D. 

The presented algorithm was developed in order to satisfy: the penalty method for generating restitutive forces which 

act proportional to the penetration depth; point initiators representing the FE nodes such that the collision forces could be 

applied to the FE node forcing vector; and retain collision fidelity to achieve more accurate simulations. Further, the 

unilateral nature of the algorithm arose from the fact that the motion of the bounding area representing the ship deck was 

known for the duration of the simulation. Therefore, only the collision forces acting on the FE landing gear were required, 

which greatly improved computational performance. Additionally, by culling potential initiators to only include FE nodes 

(initiators) expected to make contact, performance was further increased. 

For blind forward time propagation, the two implementations of the collision configuration algorithm are satisfactory. 

However, a more nuanced implementation in SRAMSS-2D was required. The numerical integration scheme used by 

SRAMSS-2D, the DLSODAR.f subroutine written in Intel® FORTRAN [8], [9], had the ability to reject propagated time 

steps. This posed potential problems when passing the current penetration and collision configurations to the reference 

configurations. The issue was solved by passing different flags to the contact mechanics subroutine CMECH.f90 when 

called, as shown in Figure 8, to perform only the necessary calculations. 

Flag 0 was used for the initial call of the subroutine prior to the solution advancing loop to determine the initial 

reference configurations. After successful numerical integration through the current time step, the subroutine was called 

with Flag 1 to evaluate the current penetration and collision configurations, then assigned them to the reference 

configurations for subsequent time step integrations. During numerical integrations of the time step, Flag 2 was used. The 

current collision configuration was calculated to generate the collision forces within the system. Since the subroutine was 

repeatedly called during integration, reference configurations were not updated due to possible intermediate time-step 

rejections. The subroutine was called with Flag 3 during integrator root function evaluations. Root functions, expressed in 

terms of the actual separation values of Equation (6, were leveraged to terminate time-steps exactly at collision in order to 

separate the in-collision and out-of-collision dynamical subsystems. This bypassed numerical integration through the 

discontinuities presented by collision. 
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Remarkably, the algorithm's implementation in SRAMSS-2D realizes significant potential in the broader scope of 

physics-based simulations. Multiple initiators were used to represent the FE nodes of the modelled skid-type landing gear. 

This suggests that the initiators, as presented in this work, can be combined to represent complex bodies with no 

restrictions on convexity or deformability so long as the desired models are applied to capture the internal forces at play 

between initiators. Some examples of potential applications include the modelling of very flexible tires over terrain with 

prominent features and simulating mechanically-complex robotic grippers. In any case, it extends unilateral collision 

detection using the SAT to collision pairs where the initiator may have convex features. 

5. Conclusion 
Collision detection is a crucial component in a wide variety of computer and engineering applications. The 

continual advancements in computational power have enabled the development of higher-fidelity simulation packages. 

As a result, for physics-based simulations, the collision detection and response schemes must also be refined.  

This work has presented a scheme for the continuous detection and retention of the appropriate collision surface 

between a convex bounding area and point. This is achieved through the continuous evaluation of the SAT. The 

governing notion that the last feature of the target to lose separation from the initiator constitutes the collision feature, 

is what enables the appropriate collision surface determination. 

Ultimately, the presented algorithm provides realistic collision detection for contact mechanics models in physics-

based simulations. Moreover, limiting the initiator in the collision pair to a single point enables the construction of 

complex bodies with known locations and orientations for the application of collision restitution forces. With the 

growing trend in application of finite element methods, the presented algorithm realizes many useful applications. 
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