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Abstract - Solar powered unmanned ground vehicles (SPUGV) can be used to monitor remote points of interest. Heuristic algorithms 

have been developed for path planning of SPUGVs in known solar environments, however not all environments have detailed solar 

mapping. A control algorithm to prioritize the battery life of a SPUGV in an unknown solar environment as it moves to specified points 

of interest was developed. The algorithm incorporates a switching cost function where one cost function prioritizes the goal position 

when the battery on the SPUGV is above a set threshold and the other prioritizes finding solar irradiance peaks to charge the battery. 

Local solar irradiance peaks are identified by a filtering approach from collected data in a local sample area. From simulations, the 

algorithm results in the SPUGV reaching the point of interest with a higher battery charge than a direct path to the point without any 

prior solar mapping.  
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1. Introduction 

Environmental monitoring is very important to help determine the ecological health of an area. For example, animal 

population, foliage health, local weather information, air pollution, and water quality are all important factors that can be 

monitored using unmanned ground vehicles (UGV). These missions require a long-term process and are best done remotely, 

as a result, any UGVs sent into the field to study the environment need to survive for long periods of time and  travel far 

distances [1]. With Ray [2], solar harvesting was used in order to have the “cool robot” SPUGV travel 500 km across 

Antarctica to conduct and run scientific experiments. Areas such as Antarctica have consistently high sources of solar 

irradiance (SI) so path planning towards a goal was focused on rough terrain and obstacle avoidance. Others such as Plonski 

[3, 4] developed an algorithm to construct a solar map for a defined area using an SPUGV for future path planning in the 

constructed solar map. Kaplan [5] developed a time-optimized path planning algorithm for a SPUGV in a known solar 

environment so that the robot minimized travel time while also moving through high SI points on its way to the goal in order 

to increase the battery life of the SPUGV. All of the approaches require significant planning and mapping of an area in order 

for the SPUGV to navigate through it. Also as Plonski [3] discusses, the solar environment in an area is constantly changing 

as the sun moves, so any solar mapping data may be inaccurate by the time the robot begins path planning.  

Despite the research for path planning in known solar environments, little has been done for path planning in unknown 

solar environments. Current path planning techniques need detailed solar environment information for the SPUGV to traverse 

an environment which is not always feasible or reasonable. Solar environments are constantly changing each day and 

throughout the year, therefore path planning in an unknown solar environment would make environmental monitoring 

missions using UGV’s a more viable option. A cost function switching (CFS) algorithm was developed to maximize the 

battery life of a SPUGV as it travels to points of interest in an unknown solar environment. The CFS proposed eliminates 

the need for prior solar information of an area for SPUGV path planning in environmental monitoring missions. 

 

2. Problem Definition 
Suppose a SPUGV is placed into an environment with a variety of SI intensities with the task to reach multiple points 

of interest and then to return to the starting position with the maximum battery life achievable. Figure 1 demonstrates a 
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discretized global solar map with the SI values ranging from high in red, to low in dark blue where X1, X2, and X3 are points 

of interest in sequential order.  
 

 
Fig. 1: Discretized basic solar map with multiple points of interest. 

 

The problem can be defined as two path cost functions that seek to minimize the amount of energy expended when either 

moving towards a point of interest or a SI peak to charge. The first cost function J1 seeks to minimize the control input cost 

with the goal position being the terminal cost. In equations (1) through (16), 𝑥is the SPUGV position, 𝑥𝑔is the goal position, 

𝑥𝑝is the local energy peak position, and 𝑢 is the control input. The constraints put upon both cost functions are that the 

control input is the velocity of the robot using basic dynamics, and that the input is limited to a set velocity max or 𝑢𝑚𝑎𝑥. 

The initial and final states of the robot are defined as well. The J2 cost function also minimizes the path cost of the input 

velocity, however the terminal cost is a sampled local SI peak instead of a point of interest or goal position.  

 

min𝐽1 = ∫
𝑡+𝑇

𝑡

1

2
||𝑢||2𝑑𝑡 + 𝜙𝑓𝑔 

S.t. 𝑥′ = 𝑢  
x(0) = x0 
x(tf) = xf 

∥ 𝑢 ∥ ≤  𝑢𝑚𝑎𝑥 

(1) 

min  𝐽2 = ∫
𝑡+𝑇

𝑡

1

2
||𝑢||2𝑑𝑡 + 𝜙𝑓𝑝 

S.t. 𝑥′ = 𝑢  
x(0) = x0 
x(tf) = xf 

∥ 𝑢 ∥ ≤  𝑢𝑚𝑎𝑥 

(2) 

The symbol 𝜙
𝑓𝑔

 is the terminal cost of the goal and 𝜙
𝑓𝑝

 is the terminal cost of the local SI peak.   

 

𝜙
𝑓𝑔

=
1

2
||𝑥(𝑡) − 𝑥𝑔||2

 (3) 

𝜙
𝑓𝑝

=
1

2
||𝑥(𝑡) − 𝑥𝑝||2

 

 
(4) 

With the cost functions defined, they can be optimized by two hamiltonian equations. The hamiltonian for J1 is shown 

in equation (5), which looks identical to the hamiltonian for J2.  

 

𝐻1 =
1

2
||𝑢||2 + 𝑢 (5) 

−𝜕𝐻1

𝜕𝑥
= 𝜆′ = 𝜆1

𝑇 = 0 (6) 
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−𝜕𝐻1

𝜕𝜆
= 𝑢 = 𝑥′ (7) 

−𝜕𝐻1

𝜕𝑢
= 0 = 𝑢∗(𝑡) + 𝜆 

 
(8) 

Equations (6) and (7) can be discretized and combined with equation (9) to find the optimized control input 𝑢 ∗in 

discrete time intervals.  

𝜆(𝑡𝑓) =
𝑑𝜙

𝑓𝑔

𝑑𝑡𝑓

= 𝑥(𝑡) − 𝑥𝑝 (9) 

𝜆′ =
𝜆(𝑡+1)−𝜆(𝑡)

𝛥𝑡
= 0  (10) 

𝜆(𝑡+)) = 𝜆(𝑡) 
 

(11) 

Likewise for equation (11), equation (7) can be rewritten into equation (12).  

 
𝑥(𝑡 + 1) = (𝑢∗(𝑡) + 𝑥(𝑡)) ⋅ 𝛥𝑡 

 
(12) 

Because the costate variable 𝜆(𝑡) is unchanging for both J1 and J1, therefore the problem is defined by four equations 

that provide the optimal path for J1 and J2 are shown in  equations (13) through (16). Note that equation (13) is the costate 

variable definition for J1 and equation (14) for J2. 

 
𝜆𝐽2[𝑡] = 𝑥[𝑡] − 𝑥𝑔 (13) 

𝜆𝐽1[𝑡] = 𝑥[𝑡] − 𝑥𝑝 (14) 

𝑢∗[𝑡] =  −𝜆[𝑡] (15) 

𝑥∗[𝑡 + 1] = 𝑥[𝑡] + 𝑢∗[𝑡] (16) 

 
At each time step, the optimization problems in (1) and (2) can be solved based on the Hamiltonian approach (5) - (16) 

in a receding-horizon manner [6 - 11]. This implies that after the local SI measurement using the onboard sensor, the SPUGV 

can determine where to go with a horizon length 𝑇, which is repeated at each time. This receding-horizon technique will 

enable the SPUGV to cope with a realistic scenario where a global SI map is not available and hence, the SPUGV needs to 

make a decision only with local information. 

 

         

3. Main Result 
3.1. Pathfinding Algorithm 

In order to maximize the battery the robot needs to be able prioritize either charging the battery or reaching the goal at 

any given time, this was done by switching between solving for J1 or J2. We utilized a battery threshold as a switching criteria 

between the two functions. The battery threshold was set to 60% of the max battery so that the robot could travel long periods 

of time before recharging. Once the battery reaches 60% of the maximum battery life, the robot begins searching for nearby 

solar irradiance peaks. This is done with a sensing algorithm to determine the highest irradiance value with the closest 

distance to the goal. When a peak SI value is found, the robot will go towards the peak to charge the battery. The process of 

finding a SI peak is done continuously until the SPUGV reaches the local peak. The decision is made by observing four 

different variables, the SI at the current location, the SI at the measured peak, the distance from the current location to the 

peak, and the distance between the current location and the goal. If the robot has a lower measured SI than the peak and the 

distance to the peak is smaller than the distance to the goal, then the robot will move to the peak value as shown in Figure 2. 

If the robot has a SI larger than the measured peak, the robot is at a local maximum and will stay there until charged to a set 

upper charging threshold. If the goal distance is less than the distance to the peak, the robot will just go towards the goal. If 

none of these conditions are met, the robot will continue towards the goal to avoid getting stuck along the path.  
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Fig. 2: Path planning algorithm flowchart. 

 

3.2. Sensing Algorithm 
Finding a single local SI peak requires another algorithm to detect and evaluate the SI around it. The sensing algorithm 

takes samples of a set sampling radius and step size and creates a sampling matrix of local SI values. An example sampling 

matrix is shown in Figure 3, the local sampled SI values also include the SI of the robots current position. Efficient evaluation 

of the samples was done by incorporating a statistical threshold so that only the highest SI values are observed. The threshold 

for peaks was set at 2 standard deviations from the mean of SI samples so that only the top 5% of SI in the local region are 

considered. The results from the thresholded sampling algorithm are multiple high SI peaks and their locations. Because the 

robot can only go towards one of the points, the sampling algorithm evaluates the SI at each local peak, the distance between 

the robot's current positions, and the distance between the peak and the goal position. By having distance as a method for 

determining the local max SI peak, the algorithm prioritizes energy peaks that are closer to the goal which prevents the robot 

from diverging away from the goal while searching for energy.  

Figure 2 visualizes what the local sample from the robot looks like. The red squares indicate highest SI peaks while blue 

squares indicate lowest SI peaks. As shown in Figure 3, the SPUGV does not see the global solar information and can only 

see within the sample radius. With the thresholding, only two peaks would be considered for the local peak and therefore 

can be compared along with the distance directly to the goal from the robot to determine which path to be taken.  

 

 
Fig. 3: Sensing algorithm example. 

 

4. Simulations 
4.1. Simulation Setup 

In order to test the application of using the CFS algorithm, a solar environment was synthesized in the simulation. The 

environment was mapped in reference to a section of the Sante Fe National Forest in New Mexico, USA. The simulation 

uses multiple Gaussian distributions of SI that the robot can measure. New Mexico receives an average of 41.6 W/m2 of SI 
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which is reflected in the solar map [12]. The high-intensity regions of the map indicate open areas such as a meadow in the 

forest with the assumption that the simulation is occurring when the sun is perpendicular to the ground and unchanging 

throughout the simulation. For simplicity, the simulation assumes that there are no inclination changes or obstacle 

obstructions that would be seen in the real environment. The robot chassis chosen for the simulation is the MLT-JR with two 

IG32 motors, two 2200maH batteries. The solar panel being simulated on the robot is an Eco-Worthy 10 W panel.  

 

 
Fig. 4: MLT-JR, and Eco-Worthy 10W solar panel. . 

 

The first simulation involved having the SPUGV travel from an initial position to a single point of interest, the SPUGV 

would start and end in a meadow where SI should be found. The distance between the two points was 2.5 km which is within 

the max distance the SPUGV can travel on one full charge of battery. The simulation was run using both the CFS algorithm 

and a direct route approach to determine if the battery at the goal position could be improved. The second simulation involved 

four points of interest on the same solar map as simulation 1. For simulation 2 SPUGV would start at an initial point and 

then travel to each point directly, only moving onto goal 3after arriving at goal 2 and so on. The total distance to travel to all 

the points sequentially was 2.5 km. The CSF algorithm was also compared to a direct route approach with multiple points of 

interest. Both simulations use a 5 m sensing radius for the SPUGV.  

 

 
Fig. 5: Side by side of satellite image of map area and corresponding global solar map with a direct route trajectory. 

 
4.2. Simulation Results 

The simulation shown in table 1 and 2 demonstrates that the SPUGV using the CFS algorithm will reach the goal position 

with a significantly higher battery percentage than a direct route to the goal. For simulation 1 the trajectory of the SPUGV 

heads directly towards the goal until the battery threshold is met where it begins searching for SI peaks. Figure 4 shows the 

local peak SI values as bright green triangles. The path clearly shows the robot traveling towards the peak that is closest to 

the final goal. In the simulation the CFS algorithm took 166 minutes longer to reach the goal than the direct route, however, 

the CFS resulted in a 40.7% higher battery percentage at the goal. This shouldn’t be a problem for applications like 
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environmental monitoring, where a sustainable operation of UGVs is much more important than the time taken. Likewise 

for the second simulation, the SPUGV took 333 minutes longer to complete the loop but with 70% more battery.  

 
Fig. 6: Simulation robot trajectory and local SI peak locations. 

 

 
Table 1: Simulation 1 battery and time results. 

Algorithm Time (minutes) Battery % at tf 

None 49 24.2 

CFS 215 64.9 

 

 

 
Fig. 7: Simulation robot trajectory and local SI peak locations. 

 
Table 2: Simulation 2 battery and time results. 

Algorithm Time (minutes) Battery % at tf 

None 69 0.7 

CFS 402 71.0 
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5. Conclusion 
Maximizing battery life during the mission such as environmental monitoring in an unknown environment is shown to 

be effectively done with a cost function switching algorithm. The proposed method, which prioritizes either the goal point 

or a local peak of SI depending on the remaining battery, guarantees that it will reach a point of interest with a higher battery 

life than going directly to a goal and therefore extend the mission life. As future works, we will further improve the proposed 

method including obstacle avoidance and SI peak masking to increase the effectiveness and robustness of the algorithm.  
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