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Abstract - This paper studies the scaled consensus problem of a class of multi-agent systems called hybrid multi-agent systems, which 

consist of both continuous-time and discrete-time dynamic agents. Based on the interactions among agents, two scaled consensus 

protocols are proposed to solve the scaled consensus problems in the hybrid multi-agent systems employing directed communication 

graphs that contain a spanning tree. Some numerical examples are provided to illustrate the effectiveness of the theoretical results. 
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1. Introduction 
Over the past decades, multi-agent systems have been widely studied in many disciplines such as engineering, 

computer science, and mathematics. They are typically referred to software agents in computer science, while in robotic 

society, multi-agent systems are referred to multi-robot systems (as the agents can be robots), which have been extensively 

studied since the early 1990s. For example, Weiss (1999,[1]) replaced the single agents by the multiple agents as the 

computing paradigm in artificial intelligence, Sugihara and Suzuki (1990,[2]) studied the distributed motion coordination 

of multiple robots. In the recent years, many research topics in multi-agent systems have been actively studied, such as 

consensus or agreement problems (2007,[3]), flocking(2006,[4]), formation control (2009,[5]), coverage control (2002,[6]), 

containment control (2011,[7]), distributed estimation (2008,[8]), and others. 

A multi-agent system is a dynamical system consisting of a group of agents which can interact with each other or their 

environment. Consensus is one of the fundamental problems in multi-agent coordination, which implies that all agents 

reach an agreement on some common features, which can be velocities, positions, attitudes, and many other quantities. As 

a result, a consensus algorithm, an appropriate control input based on the local information that enables all agents to reach 

consensus, has been actively studied for a long time. For example, the original work of consensus problems was proposed 

by Degroot (1974,[9]), and similar idea were found in distributed computing in the works of Tsitsiklis (1984,[10]) and 

extensive references. 

In recent years, many consensus algorithms were proposed based on the dynamic model of agents. In 1995, for 

example, Vicsek et al.,[11] presented the discrete time model of agents moving with the same speed and proved by 

simulation that all agents can move to one direction. In 2003, Jadbabaie et al.,[12] used the nearest neighbor rules for 

proving the model of Vicsek in [11]. Moreover, Wang et al.,(2007,[13]) proposed the new method for solving consensus 

problems of discrete time multi-agent systems with time-delays, more results about consensus seeking in discrete time 

multi-agent systems can be seen in ([14–16]) and references therein. 

For continuous-time dynamic agents, many consensus algorithms have been proposed, such as in 2004, Olfati-Saber 

and Murray[17] showed the consensus results of continuous time dynamic agents with switching topology and time- 

delays. In addition, Ren and Beard(2005,[18]) also studied the consensus in continuous time multi-agent systems and used 

some concepts from graph theory and matrix theory to extend the results in [17], which gave more relaxation conditions 

than the previous works. More results about consensus seeking in continuous time multi-agent systems can be seen in 

([19],[20]) and extensive references. 

Inspired by the result of Halloy et, al,.([21], 2007) who studied a group decision-making between animals and 

autonomous robots, specifically, a group of cockroaches and autonomous robots, which share the shelter together under 

some conditions. Hence, it is reasonable to study consensus problems in the dynamical systems involving the interaction of 

continuous and discrete dynamics, which is typically called the hybrid systems (Antsaklis(2000),[22]). In the recent years,  

the study of consensus problems under switching topologies,  one of the classic hybrid systems, has been actively attracted 
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by many researchers. For example, in 2008, Sun et al.,[23] showed the average consensus results of dynamic agents with 

switching topologies and time-varying delays. 

There are, however, some practical applications, the states of all agents are not necessary to achieve consensus on a 

common quantity, but of their own scales due to the constraints of physical environments, such as, compartmental mass-

action systems [24], water distribution systems and multiscale coordination control between spacecrafts and their 

simulating vehicles on the ground [25]. In order to deal with these problems, Roy[26] proposed the out standing idea of 

scaled consensus, allowing prescribed ratios among the final convergent values of all agents. It can be seen that the scaled 

consensus is more general than the standard consensus i.e., it can achieve standard consensus when all ratios are one. 

Furthermore, by adopting appropriate scales, the scaled consensus provides a less conservative framework and solves 

many consensus problems, for example, bipartite (or sign) consensus[27] and cluster consensus [28], where all agents in 

the same subnetwork share a common value while there is no agreement between different subnetworks. In 2018, Zheng et 

al.[29] studied consensus problems of hybrid multi-agent systems consisting of continuous time dynamic agents and 

discrete-time dynamic agents. By assuming that all agents interact with their neighbours at the sampling time tk, two 

classes of consensus protocols were proposed for solving consensus in the hybrid multi-agent system. However, to our 

knowledge, there has been no systematic study on scaled consensus problems for hybrid multi-agent systems, so this work 

aims to study scaled consensus to the hybrid multi-agent system under directed 

communication networks. 

The rest of this paper is organized as follows. Some preliminaries and the problem formulation are provided in Section 

II. In Section III, two scaled consensus protocols have been introduced to solve the scaled consensus problems of hybrid 

multi-agent systems via directed topology. In Section IV, numerical examples are provided to illustrate the effectiveness of 

our main results. Finally, some conclusions are drawn in Section V. 

 

2. Preliminaries And Problem Formulation 
In this section, we introduce some basic concepts from algebraic graph theory. We also give some definitions and 

lemmas for later use. For more details, refer to [30, 31]. 

Throughout this paper, an interaction among n agents is described as a weighted directed graph               that 

consists of a set of nodes                    and the set of edges                                a nonnegative matrix  

          .  The set of all neighbours of an agent   is denoted by             . The out-degree and in-degree of  

node     are  denoted  by             and            which  is  the  number  of  edges                 and               , 

respectively. A graph    is balanced if the out-degree and in-degree of each node are equal. A directed path of   is a 

sequence of edges          ,          ,          ,… in a digraph  . A digraph   is called strongly connected if there is a 

directed path connecting any two arbitrary nodes in  . A directed tree is a digraph such that there is only one root (that is, 

no edge points to this node) in it, and every node except the root has exactly one parent. A spanning tree of   is a directed 

tree that connects all the nodes of   . 

Moreover, we denote by  , the real number set,   the positive integer set,    the n dimensional real vector space. 

For a given vector or matrix  ,    denotes its transpose,       denotes the Euclidean norm of a vector  . A vector is 

nonnegative if all its elements are nonnegative and the column vector with all entries equal to one or zeroes are denoted by 

   and   , respectively.    is an  −dimensional identity matrix and the diagonal matrix with diagonal elements being  

                 is  denoted  by                           Moereover,            is  an     by     matrix  with       

representing its      th entry. 

A matrix             is said to be nonnegative, denoted by    , if all its entries are nonnegative.  For the set of 

nonnegative matrices, we define an order as follows: if   and   are nonnegative matrices, then     implies     is a 

nonnegative matrix.   is a stochastic matrix if   is nonnegative and all its row sums are 1.  A stochastic matrix    is called 

indecomposable and aperiodic (SIA) if there exists a column vector y such that             
 , where    

                is an     vector. Some useful definitions, lemmas, and properties are provided as follows: 
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Lemma 1. [24] A stochastic matrix has algebraic multiplicity equal to one for eigenvalue        if and only if the 

graph associated with matrix has a spanning tree.  Furthermore, a stochastic matrix with positive diagonal elements has the 

property that |       for every eigenvalue not equal to one. 

Lemma 2. [24]  Let             be a stochastic  matrix.  If   has an eigenvalue         with  algebraic  multiplicity 

equal to one, and all the other eigenvalues satisfy      , then   is SIA, that is,             
 , where   is 

nonnegative and satisfies            . 

Lemma 3. Given the scalar scale                         Define  

                                       such that      
 

        
           and   

                                   Then,              is  SIA,  i.e., 

                       
  if and only if a graph   has a spanning tree.  Furthermore,                 , 

   
    where each element of   is nonnegative. 

 

Proof. (Sufficiency): Since         
 

        
 , one obtains                                is a stochastic 

matrix with positive diagonal entries, where                          and   is the degree matrix and adjacency matrix of  

  , respectively.  Obviously, for all               , the       th entry of              is positive if and only if      . 

Then,    is the graph associated with            . Combining Lemma 1 and Lemma 2, gives                     

   
 ,when   has a spanning tree, where   is nonnegative vector. Moreover,                        

   

(Necessary): From Lemma 1, if     does not have a spanning tree, the algebraic multiplicity of eigenvalue       of 

           is     . Then, it can be seen that the rank of                     is greater than  , which implies 

                       
 . 

 

In this work, we assume that the hybrid multi-agent system consists of n agents which are continuous-time and 

discrete-time dynamic agents, labelled   through  , where the number of continuous-time dynamic agents is        
Without loss of generality, we assume that agent 1 through c are continuous-time dynamic agents.  

Moreover,                                          Then, each agent has the dynamics as follows:  

 

{
 ̇                                                       

                                      
                                                    

 

where   is the sampling period,      and      are the state and control input of agent  , respectively. The initial 

conditions are          , and                              . 

Moreover, the hybrid multi-agent system (2.1) is modelled as a connected directed graph, where all agents are 

regraded as the nodes and the interaction between two agents has been represented by the edge in a graph. This implies that 

        corresponds to an available information link from agent   to agent  . Besides, each agent updates its current state 

based on the information received from its neighbours. Furthermore, we suppose that there exists communication 

behaviour as in hybrid multi-agent system (2.1), that is, there are agent   and agent   which make      . 

 

Definition 1.  Given any scalar scale      for the agent  , the hybrid multi-agent system (2.1) is said to reach 

scaled consensus to                if for any initial conditions, we have 

 

   
    

                                                                                                             

and 

                                                                                                                       

Remark 1 If a scalar scale      for all  , It is easy to see that the scaled consensus can reduce to the standard 

consensus, that is, it is more general than the standard consensus problems. 
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3. Main Results 
In this section, the scaled consensus problems of hybrid multi-agent system (2.1) are studied under two kinds of 

control inputs (consensus protocols), respectively. 

 

Case I: We assume that all agents communicate with their neighbours and update their control inputs in a sampling 

time   . Then, the consensus protocol for hybrid multi-agent system (2.1) is defined as follows: 

 

{
 
 

 
              ∑                       

    

                                           

                ∑                       

    

                                                   
                                                    

 

where             is  the  weighted  adjacency  matrices  associated  with  the  graph  ,              for  all  

   is  the sampling period. For any real number  , the        is the signum function such that                  
                            Furthermore,               for any real number  . 

 

Theorem 1. Let   be a directed connected communication network of the hybrid multi-agent system (2.1) and      be 

any scalar scale of agent  . Assume that     
 

        
. Then, the hybrid multi-agent system (2.1) with the protocol 

(3.1) reaches scaled consensus to                if and only if   contains a spanning tree. 

 

Proof. (Sufficiency) Let     , we have, for             , be any scalar scale of agent  , we first show that equation 

(2.2) holds. From (3.1) 

{
 
 

 
                            ∑                       

    

                         

                         ∑                       

    

                                  
                                                    

 

Therefore, it follows that 

 

                         ∑                           
          for                                (3.3) 

 

Let                                                                                        and        
                           Then, equation (3.3) can be written as  

 

                                           for                                                (3.4) 

 

Since   contains a directed spanning tree and     
 

        
, by Lemma 3, we have                        

 , 

where   is nonnegative and satisfies                  . Thus,                                        
   

      . 
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As a consequence, equation (2.2) holds. Furthermore, 

 

                       ,    for        .                                                          (3.5)  

 

On the other hand,  for  each            and       ,  

 

                                                                                           .                 (3.6) 

 

From equation (3.2), one obtains, for            , 
 

                           ∑                           
.                                 (3.7) 

 

As    , we have     . Thus,                                   for        . Taking the limit as     on 

both sides of equation (3.6), one obtains 

                                for each         . 

This implies that equation (2.3) holds. Therefore, the hybrid multi-agent system (2.1) with protocol (3.1) reaches 

scaled consensus. 

(Necessity) Suppose that G does not contain a spanning tree. Then, by Lemma 3, we have 

                        
 , which implies that                                   for some           

Hence,  the hybrid multi-agent system (2.1) cannot achieve scaled consensus. 

 

Case II: All agents communicate with their neighbours and update their control inputs in a sampling time   . 

However, different from Case I, we assume that each continuous-time dynamic agent can observe its own state in real 

time. Then, the consensus protocol for hybrid multi-agent system (2.1) is defined by: 

 

{
 
 

 
              ∑                      

    

                                           

                ∑                       

    

                                                   
                                                    

 

where             is  the  weighted  adjacency  matrices  associated  with  the  graph  ,              for  all     

is  the sampling period and        is the signum function defined as above. 

 

Theorem 2. Let   be a directed connected communication network of the hybrid multi-agent system (2.1) and      

be any scalar scale of agent  . Assume that     
 

        
. Then, the  system (2.1) with protocol (3.8) reaches scaled 

consensus to                if and only if   contains a spanning tree.  

 

Proof. (Sufficiency) Since      and by equation (3.8) , we have  

          

{
                     (

   
 ∑    

 
             

∑    
 
       

)∑                           
                       

                         ∑                           
                                                    

                                  

 

Accordingly, at time     , the states of agents are 
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{
 
 

 
                      (

    ∑    
 
        

∑    
 
       

) ∑                       

    

                       

                         ∑                       

    

                                                    

                                 

 

Let                                 
                                    and                          . 

Then, equation (3.3) can be written as  

 

                                           for                                                       (3.11) 

 

where         
   

 ∑    
 
        

∑    
 
       

     
   

 ∑    
 
        

∑    
 
       

            

Because  
   

 ∑    
 
        

∑    
 
       

 
 

       
  for        , and    

 

        
, one obtains       

 

        
   for  . 

Since   contains a directed spanning tree and     
 

        
, by Lemma 3, we have                        

 , 

where   is nonnegative and satisfies                  . Thus,                                        
   

      . As a consequence, equation (2.2) holds. Moreover, 

 

                       ,    for        .                                                            (3.12)  

From equation (3.10), one obtains, for            , 
 

                           (
   

 ∑    
 
        

∑    
 
       

)∑                           
.                             (3.13) 

As    , we have     . Thus,                                   for        . 

Using the same argument of the proof of Theorem 1, once obtains 

                                for each          

Therefore, the hybrid multi-agent system (2.1) with protocol (3.9) reaches scaled consensus. 

(Necessity) The proof is similar to the proof of  Necessity part of  Theorem 1. 

 

4. Simulations 
In this section, an example have been provided to demonstrate the effectiveness of theoretical results in this work. 

Example 1. Assume that there are   agents consisting of six continuous-time dynamic agents and two discrete-time 

dynamic agents, denoted by     and    , respectively.  Let                                                 . The 

communication network with     weights is shown in Fig. 4.1.1, where the dashed lines mean that each agent exchanges 

information at time     . 

                                                 
Fig. 4.1.1: A connected directed network  . 
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G 

G 

G 

Let the scalar scales be (2,-2, 1,-1, 3, 1.5, -2, -1). It can be noted that   is balanced and contain a directed 

spanning tree with        and       . Since the sampling period                      
  . By 

using the consensus protocol (3.1), the state trajectories of all agents are shown in Fig. 4.1.2, which is 

consistent with the sufficiency of Theorem 1. 

                                         

Fig. 4.1.2. The state trajectories of all agents with scalar scales (2, −2, 1, −1, 3, 1.5, −2, −1) using the consensus protocol (3.1) and 

communication network G with h = 0.2. 

 

However, if sampling period                      
  , the state trajectories of all agents can not 

reach scaled consensus under the protocol (3.1) (see Fig. 4.1.3). 
 

 
Fig. 4.1.3. The state trajectories of all agents with scalar scales (2,-2, 1,-1, 3, 1.5, -2, -1) u s i n g  the consensus protocol (3.1) and 

communication network G with     . 

 
 

5. Discussion And Conclusion 
In this work, scaled consensus problems for the hybrid multi-agent system (2.1) consisting of directed 

communication networks have been studied. Two consensus protocols are proposed based on the interactions 
among agents. Firstly, we assume that the directed communication networks contains a spanning tree with 
            

   and interactions among agents occur in the sampling time   .  Hence, by Theorem1 and 
protocol (3.1), the hybridmulti-agent system (2.1) achieves scaled consensus to               .  

Secondly, assume that the directed communication networks contains a spanning tree with   
          

    and interactions among agents occur in the sampling time    but the continuous-time 
dynamic agents can observe their own states in real time. By Theorem 2 and protocol (3.8), we show that the 
hybrid multi-agent system (2.1) achieves scaled consensus to               . 
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Moreover, under the consensus protocols (3.1) and (3.8), we see that if      for all  , the scaled 
consensus results can reduce to the general consensus, which shows generalization of our main results 
(compare with Zheng et al.,[29]). However,  if              

  ,  the hybrid multi-agent system (2.1) cannot 
achieves scaled consensus to (β1, . . . , βn) under protocols (3.1) and (3.8).  
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M. Am é, C. Detrain, 

N. Correll, A. Martinoli, F. Mondada, R. Siegwart, and J. L. Deneubourg, “Social integration of robots 

into groups of cockroaches to control self-organized choices,” Science, vol. 318, no. 5853, pp. 1155–1158, 

2007. 

[22] P. Antsaklis, “A brief introduction to the theory and applications of hybrid systems,” 01 2000. 

[23] Y. G. Sun, L. Wang, and G. Xie, “Average consensus in networks of dynamic agents with switching 

topologies and multiple time-varying delays,” Systems & Control Letters, vol. 57, no. 2, pp. 175 – 183, 

2008. 

[24] Wei Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing 

interaction topologies,” 

IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005. 

[25] G. Guglieri, F. Maroglio, P. Pellegrino, and L. Torre, “Design and development of guidance navigation 

and control algo- rithms for spacecraft rendezvous and docking experimentation,” Acta Astronautica, vol. 

94, no. 1, pp. 395–408, 2014. 

[26] S. Roy, “Scaled consensus,” Automatica, vol. 51, pp. 259–262, 2015. 

[27] C. Altafini, “Consensus problems on networks with antagonistic interactions,” IEEE Transactions on 

Automatic Control, vol. 58, no. 4, pp. 935–946, 2013. 

[28] Y. Shang, “A combinatorial necessary and sufficient condition for cluster consensus,” Neurocomputing, 

vol. 216, pp. 611– 616, 2016. 

[29] Y. Zheng, J. Ma, and L. Wang, “Consensus of hybrid multi-agent systems,” IEEE transactions on 

neural networks and learning systems, vol. 29, no. 4, pp. 1359–1365, 2017. 

[30] G. Chris and R. Gordon, Algebraic Graph Theory, vol. 207. 01 2001. 

[31] R. A. Horn and C. R. Johnson, Matrix Analysis. New York, NY, USA: Cambridge University Press, 

2nd ed., 2012. 


