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Abstract – In this paper, the leader-follower formation control of two differential-drive mobile robots is addressed using the inter-

robot distance and the heading angle. To avoid singularities in the control law, a point located at a certain distance from the midpoint of 

the wheel axle, is considered as the output of the system. The proposed control strategy is designed using a second-order sliding mode 

and, therefore, is robust against bounded disturbances. It is worth noting that the decentralized control strategy only depends on local 

information about distance and the heading angle measurements. Real-time experiments show the performance of the approach. 
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1. Introduction 
The coordination of multiple mobile robots has been studied widely by researchers and practitioners. The theoretical 

studies allowed the development of several mobile robots applications in the industry, vigilance, package delivery, home 

services, logistics, among others [1]. The multiple robot coordination extends the classical point convergence and 

trajectory tracking control strategies applied a unique mobile robot for the case of the collective behaviours like the 

convergence to formation patterns, formation tracking, dispersion, containment, inter-robot collision avoidance, etc [2].  

The formation tracking requires the convergence of a set of robots to a formation pattern and a trajectory concurrently. 

The most basic scheme of formation tracking is the case of two robots. A leader robot follows a desired trajectory while the 

follower agent is controlled to achieve a desired relative posture and orientation with respect to the leader robot [3]. In a 

decentralized scheme, the control methodology depends on the local measurements of relative distance or angles [4]. In 

[5], the authors present the extension of leader-follower behaviours, for the case of a combined set of kinematic models of 

omnidirectional and differential-drive wheeled mobile robots. The approaches are based on the decentralized 

measurements of distance and heading angles. Nevertheless, if the leader and follower robots are the so-called differential-

drive mobile robots, a restriction appears to define a linearizing feedback control law, when the angle between agents falls 

in  
 

 
. 

On the other hand, the Slide Mode Control (SMC) methodology [6] is a robust control based on relay control, despite 

his chattering drawback.  In order to avoid the chattering effects by the discontinuous nature of the SMC, a second-order 

SMC algorithm [7] is proposed to control the leader-follower scheme. This approach is a continuous controller with all the 

main properties of a first-order SMC such as eliminate disturbances or perturbations. Additionally, the connection between 

leader and follower has been developed by using Cartesian coordinates in [8]. 

This paper focuses on design a robust control strategy to solve the leader-follower formation control based on the local 

measurements between a pair of differential-drive mobile robots. Such control strategy is designed using a second-order 

SMC depending on the feedback of the distance and heading angle. Furthermore, the main contribution of this article is 

avoid the angle restriction appeared in the leader-follower differential-drive scheme. To do this, the output of the kinematic 

model defined as the control target is a point located at a distance from the midpoint of the wheel axle. 
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2. The leader-follower problem 
 

Consider a set of two differential-drive mobile robots moving in a horizontal plane according to Fig. 1. 

 

 

Fig. 1. Schematic diagram for two differential-drive mobile robots under the leader-follower approach. 

 

The equations describing the kinematic motion of these differential-drive mobile robots are defined as 

 ̇   (  )    (1) 

for        where the sub-index L corresponds to the leader agent and F is the follower. The system matrix  (  ) is 

defined by  

 (  )  [
      
      
  

], 
(

2) 

where    [   
 
  ]  is the state vector with xi, yi      as the position in the plane of the i-th agent,       is the 

orientation angle respect to the horizontal axis and    [    ]  is the control input vector with      the longitudinal 

velocity and        the angular velocity. 
 
 
2.1 Problem Statement 

It is well known that when trying to control the coordinates xi, yi from (1), it cannot be stabilized with a 

continuous and time-invariant control law due to singularities in the controller [9]. Thus, it is proposed to study the 

kinematics of a point    located at a distance   from the midpoint of the wheel axle, in order to avoid such 

singularities. This point is given by 

   [
   
   
]  [

         
 
 
       

]. 
(

3) 

   
for      . The kinematics of point    is given as 
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  ̇  [
 ̇  
 ̇  
]    (    )  , 

(

4) 

with 

 (    )  [
            
           

], 
(

5) 

as the non-singular decoupling matrix since    ( (    ))   . 
 

 
2.2 Leader-follower formation based on distance and heading angle 
 

It is desired to obtain a dynamic model that describes the motion of the robots as a function depending on the 

distance   and the heading angle    [3],[5], i.e. 

 ̇  [ ̇  ̇]
   (                  )  (

6) 

Note by Fig. 1, that     is the Euclidian distance measured from the front point of the follower to the front point 

of the leader, with     and       being the components of  ⃗. Also,      is the heading angle measured from the 

distance vector  ⃗. Therefore, the main goal is to design a control strategy such that the follower robot keeps a desired 

distance    and a desired heading angle    with respect to the leader robot. 

 

Let us define            and              (see Fig. 1), then 

  | ⃗|  √(       )  (       )
 
 √       , 

(7) 

        
  (

       

       
)        

  (
  

  
). (8) 

The time-derivative of        and    are obtained using (4)-(5) and (7)-(8) as follows 

 ̇  
     ̇       ̇

 
, (9) 

 ̇    ̇  
   ̇       ̇

  
, (10) 

 ̇                                   , 
 

(11) 

 ̇                                   . (12) 

 

Substituting (11)-(12) into (9)-(10) and considering        (    ) and        (    ), the 

kinematics of    and   is expressed as follows 

[ ̇
 ̇
]  [

   (       )      (       )

 
 

 
   (       )  

 

 
   (       )

] [
  
  
]  [

   ( )      ( )
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   ( )

] [
  
  
]. 

 

(

13) 

 

In matrix form, the following system is obtained  

 ̇   (          )    (   )  , (

14) 

with    [  ]  as the state vector and matrices   and   defined as 
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]. 

 

Note that the matrix B is no singular since    ( )   (
 

 
     ). If      and       (    )  for   

      ,  then any angle   can be chosen between robots  for     . It will prevent robots from colliding with each 

other.    
 

Let us define the desired vector      [    ]   Therefore, it is possible to define the tracking error as      

  . The dynamics of the tracking error is obtained as follows 

 ̇   ̇    ̇, (15) 

 ̇   (            )    (   )    
 ̇. (16) 

 

Note that (16) can be simplified to a perturbed dynamic error system as 

 ̇    (   )     ( ), (

17) 

where   ( ) is the perturbation vector of the follower robot that must be estimated or cancelled, given by 

  ( )   (            )     ̇. (

18) 

 

3. Control design 
In this section, a second-order SMC is designed so that the leader follows a desired trajectory while the follower 

maintains a distance and heading angle from the leader. 

 

3.1 Second-order SMC for the follower robot 

Consider the perturbed dynamic error of the follower robot given in (17) and the following slide mode surface using 

the tracking error 

        ∫     ,           (19) 

where    is a     matrix gain. Taking the time-derivative of (19), it is obtained    

  ̇   ̇        (20) 

Then, substituting the error dynamics (17), it gives 

  ̇    (   )     ( ), 
 

(

21) 

where the total disturbance is defined as follows 

  ( )    ( )      . (

22) 

Therefore, a second-order SMC is proposed for the follower agent as 

    (   )  (      ), (23) 

 ̇        (  ), 
with the control gains defined as 

            (24) 

   [
    
    

],         [
    
    

],     and        [
    
    

]. 
(

25) 

with                     and     are positive constants. 
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3.2 Second-order SMC for the leader robot 

Consider the kinematics of the leader robot given in the equation (4) 

  ̇    (    )  .    (26) 

Let us define the leader tracking error        
 

    with      [  
   

 
]
 

 as the desired trajectory. Taking the time-

derivative of the leader tracking error, it is obtained 

 ̇    (    )    
 

. (23) 

Using (23), the following slide mode surface is proposed  

        ∫     ,           (24) 

where    is a     matrix gain. Taking the time-derivative of (28), it gives 

  ̇   ̇      , (29) 

then, substituting the error dynamics (23) into (29) 

  ̇    (    )     ( ), (

30) 

where the total disturbance of the leader robot is defined as follows 

  ( )        
 

. (

31) 

Thus, a second-order SMC is proposed for the leader robot as 

      (    )
  (       ), (32) 

  ̇        (  )  (33) 

with the controller gains defined as          

   [
    
    

],         [
    
    

],     and        [
    
    

]. (34) 

where                      and     are positive constants. 

 
4. Experimental Implementation  
The experimental platform is described in the first part of this Section. After that, a real-time experiment is presented 

showing the performance of the proposed control strategy. 

 

4.1 Experimental setup for the leader and follower robots 
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Fig. 2 Leader and follower differential-drive mobile robots. 

Fig. 2 shows the prototypes of the differential-drive mobile robots used in the experimental work. Each robot was 

using two 12V POLOLU 37D gear motors, with gear ratio      and a built-in encoder with 64 counts per revolution. 

STM32F4 Discovery board is used as a data acquisition device. The communication between the computer and the 

done in real-time using the publicly available “waijung1504a” Matlab/Simulink library via Bluetooth using a ESP32 

microcontroller. The wheel radius is given by       [m] and the distance         [m] from the mid-point of the 

wheels’ axle to the frontal point. Furthermore, two PI controllers with anti-windup are implemented to control the 

velocity of each motor using        sampling time. The gains of the on-board PI controllers were established for each 

motor to                   and         . The position and orientation of the differential-drive mobile robots are 

measured using a set of  10 infrared VICON cameras with resolution of        [m] and a workspace of     [m
2
]    

with a sampling time of      [s]. 

 

4.2 Experimental results 
The trajectory in the plane of both mobile robots is depicted in Fig. 3. The leader robot is controlled to follow a 

circular trajectory of 0.5[m] of radius while the follower robot keeps a desired distance       [m] and a desired 

heading angle    
 

 
 radians.  The gains for the follower robot were selected as           3,     2, 

            0.01,             and for the leader robot as           3,       4,        
    0.01 and         .  

 

 
Fig. 3. Trajectories of the leader and follower robots. 

 

The position error of the leader robot is illustrated in Fig. 4. It becomes evident that these errors oscillate around 

zero. This is due to the fact that there are noise measurements, non-modeled dynamics, among others. The Fig. 5 

presents the control inputs required for the leader robot to perform his motion and reach the desired trajectory. On the 

other hand, the distance and heading angle between robots is shown in Fig. 6. Note that the distance and heading angle 

converge to their desired values. Finally, Fig. 7 presents the control inputs for the follower robot. 
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Fig. 4. Position error for the leader. Fig. 5. Control inputs for the leader. 

 
        

  
Fig. 6. Distance and formation angle between the follower 

and the leader. 
Fig. 7. Control inputs for the follower. 

 

 

5. Conclusion 
In this work is proposed a robust control strategy based on a second-order SMC to achieve a formation control 

between a leader and follower robot with differential-drive kinematical model. The leader robot converges to a desired 

trajectory while the follower agent converges to a desired distance and heading angle with respect to the leader. The 

formation control law is designed to be dependent only on the local measurement of the distance and heading angle. 

Therefore, the approach becomes a decentralized alternative to be implemented using a local sensor on board the robots. 
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The performance of the proposed control law is validated by real-time experiments. In further research, the leader-follower 

approach will be extended to other non-holonomic mobile robots and other formation graphs.  
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