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Abstract - Autonomous exploration and mapping is an important topic in the research and development of robotics intelligence. In this 
paper, we present an efficient, coordinated multi-robot exploration. Each robot uses a hybrid exploration strategy to exploit the advantages 
of global and local explorers, namely frontier-based and Rapidly exploring Random Tree. Next, to coordinate robots, we propose a 
strategy that is inspired by both market and pheromone-based approaches to increase the information gain at each step while reducing 
the exploration cost. The proposed method is evaluated with a 2D simulation setup through several experiments. Compared with the 
existing methods, the proposed approach yields a more efficient search by reducing overlap between robots. 
Keywords: Autonomous Exploration and Mapping, Coordination, Multi-robot exploration, Task allocation 
 
1. Introduction 

Mobile robots can be deployed in various robotics missions [1], including search and rescue [2], disaster management, 
environmental protection [3], and planetary exploration [4]. Challenging environments can be dangerous to human operators 
[5, 6]. To deploy an autonomous robot in these areas, it is essential to equip them with an exploration and mapping strategy, 
which is a fundamental problem for mobile robots. One of the main challenges is to reduce exploration time while increasing 
the map quality [6, 7]. The collaborative exploration with multiple robots brings several advantages, including increased 
robustness [8], reliability [9], and reduced overall task completion time [10]. However, a multi-robot system brings new 
challenges, including the design of an efficient communication strategy among robots [11], computation complexity, 
avoiding conflicts such as exploring the same area by multiple robots [12], and integration of maps generated by multiple 
robots [13]. This paper is aimed at presenting a reliable, collaborative exploration strategy to minimize the overlap among 
robots exploring areas.  

In a multi-robot structure, each single robot must integrate motion planning, mapping and exploration techniques to 
explore an unknown environment effectively [14]. The two most well-known categories for single robot exploration 
strategies are frontier-based and sampling-based approaches. In the former, robots extract frontiers (the border between 
known (explored) and unknown areas) and move towards them sequentially. Usually, each time that a robot reaches a frontier, 
a frontier detection algorithm will be applied to detect the next frontiers [15]. In this paper, we detect frontiers based on the 
Fast Frontier Detector (FFD) technique [16] to limit the search area and increase exploration speed. We use an incremental 
frontier detection technique to find new frontiers and update the target frontiers while moving toward the initially selected 
frontier. While frontier-based approaches guarantee the full coverage of the environment, they are slow and computationally 
expensive [17]. The sampling-based approaches find the next position to be explored faster than the frontier-based methods 
[17]. One of the most well-known sampling-based approaches is Rapidly exploring Random Tree (RRT), in which a 
randomized data structure, known as a tree, is expanded from the starting point (the robot’s location) and moves to a frontier 
point [18]. This tree expands in random directions with a bias toward the unknown areas of the environment. [19] and [20] 
used RRT as the only frontier detector. However, RRT does not utilize an optimization function, and since it grows randomly, 
it is prone to get stuck locally or perform an inefficient exploration [17]. Hybrid exploration strategies enhance the efficiency 
of exploration and mapping by creating a balance between exploration and exploitation. Discovering and identifying 
unknown portions of an environment can be considered as a reward for exploration algorithms. Frontier-based techniques, 
as an exploitation technique, maximize short-term rewards at each step, which does not necessarily lead to an acceptable 
long-term reward. On the other hand, RRT could increase the long-term reward by adding randomness to the exploration 
[21]. In this project, the frontier-based algorithm and RRT are used as the global and local explorers, respectively.  
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Multi-robot exploration can be considered as a group of single robots equipped either with a coordination strategy or 
not. The two ends of the coordination strategy spectrum are centralized and decentralized approaches [22]. The fully 
centralized approaches generate optimal solutions by considering information gathered by all robots. However, they are 
computationally expensive and are usually not developed well for dynamic environments [22]. On the other hand, in a 
decentralized method, robots are fully independent in making decisions on their own. Unlike centralized approaches, these 
methods are robust to changes in the environment. The main disadvantage of these methods is that they may result in 
suboptimal solutions [12]. The fundamental aspect of the coordination strategies, either centralized or decentralized, is task 
planning, in which the two problems of task decomposition and task allocation are studied. Task planning is key to increasing 
exploration efficiency by allocating frontiers efficiently to robots in a way to avoid overlap as much as possible. Several task 
allocation strategies for different purposes have been studied, including distributed constraint optimization, dynamic 
programming, market-based approach, and swarm intelligence [23, 24, 25, 26]. Among all the current methods, the market-
based approach is one of the most suitable strategies for task allocation because it is highly efficient and can be easily 
implemented. Market-based approaches have elements of both centralized and decentralized methods such that computation 
is distributed among all robots while a central unit allocates tasks to all robots. [20] used RRT and market-based approaches 
as exploration and coordination strategies, respectively, and they have studied multi-robot exploration as an optimization 
problem. RRT is used as the only exploration strategy which may not find the optimal global solution. 

The present study introduces a new market-based approach, enhanced with a bioinspired technique. The anti-pheromone 
idea comes from the ant colony optimization technique: when ants move, they mark their path with a chemical pheromone 
[27, 28]. Ants move toward paths with a stronger pheromone. [25, 29] used the opposite idea as the only task allocation 
mechanism to prevent overlap between areas covered by different robots. [30] has used market-based auction with the 
pheromone map to control the movement of aerial vehicles to explore non-visited areas while handling network connectivity 
issues. The current paper combines the anti-pheromone and market-based task allocation techniques along with the hybrid 
exploration strategy to maximize autonomous exploration efficiency by reducing the overlap between robots.  The proposed 
task allocation module in this paper is robust against the initial distribution of robots and prevents overlapping. Another 
advantage of the proposed method is that it is robust against robot failures by adapting to variable numbers of robots during 
a mission. To evaluate the performance of the proposed approach, simulation environments are designed and programmed 
in Python. In short, the novelty of this paper is applying a hybrid exploration strategy with an enhanced market-based task 
allocation algorithm, which results in safe and efficient exploration of the environment such that the overlap between robots 
is minimized and the exploration is efficient. 

 
2. Methods 

An occupancy grid map is used to represent an indoor environment that robots need to explore. A map is divided into 𝑛𝑛 
small grid cells, and each robot occupies a cell. There are three types of cells in an occupancy grid map: known free, known 
occupied (e.g. objects or wall) and unknown, represented with the probabilities of 𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖)) < 0.5,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖)) >
0.5,𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖)) = 0.5 where 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, respectively. In a multi-robot system, each robot creates a local map and extracts 
frontiers based on, e.g., Light Detection and Ranging (LIDAR) sensor measurements. The local maps, generated by different 
robots, are merged to form a global map. Then all frontiers are saved in a common list known as the global frontiers.  When 
a robot moves, its sensors can detect new areas, so the global frontiers list gets updated constantly via the detector module, 
followed by the clustering and filtering module. The K-means clustering algorithm [31] is used to cluster the detected 
frontiers. The centroid of some clusters may lie on unknown cells, and thus it is not clear whether the centroid is free or 
occupied. If a centroid is in an occupied cell, the robot could hit an obstacle, which reduces safety significantly. Even if the 
centroid is in the free space, it may not be reachable, i.e., there may not be a feasible path that the robot can take to reach the 
centroid. Thus, the filtering module is required to remove the centroids which are in the unknown cells. The task allocation 
module distributes the filtered frontiers between robots. Then, the exploration module defines the next position that a robot 
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should move to, referred to as an exploration node, by choosing between the global exploration node provided by the task 
allocator module or the local exploration node by the local explorer. RRT, as the local explorer, is used to add randomness 
to improve the long-term reward. The robot expands a random tree in its local neighbourhood until the last node lies in an 
unknown cell. Since it is not guaranteed that the selected point lies in the free space, the node before the last one is considered 
the exploration goal. This modification increases the safety of the exploration significantly. Then each robot uses the motion 
planning module to generate a path toward the exploration node based on the known map [32]. We use A* as the planner to 
provide an obstacle-free path in the partially known environment map [33]. The Bayesian update is used to generate an 
occupancy grid map during the exploration [34]. Since the focus of this paper is on exploration and task allocation, we 
assume that the Simultaneous Localization and Mapping (SLAM) [35] is well established and can be implemented 
successfully. The task allocator’s duty is to allocate the best possible frontier to each robot. To reach this goal, the task 
allocator needs to solve an optimization problem considering the utility function. To evaluate each frontier for a robot, the 
following terms are considered. 

1) Cost (𝐶𝐶): The cost is defined as the distance between the current robot’s position and the frontier position, represented 
by subscripts 𝑐𝑐 and 𝑓𝑓, respectively in Equation (1). The Euclidian distance is used in this paper to approximate the cost. The 
obtained results show that the approximation leads to a proper solution while it is not computationally expensive. 

𝐶𝐶  =  ��𝑥𝑥𝑓𝑓 − 𝑥𝑥𝑐𝑐�
2  + �𝑦𝑦𝑓𝑓 − 𝑦𝑦𝑐𝑐�

2  . (1) 

 2) Information Gain (𝐼𝐼𝐼𝐼): The information gain is considered as the predicted information that a robot would gain if 
it were located at a specific frontier. However, it is not possible to evaluate the exact information gain value. A circle with 
the LIDAR range radius is formed at each frontier, and the number of unknown cells lying in this circle is considered as the 
information gain value. In the single robot case, the robot moves toward the frontier with the maximum information gain and 
the minimum cost, defined by the utility function as follows. 

𝑈𝑈𝑁𝑁  =  𝛼𝛼𝐼𝐼𝐼𝐼𝑁𝑁  −  𝛽𝛽𝐶𝐶𝑁𝑁, (2) 
where 𝛼𝛼 and 𝛽𝛽 weigh the importance of the information gain and cost respectively. The information gain and the cost have 
different orders of magnitude, so they are normalized between 0 and 1. In order to increase the safety and efficiency of 
exploration, frontier re-sampling takes place when the robot reaches half of the path length to the initially chosen frontier.  

The utility function is further modified for the multi-robot system. In this paper, for multi-robot exploration, the task 
allocator module is an enhancement of the simple market-based approach modified by a bio-inspired technique. In the 
simplest market-based approach, a set of items (frontiers) is offered by an auctioneer, and the participants (robots) submit 
their bids (the cost of visiting frontiers) for each item (frontier). The task allocator tries to maximize the global utility function 
by distributing tasks among all robots in a way to reduce total overlap between robots. The utility function introduced in 
Equation (2) can be used by the task allocator. However, using this simple optimization function could give rise to several 
problems. There is a possibility that the selected frontier does not lie on the local map of the robot, and there is no clear path 
to this point, even given the global map. To solve this issue, the frontiers outside of the local map of each robot are penalized 
in the utility function with a parameter, shown by 𝑐𝑐. The value of 𝑐𝑐 for the frontiers inside the local map of the robot is 0. If 
the frontier is outside of the local map of a robot, it is penalized by a constant value of 2. Finally, a matrix consisting of all 
𝑐𝑐 values is normalized between 0 and 1. The anti-pheromone mechanism, shown by 𝑝𝑝 in the utility function, is introduced to 
encourage robots to move toward unseen areas by avoiding exploring the already explored areas. To achieve this, the 
percentage of the area which is covered in the neighbourhood of frontiers is compared, and the frontiers that are in locations 
with a larger percentage of explored areas are penalized more. The value of 𝑝𝑝 for each frontier is equal to the number of free 
cells that are in 0.75 of the lidar range. A matrix including all 𝑝𝑝 values is normalized between 0 and 1. To avoid the possibility 
of assigning two or more close frontiers to robots which reduces the overall efficiency, in this paper, each robot is assigned 
an identification number (ID). The robot with the smallest ID is chosen as the leader, and the frontier with the highest utility 
is assigned to the leader. The cost of moving to the frontiers near the selected frontiers is increased for other robots by a 
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factor of 5. Thus, the tendency to move to adjacent areas is reduced significantly. In summary, considering the case, there 
are 𝑁𝑁 robots and 𝑀𝑀 frontier, the task allocator calculates the utility of all 𝑀𝑀 frontiers for the first robot and the frontier with 
the highest utility would be assigned to the first robot. Then the values of (𝑀𝑀− 1) frontiers are updated for the second robot, 
and the frontier with the highest utility goes to the second robot again. This process continues until all robots have their own 
specific frontier. The modified utility function is as follows 

𝑈𝑈𝑁𝑁  =  𝛼𝛼𝐼𝐼𝐼𝐼  −  𝛽𝛽𝐶𝐶  − 𝜆𝜆𝑐𝑐  −  𝛾𝛾𝑝𝑝, (3) 
 

where 𝑐𝑐 and 𝑝𝑝 are weighted by 𝜆𝜆 and 𝛾𝛾, respectively. 
3. Results and Discussion 

The proposed coordinated exploration strategy is studied on mobile robots equipped with LIDAR sensors. Figure 1 
illustrates different indoor simulation environments used for evaluation. Each map is 104 m2 with equal height and width, 
while each robot’s LIDAR range is 20 meters with 360 degrees field of view. 

    
a b c d 

Figure 1. Static simulation environments, including maps a,b,c, and d. The initial location of three robots and their LIDAR range 
is represented in sub-figure (a). 

The coefficients in Equation (3)  are set to 𝛼𝛼 = 0.8, 𝛽𝛽 = 2,  𝜆𝜆 and 𝛾𝛾 = 1. These parameters are defined based on the multi-
robot exploration efficiency and several experimental tests. The main evaluation metric in this paper is efficient map 
coverage. The number of robots in a multi-robot system plays an important role in the efficiency of the exploration. Figure 
2 shows increasing the number of robots increases the coverage of the map significantly in the same exploration time, 
considering the same speed for all robots.  

    
a. One robot b. Two robots c. Three Robots d. Four robots 

Figure 2. Exploring map c with different numbers of robots while exploration times are the same. 

Figure 3 shows the average exploration time required to cover 50% of the map c for different numbers of robots. It is 
clear there is no considerable difference between the mean exploration time of three and four-robot scenarios. Therefore, 
increasing the number of robots from three to four will not improve the exploration’s efficiency significantly, and three is 
considered as the optimal number of robots in our simulation environments. 
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Figure 3. Exploration time required for 50% of map coverage versus the number of robots. 

Figure 4 illustrates the maps created by a group of three mobile robots when about 90% of the map is explored. The path 
each robot followed during the exploration is shown. It is clear there are few overlaps between robots’ paths. If there is an 
overlap between robots’ paths, it is because the robot has fully explored its own local environment, and it is going to help 
other robots to complete the global map. 

    
a b c    d 

Figure 4. Exploration of four static simulation environments with different structures by three robots.  

We also studied the effects of the anti-pheromone mechanism in the proposed coordination strategy. Figure 5 compares 
the result of exploration with anti-pheromone (𝛾𝛾 > 0) and without anti-pheromone (𝛾𝛾 = 0) , with three robots. Initially, 
because of the initial distribution of robots, the environment is not very well divided between robots, and there are some 
overlaps between their local maps. However, with the anti-pheromone mechanism, after a while, this issue is solved. 
Considering Figure 5 a and b, it could be concluded that the anti-pheromone mechanism reduces the exploration time required 
to cover 90% of the map since there are more overlaps between green and red robots in subfigure b. Moreover, the exploration 
time for Figure 5 a and c is the same, but the map coverage is less in subfigure c. 
 

   
a b c 

Figure 5. Effects of the anti-pheromone mechanism: a. with anti-pheromone mechanism and 90% map coverage, b. without anti-
pheromone mechanism and 90% of coverage; the exploration time is more than (a), c. without anti-pheromone mechanism and the 

same time as (a). 
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Figure 6 examines the robustness of the proposed algorithm to the initial distribution of robots. Considering Figure 6 b, 
in the beginning, all robots are located very close to each other. However, after a while, they are distributed evenly in the 
environment. This shows that the exploration process is not dependent on the initial location of the robots, and robots are 
able to explore an environment efficiently. 

  
a b 

Figure 6. Comparing effects of the initial distribution of robots: a. different initial locations, b. same initial location 

Finally, Figure 7 shows that even if one robot fails, as shown by the green colour, the exploration task is not stopped, 
and other robots continue to communicate and finish the task because of the decentralized properties of the proposed 
coordinated exploration strategy. 

 
Figure 7. 90% of map coverage after one of the three robots fails.  

 
4. Conclusion 

In this project, an effective coordinated exploration strategy is analysed. The coordination strategy is mainly 
inspired by the market- and pheromone-based approaches to reduce the overlap between robots as much as possible. 
Moreover, the exploration strategy is a combination of frontier-based and RRT as global and local explorers, 
respectively. The exploration task is distributed among explorers in a way to benefit from both exploration and 
exploitation advantages. The main objective of the suggested approach is to increase the map coverage while reducing 
the exploration cost. The effectiveness of the method is studied through several simulations, and results prove that this 
strategy can explore an environment efficiently with minimum overlap. In future works, we will study the effect of 
learning-based strategies to improve exploration efficiency further. 
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