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Abstract: A class of uncertain nonlinear discrete-time systems is considered for robustness analysis of partial feedback 

linearization control based on known nonlinearities. It is shown that asymptotic stability of the origin can be maintained in the 

presence of unknown nonlinear perturbations with growth bounds inversely proportional to the square root of the order of the 

system. An analytic expression is derived using linear matrix inequality techniques. The theoretical result is verified by extensive 

MATLAB simulations as to the tightness of the bounds presented. 
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1. Introduction 
This study is on the robustness of the feedback or global linearization control applied to a class of uncertain nonlinear 

discrete-time system models.  State-space and input-output linearization are now well-established control techniques [1].  They 

have been used in many applications such as robotics [2] and chemical process control [3] among many.  The discrete-time version 

of feedback linearization was presented in [4] for both input-output and state-space linearization. 

This technique has a known robustness issue since knowledge of the nonlinear dynamics is never exact.  Therefore, 

robustification of feedback linearization by other control methods have been proposed in the literature.  For example, adaptive 

control is used in conjunction with feedback linearization in [5], while [6] uses H control together with input-output linearization 

for discrete-time systems given by Takagi-Sugeno fuzzy models.  In [7], a learning algorithm is used to estimate and cancel 

nonlinearities. A recent comparison of several robustified feedback controllers can be found in [8].  

Robustification effectiveness requires either matching conditions to be known for the uncertain part or extensive data-

processing to result in an external representation of the uncertainty to aid in the robust control.  In this present paper, we assume 

neither and instead analyse the inherent robustness of the discrete-time feedback linearization scheme based on known 

nonlinearities as applied to a class of nonlinear discrete-time systems with unmodelled dynamics. Work in this vein can be found, 

e.g. in [9]-[11] with applications to robotic control. 

In the present work, the choice of our model and particular knowledge regarding the nature of the nonlinearities allow for the 

design of a control resulting in a linear discrete-time system in controllable form with all its eigenvalues at the origin where the 

uncertainty appears as an additive perturbation with a growth bound.  The stability robustness of this feedback linearized system to 

unknown nonlinear perturbations is analysed. Linear matrix inequality (LMI) techniques [12] are used to derive an expression for 

the growth bound on the nonlinearities, whose tightness is investigated in extensive simulations.  

 

2. Problem Formulation 
The following class of nonlinear discrete-time systems is considered for this study: 

( ) ( )k k k ky g x h x u 
 

(1) 
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(2) 

and uk, yk are scalar inputs and outputs.  The nonlinear functions, g and h, are partially known.  The function g takes the 

following form 

1 2( ) ( ) ( )k k kg x g x g x 
 

(3) 

where 
1g  is the known and 

2g  is the unknown part.  For h, there are two choices for the unknown part which can be either 

additive or multiplicative, 
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These nonlinearities satisfy the following bounds, which are assumed to be known but the actual forms of the nonlinearities 

are not assumed to be known 

  

(5) 

 

Using the definition of the state vector in (2), equation (1) is written in state-space form as 

 
(6a) 

with 

 

(6b) 

Using the feedback linearization control based on the known dynamics: 

 

(7) 

yields 

 (8a) 

with 

 

(8b) 

for the additive 
2g , and 

 
(8c) 

for the multiplicative 
2.h   

Therefore, a unified approach to stability robustness for both types of 
2h  is possible with a single upper bound  as follows:  
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for 
kx  in a ball around the origin (0, ) nB r  R where 

 

(10a) 

or 

 
(10b) 

where  can be considered as the maximum slope of an equivalent nonlinearity composed of known and unknown nonlinear 

functions given by (5). 

    This bound can also be expressed in matrix inequality form as 
2 0

0 .
0

kT T

k k

k

xI
x f

fI

   
            

(11) 

    The analysis of the stability is based on the discrete-time algebraic Lyapunov matrix equation 
TP A PA Q 

 
(12) 

with P > 0 and Q set to the identity matrix, I. The P matrix that solves the Lyapunov equation for a linear, deadbeat control 

system in canonical form is found as 
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Theorem 1: Given the model (1) and (2) of a nonlinear discrete-time system with the bounds on the nonlinearities given in (5) 

and the partial feedback linearization scheme given in (7), the fixed point 0 is asymptotically stable if the maximum slope of the 

nonlinearity, , in (9), (10a) and (10b), satisfies  
1

.
n

   

Proof: Given the system described in (1), using the Lyapunov function candidate 
T

k k kV x Px
 

(14) 

and  

1 0k k kV V V   
 

(15) 

we obtain 
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The inequality of 16a can also be expressed as 
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   The canonical form representation of the system from (6b) and the Lyapunov equation result from (12) and (13) allow the 

inequality to further be simplified to 
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The S-procedure given in [12] is applied to the inequalities of (11) and (17) in order to combine the system dynamics with the 

bounds on the nonlinearities. The resulting LMI is 
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where τ is an intermediate variable. LMI (18) yields the conditions 
2

1



  and n   which, when combined, results in   

2

1
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Therefore, the theoretical maximum slope of the nonlinearity is 

max

1
.

n
 

 

(20) 

which concludes the proof. 

Comment 1. Theorem 1 is presented for nonlinearities with local slope bounds given by (9), however, simulation results will 

show that these results can easily be extended to nonlinearities with global bounds.   

Comment 2. This result shows that for a system of dimension n, the maximum bound on the nonlinearity for which it is 

possible to maintain stability for a discrete-time system equals the inverse of the square root of the dimension. Note that for n=1, 

the theoretical maximum slope of the nonlinearity, αmax must be less than 1. As the order of the system increases, the theoretical 

maximum slope or the severity of the nonlinearity that can be accommodated, αmax, decreases. 

3. Simulations and Results 
Case Study 1 This section contains MATLAB simulations that show the results of applying the analysis technique to a 

nonlinear system whose known part has already been linearized.   

Consider a nonlinear system of a form described by the state-space model below. 
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The nonlinearity chosen is globally linearly bounded for all its arguments, as shown in Figure 1. The dotted line represents the 

linear bound on the nonlinearity with a slope α. The nonlinearity, represented by the solid line, has a limit approaching the  linear 

bound as x goes to infinity. This means the system is guaranteed to be globally asymptotically stable if α<αmax.  

 

 
Fig. 1. The form of the nonlinearity and the linear bound 

 

 

    In the following study, the system is simulated with values of α ranging from 0.9 αmax to 1.1 αmax for systems of orders 1, 

3, and 5. The value for αmax corresponds to each value for n, as shown in Table 1. 

  

 

Table 1: A table of system orders and the corresponding theoretical αmax. 

n 1 3 5 

αmax 1 0.577 0.447 

 

Fig. 2 is a plot of the output, yk as a function of k for systems with a value of α just below and just above that of αmax.  This 

figure confirms that for nonlinearities that are bounded with α<αmax, the system is asymptotically stable. For nonlinearities that 

exceed this bound, stability is not guaranteed. Therefore, for this specific nonlinearity, our theoretical sufficient result is almost 

necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The output over time for systems of order 1, 3, and 5. The bound is below and above the theoretical bound 

 

Case Study 2: 

Example 1: Consider a 2nd order nonlinear system described by the state-space model below. 
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Since this is a 2nd order system, the maximum guaranteed bound on the nonlinearity is calculated to be 
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max

1
0.7071.

2
  

 
Note that the bound on this nonlinearity is local. The system is simulated with values of α ranging from 0 to 2 αmax. The plots 

show the nonlinearity, Fk, versus the norm of xk and the output, yk versus k for three different sets of initial conditions. The straight 

red line in the nonlinear plot represents the maximum linear bound as a function of the norm of xk while the blue circle represents 

the initial norm of xk. The black dotted lines represent the track of the nonlinearities for each value of α 

     For initial conditions, 
0

1 1
0.5*

2 2

T

x
 

  
 

the simulation results are shown in Fig. 3.  For initial conditions, 

0

1 1

2 2

T

x
 

  
 

, the simulation results are shown in Fig 4.   And finally, for initial conditions
0

1 1
1.5*

2 2

T

x
 

  
 

, the 

simulation results are shown in Fig 5.   

This nonlinearity grows as a function of x in such a way that it cannot be linearly bounded. Therefore, the result cannot be 

globally asymptotically stable. However, the cubic nonlinearity does have a region of convergence for ||xk||<1. From the 

simulations, it is seen that when ||xo||<1, the system is locally asymptotically stable when α<αmax.  

 

 
Fig. 3.  Nonlinearity and output for the second order system when initial conditions are less than the bound. 

 

 
 

Fig. 4.  Nonlinearity and output for the second order system when initial conditions are equal to the bound. 

 
 

Fig. 5.  Nonlinearity and output for the second order system when initial conditions are greater than the bound. 



197-6 

Example 2:  Consider a nonlinear system described by the state-space model, 
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    Since this is a 3rd order system, the maximum guaranteed bound on the nonlinearity is calculated to be 

max

1
0.5774.

3
  

 
For the following figures, the system is simulated with values of α ranging from 0 to 2 αmax. As before these plots show the 

nonlinearity versus the norm of xk and the output, yk versus k. The straight red line in the  plot represents the maximum linear 

bound as a function of the norm of xk while the blue circle represents the initial norm of xk. The black dotted lines represent the 

track of the nonlinearities for each value of α. The simulation results for three different sets of initial conditions below, equal to and 

greater than the bound for the 3rd order system are shown in  

Fig. 6 where 
0
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   and  Fig. 8 when 
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Fig. 6.  Nonlinearity and output for the third order system when initial conditions are less than the bound. 

 
 

Fig. 7.  Nonlinearity and output for the third order system when initial conditions equal the bound. 

 
Fig. 8.  Nonlinearity and output for the third order system when initial conditions are greater than the bound. 
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The results for the 3rd order system clearly show that when the norm of xk stays below the red line with slope αmax, the system 

maintains asymptotic stability. This holds true for all cases where α<αmax. For some small initial conditions, some values of α>αmax 

also produce outputs which are asymptotically stable, but it cannot be guaranteed for all cases. The nonlinearity increases in such a 

way that it can be globally bounded with a slope bound. Therefore, in this case, for α<αmax, the system is globally asymptotically 

stable. 

 

Example 3: Consider a 4th order nonlinear system described by the state-space model below. 
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Since this is a 4th order system, the maximum guaranteed bound on the nonlinearity is calculated to be 

max

1
0.5.

4
  

 
As for the previous examples, the system is simulated with values of α ranging from 0 to 2 αmax where the plots demonstrate 

nonlinearity versus the norm of xk and the output, yk versus k. The straight red line in the nonlinear plot represents the maximum 

linear bound as a function of the norm of xk while the blue circle represents the initial norm of xk. The black dotted lines represent 

the track of the nonlinearities for each value of α.  Fig. 9 corresponds to results obtained when the initial conditions are 

0

1 1 1 1
0.5*

2 2 2 2

T

x
 

  
 

.  When the initial conditions are 
0

1 1 1 1

2 2 2 2

T

x
 

  
 

, the simulation results appear as shown in Fig. 10 

where Fig 11 shows the results for the situation when 
0

1 1 1 1

2 2 2 2

T

x
 

  
 

. 

From these results, it is again seen that for α<αmax, the output is asymptotically stable in all cases. For a small initial condition, 

some values of α>αmax also produce outputs which are asymptotically stable. However, it cannot be guaranteed for all cases. The 

nonlinearity increases as a function of x in such a way that it can be globally bounded. Therefore, in this case, for α<αmax, the 

system is globally asymptotically stable. 

 
Fig. 9.  Nonlinearity and output for the fourth order system when initial conditions are less than the bound. 

 
Fig. 10.  Nonlinearity and output for the fourth order system when initial conditions are equal to the bound. 
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Fig. 11.  Nonlinearity and output for the fourth order system when initial conditions are greater than the bound. 

 

4. Conclusions 
In this paper, the robustness of the feedback linearization control scheme was considered for discrete-time systems where the 

nonlinearities are partially unknown with known bounds. An analysis of the partially feedback linearized system revealed an 

interesting relationship between the maximum guaranteed growth bound on the uncertainty and the order of the system.  This 

relationship was proven analytically to be a sufficient condition for guaranteeing asymptotic stability and tested in simulation on 

nonlinear systems of varying orders and with various nonlinearities to demonstrate that it is also close to being a necessary 

condition for maintaining stability.  The future work will include expanding these results to D-stability robustness analysis of the 

linearized part in a way similar to [13] rather than the robustness of the partially stabilized system with all eigenvalues at the origin.  

This will necessitate the circular region to be defined based on a modified Lyapunov inequality. 
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