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Abstract - Traditional control methods require extensive tuning or a derivation of a system model making them increasingly antiquated 
for use on new, more complex systems. Sliding Mode Control has emerged as a more effective alternative as a control method that can 
directly handle nonlinear systems with increased robustness while guaranteeing stability. However, it is still limited by the need for a 
system model for the derivation of the controller form. This work proposes a new model-free control method based on Sliding Mode 
Control referred to as Model-Free Sliding Mode Control where the form of the controller is only dependent on system order, state 
measurements, and previous control inputs. Lyapunov’s stability theorem is used to ensure global asymptotic stability and a boundary 
layer is incorporated to reduce chattering. The model-free properties of the controller are enabled by a least-squares online parameter 
estimation method used to estimate the control input influence gain matrix of the system directly. The estimation method incorporated 
exponential forgetting to only include updated data for parameter estimation, increasing the speed of convergence. Another addition was 
a bounded gain forgetting factor to ensure that the magnitude of the control input influence gain was upper bounded. The performance 
of this controller was simulated on a single-input, single-output second order example system. It was also implemented to control a first 
order example system with a shaped input characterizing aircraft roll dynamics. The controller proved to exhibit outstanding tracking 
performance, convergence of estimated parameters, acceptable control input, and robustness to parameter uncertainty in all cases. 
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1. Introduction 

Interest in the advancement of control system design has proliferated as systems have become more complex. 
Technological development has allowed for the use of much smaller and faster computers which have made the use of 
advanced control systems feasible for a wide variety of applications. Nonlinear control systems such as Sliding Mode Control 
(SMC) have been developed as more effective alternatives for when an accurate linear approximation of the system’s 
dynamics cannot be derived in higher-order nonlinear systems. SMC provides a greater robustness in the face of modeling 
uncertainty and external disturbances and theoretically has perfect tracking performance. SMC still has inherent drawbacks 
such as chattering which causes high controller effort. Traditional SMC also requires a mathematical reference or plant model 
for the derivation of the control law. In modern times, it is increasingly difficult to derive a mathematical model of systems 
as they become more complex leading to higher parametric uncertainty. 

Thus, a huge benefit is realized in the development a controller that is not dependent on a system model and can be 
generalized to all systems. Sariful and Crassidis [1] proposed a Model-Free Sliding Mode Controller (MFSMC) developed 
from the work of Reis and Crassidis [2] including a least-squares online parameter estimation law to estimate the increment 
to the switching gain in a time-varying boundary layer. The updated method only required knowledge of the system order, 
state measurements, and the previous control inputs making it truly model-free. However, this method assumed a unitary 
input influence gain which is not true for most systems. The method developed here uses the least-squares online parameter 
estimation method proposed by authors Sariful and Crassidis [1] to estimate the control input influence gain in real-time in 
place of the increment to the switching gain while guaranteeing convergence of the estimated input influence gain. This is 
in an effort to neutralize the degraded handling qualities observed when Stephens [3] implemented the Sariful and Crassidis 
[1] method in the longitudinal axis for pitch rate control of the Calspan Variable Stability System (VSS) Learjet. Thus, this 
method is also completely model-free.  This method was applied to the control of a second-order single-input, single-output 
(SISO) example system as well as a single-order SISO example system with a shaped step input mimicking aircraft roll 
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dynamics as pre-requisite to lateral-directional aircraft control. The controller provided great tracking performance in 
both cases. 

 
2.1 Model-Free Control System Law 

The MFSMC system for a second-order SISO system was derived with the following steps: 
The following discrete-time measurement model is assumed: 

�̈�𝑥 = �̈�𝑥 + 𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏𝑘𝑘−1 (2.1) 
where �̈�𝑥 is the measured acceleration, 𝑏𝑏 is the control system input, 𝑏𝑏𝑘𝑘−1 is the previous value of the control system 

input, and 𝑏𝑏 is the control input influence gain that will be estimated. This equation can be re-written as: 
�̈�𝑥 = �̈�𝑥 + 𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏𝑘𝑘−1 + 𝜀𝜀(𝑏𝑏) (2.2) 

where 𝜀𝜀(𝑏𝑏) is the estimation error in the input influence gain defined by: 
𝜀𝜀(𝑏𝑏) = 𝑏𝑏(𝑏𝑏𝑘𝑘−1 − 𝑏𝑏) (2.3) 

𝜀𝜀(𝑏𝑏) is assumed to be bounded by a known function, 𝐸𝐸, such that: 
|𝜀𝜀̂(𝑏𝑏) − 𝜀𝜀(𝑏𝑏)| ≤ 𝐸𝐸 (2.4) 

where 𝜀𝜀̂(𝑏𝑏) is the estimated error in the input influence gain estimation assumed to be defined by: 
𝜀𝜀̂(𝑏𝑏) = 𝑏𝑏�(𝑏𝑏𝑘𝑘−2 − 𝑏𝑏𝑘𝑘−1) (2.5) 

and the actual error is bounded by the function: 
(1 − 𝜎𝜎𝑙𝑙)𝜀𝜀̂(𝑏𝑏) ≤ 𝜀𝜀(𝑏𝑏) ≤ (1 + 𝜎𝜎𝑢𝑢)𝜀𝜀̂(𝑏𝑏) (2.6) 

where 𝜎𝜎𝑙𝑙 and 𝜎𝜎𝑢𝑢 are the lower and upper defined bounds. 
The sliding surface for a second-order system is defined as: 

𝑠𝑠 = �̇�𝑥 − �̇�𝑥𝑑𝑑 + 𝜆𝜆(𝑥𝑥 − 𝑥𝑥𝑑𝑑) (2.7) 
where 𝑥𝑥 and �̇�𝑥 are the system states to be measured and 𝑥𝑥𝑑𝑑 and �̇�𝑥𝑑𝑑 are the desired states to be tracked. Taking the derivative 
of the sliding surface results in: 

�̇�𝑠 = �̈�𝑥 − �̈�𝑥𝑑𝑑 + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑) (2.8) 
Plugging in Equation 2.2 and setting �̇�𝑠 equal to zero ensures that the state error trajectories do not move once they reach 

the sliding surface and gives us:  
�̇�𝑠 = [�̈�𝑥 + 𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏𝑘𝑘−1 + 𝜀𝜀(𝑏𝑏)] − �̈�𝑥𝑑𝑑 + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑) = 0 (2.9) 

The best estimate for the control input, 𝑏𝑏�, to maintain �̇�𝑠 equal to zero is therefore: 
𝑏𝑏� = 𝑏𝑏�−1[−(�̈�𝑥 − �̈�𝑥𝑑𝑑) − 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑) − 𝜀𝜀̂(𝑏𝑏)] + 𝑏𝑏𝑘𝑘−1 (2.10) 

and adding a discontinuous term to satisfy the sliding condition gives us: 
𝑏𝑏 = 𝑏𝑏−1[−(�̈�𝑥 − �̈�𝑥𝑑𝑑) − 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)− 𝜀𝜀(𝑏𝑏) − 𝜂𝜂𝑠𝑠𝜂𝜂𝜂𝜂(𝑠𝑠)] + 𝑏𝑏𝑘𝑘−1 (2.11) 

where 𝜂𝜂 is a positive constant. To check if the controller form is correct, Lyapunov’s stability theorem is used and a positive 
definite “energy-like” function is defined as: 

𝑉𝑉 =
1
2
𝑠𝑠2 ≥ 0 (2.12) 

Taking the derivative results in: 
�̇�𝑉 = 𝑠𝑠�̇�𝑠 ≤ 0 (2.13) 

Substituting the assumed measurement model based on Equation 2.9 gives us: 
�̇�𝑉 = 𝑠𝑠�[�̈�𝑥 + 𝑏𝑏�𝑏𝑏 − 𝑏𝑏�𝑏𝑏𝑘𝑘−1 + 𝜀𝜀̂(𝑏𝑏)] − �̈�𝑥𝑑𝑑 + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)� (2.14) 

Substituting Equation 2.11 gives us: 
�̇�𝑉 = 𝑠𝑠�[�̈�𝑥 + 𝑏𝑏��𝑏𝑏�−1[−(�̈�𝑥 − �̈�𝑥𝑑𝑑) − 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑) − 𝜀𝜀̂(𝑏𝑏) − 𝜂𝜂𝑠𝑠𝜂𝜂𝜂𝜂(𝑠𝑠)] + 𝑏𝑏𝑘𝑘−1� − 𝑏𝑏�𝑏𝑏𝑘𝑘−1 + 𝜀𝜀̂(𝑏𝑏)] − �̈�𝑥𝑑𝑑 + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)� (2.15) 
Rearranging this equation can give us: 
�̇�𝑉 = 𝑠𝑠��̈�𝑥 − (�̇�𝑥 − �̇�𝑥𝑑𝑑) − �̈�𝑥𝑑𝑑 − 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑) + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑) − 𝜀𝜀̂(𝑏𝑏) + 𝜀𝜀̂(𝑏𝑏) − 𝜂𝜂𝑠𝑠𝜂𝜂𝜂𝜂(𝑠𝑠) + 𝑏𝑏�𝑏𝑏𝑘𝑘−1 − 𝑏𝑏�𝑏𝑏𝑘𝑘−1� (2.16) 

which results in: 
�̇�𝑉 = −𝑠𝑠𝜂𝜂𝑠𝑠𝜂𝜂𝜂𝜂(𝑠𝑠) (2.17) 

which can be re-written as: 
�̇�𝑉 = −𝜂𝜂|𝑠𝑠| (2.18) 

This verifies the sliding condition. Therefore, 𝜂𝜂 can be replaced with the system gain, 𝐾𝐾, in Equation 2.11: 
𝑏𝑏 = 𝑏𝑏�−1[−(�̈�𝑥 − �̈�𝑥𝑑𝑑) − 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑) − 𝜀𝜀̂(𝑏𝑏) − 𝐾𝐾𝑠𝑠𝜂𝜂𝜂𝜂(𝑠𝑠)] + 𝑏𝑏𝑘𝑘−1 (2.19) 
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From the definition of �̇�𝑉, we can define the sliding condition as: 
𝑠𝑠�̇�𝑠 ≤ −𝜂𝜂|𝑠𝑠| 

 
(2.20) 

Substituting in Equation 2.9 gives us: 
𝑠𝑠���̈�𝑥 + 𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏𝑘𝑘−1 + 𝜀𝜀(𝑏𝑏)� − �̈�𝑥𝑑𝑑 + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)� ≤ −𝜂𝜂|𝑠𝑠| (2.21) 

Substituting in the best estimate of the control input, 𝑏𝑏�, for 𝑏𝑏 gives us: 
𝑠𝑠 ���̈�𝑥 + 𝑏𝑏�𝑏𝑏�−1[−(�̈�𝑥 − �̈�𝑥𝑑𝑑) − 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑) − 𝜀𝜀̂(𝑏𝑏) − 𝐾𝐾𝑠𝑠𝜂𝜂𝜂𝜂(𝑠𝑠)] + 𝑏𝑏𝑘𝑘−1� − 𝑏𝑏𝑏𝑏𝑘𝑘−1 + 𝜀𝜀(𝑏𝑏)� − �̈�𝑥𝑑𝑑 + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)� ≤ −𝜂𝜂|𝑠𝑠| (2.22) 
Rearranging to isolate 𝐾𝐾|𝑠𝑠| gives us: 
𝐾𝐾|𝑠𝑠| ≥  𝑠𝑠 �(�̈�𝑥 − �̈�𝑥𝑑𝑑)�𝑏𝑏�𝑏𝑏−1 − 1� + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)�𝑏𝑏�𝑏𝑏−1 − 1� + �𝑏𝑏�𝑏𝑏−1 − 1�𝜀𝜀̂(𝑏𝑏) + 𝑏𝑏�𝑏𝑏−1[𝜀𝜀(𝑏𝑏) − 𝜀𝜀̂(𝑏𝑏)]� + 𝑏𝑏�𝑏𝑏−1𝜂𝜂|𝑠𝑠| (2.23) 

The most conservative estimate for the upper bound of 𝜀𝜀(𝑏𝑏) is defined as: 
𝜀𝜀(𝑏𝑏) = (1 + 𝜎𝜎𝑢𝑢)𝜀𝜀̂(𝑏𝑏) (2.24) 

Therefore, the 𝜀𝜀(𝑏𝑏) − 𝜀𝜀̂(𝑏𝑏) term can be redefined as: 
𝜀𝜀(𝑏𝑏) − 𝜀𝜀̂(𝑏𝑏) = (1 + 𝜎𝜎𝑢𝑢)𝜀𝜀̂(𝑏𝑏) − 𝜀𝜀̂(𝑏𝑏) = 𝜀𝜀̂(𝑏𝑏) + 𝜎𝜎𝑢𝑢𝜀𝜀̂(𝑏𝑏) − 𝜀𝜀̂(𝑏𝑏) = 𝜎𝜎𝑢𝑢𝜀𝜀̂(𝑏𝑏) (2.25) 

Plugging this into Equation 2.23 gives us: 
𝐾𝐾|𝑠𝑠| ≥  𝑠𝑠�(�̈�𝑥 − �̈�𝑥𝑑𝑑)�𝑏𝑏�𝑏𝑏−1 − 1� + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)�𝑏𝑏�𝑏𝑏−1 − 1� + �𝑏𝑏�𝑏𝑏−1 − 1�𝜀𝜀̂(𝑏𝑏) + 𝑏𝑏�𝑏𝑏−1𝜎𝜎𝑢𝑢𝜀𝜀̂(𝑏𝑏)� + 𝑏𝑏�𝑏𝑏−1𝜂𝜂|𝑠𝑠| (2.26) 
And rearranging this gives us: 
𝐾𝐾|𝑠𝑠| ≥  𝑠𝑠�(�̈�𝑥 − �̈�𝑥𝑑𝑑)�𝑏𝑏�𝑏𝑏−1 − 1� + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)�𝑏𝑏�𝑏𝑏−1 − 1� + �𝑏𝑏�𝑏𝑏−1[1 + 𝜎𝜎𝑏𝑏] − 1�𝜀𝜀̂(𝑏𝑏)� + 𝑏𝑏�𝑏𝑏−1𝜂𝜂|𝑠𝑠| (2.27) 

Next, we define: 
𝑏𝑏� = �𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢 (2.28) 

𝛽𝛽 = �𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙/𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢 = 𝑏𝑏�𝑏𝑏−1 (2.29) 

Plugging these into Equation 2.27 gives us: 
𝐾𝐾|𝑠𝑠| ≥  𝑠𝑠[(�̈�𝑥 − �̈�𝑥𝑑𝑑)(𝛽𝛽 − 1) + 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)(𝛽𝛽 − 1) + (𝛽𝛽[1 + 𝜎𝜎𝑢𝑢]− 1)𝜀𝜀̂(𝑏𝑏)] + 𝛽𝛽𝜂𝜂|𝑠𝑠| (2.30) 

With the final equation for the system gain being: 
𝐾𝐾 ≥ |(𝛽𝛽 − 1)||(�̈�𝑥 − �̈�𝑥𝑑𝑑)| + |(𝛽𝛽 − 1)||𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)| + |(𝛽𝛽[1 + 𝜎𝜎𝑢𝑢]− 1)||𝜀𝜀̂(𝑏𝑏)| + 𝛽𝛽𝜂𝜂 (2.31) 

In summary: 
𝑏𝑏 = 𝑏𝑏�−1[−(�̈�𝑥 − �̈�𝑥𝑑𝑑) − 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑) − 𝐾𝐾𝑠𝑠𝜂𝜂𝜂𝜂(𝑠𝑠)] + 2𝑏𝑏𝑘𝑘−1 − 𝑏𝑏𝑘𝑘−2 

𝐾𝐾 ≥ |(𝛽𝛽 − 1)||(�̈�𝑥 − �̈�𝑥𝑑𝑑)| + |(𝛽𝛽 − 1)||𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)| + |(𝛽𝛽[1 + 𝜎𝜎𝑢𝑢]− 1)||𝑏𝑏�(𝑏𝑏𝑘𝑘−2 − 𝑏𝑏𝑘𝑘−1)| + 𝛽𝛽𝜂𝜂  
If including a boundary layer: 

𝑏𝑏 = 𝑏𝑏�−1 �−(�̈�𝑥 − �̈�𝑥𝑑𝑑) − 𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)− 𝐾𝐾𝑠𝑠𝜂𝜂𝜂𝜂(
𝑠𝑠
𝜙𝜙

)� + 2𝑏𝑏𝑘𝑘−1 − 𝑏𝑏𝑘𝑘−2 

𝐾𝐾 ≥ |(𝛽𝛽 − 1)||(�̈�𝑥 − �̈�𝑥𝑑𝑑)| + |(𝛽𝛽 − 1)||𝜆𝜆(�̇�𝑥 − �̇�𝑥𝑑𝑑)| + |(𝛽𝛽[1 + 𝜎𝜎𝑢𝑢]− 1)||𝑏𝑏�(𝑏𝑏𝑘𝑘−2 − 𝑏𝑏𝑘𝑘−1)| + 𝛽𝛽𝜂𝜂  
𝐾𝐾𝑑𝑑 = |(𝛽𝛽[1 + 𝜎𝜎𝑢𝑢] − 1)||𝑏𝑏�(𝑏𝑏𝑘𝑘−2 − 𝑏𝑏𝑘𝑘−1)| + 𝛽𝛽𝑑𝑑𝜂𝜂 

𝐾𝐾𝑑𝑑 ≤
𝜆𝜆𝜆𝜆
𝛽𝛽𝑑𝑑
⇒ �̇�𝜙 + 𝜆𝜆𝜙𝜙 = 𝛽𝛽𝑑𝑑𝐾𝐾𝑑𝑑 𝐾𝐾� = 𝐾𝐾 − �̇�𝜆

𝛽𝛽
 

𝐾𝐾𝑑𝑑 ≥
𝜆𝜆𝜆𝜆
𝛽𝛽𝑑𝑑
⇒ �̇�𝜙 + 𝜆𝜆𝜆𝜆

𝛽𝛽𝑑𝑑
2 = 𝐾𝐾𝑑𝑑

𝛽𝛽𝑑𝑑
  𝐾𝐾� = 𝐾𝐾 − 𝛽𝛽�̇�𝜙 

𝜙𝜙(0) =
𝛽𝛽𝑑𝑑𝐾𝐾𝑑𝑑(0)

𝜆𝜆
 

2.2 Online Parameter Estimation Methods 
The basis of parameter estimation is extracting parameter values from measurable system outputs. A general model for 

parameter estimation can be defined as (Slotine and Li [4]): 
𝑦𝑦(𝑘𝑘𝑘𝑘) = 𝑊𝑊(𝑘𝑘𝑘𝑘)𝑏𝑏(𝑘𝑘𝑘𝑘) (2.32) 

where 𝑏𝑏 is the parameter to be estimated, which in our case is the input influence gain, vector 𝑦𝑦 includes the outputs from 
the system used for estimation, and 𝑊𝑊 is a signal matrix. This model is only valid for discrete time so 𝑘𝑘 is the sampling time 
and 𝑘𝑘 is zero or a positive integer. The predicted system output, 𝑦𝑦�, at time 𝑘𝑘𝑘𝑘, can be defined as: 

𝑦𝑦�(𝑘𝑘𝑘𝑘) = 𝑊𝑊(𝑘𝑘𝑘𝑘)𝑏𝑏�(𝑘𝑘𝑘𝑘) (2.33) 
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where 𝑏𝑏� is the predicted parameter at time 𝑡𝑡. Online estimation is based around the fact that the value of 𝑏𝑏� is found recursively. 
In other words, it is updated every time there is a new set of data for 𝑦𝑦 and 𝑊𝑊. The instantaneous prediction error, 𝑒𝑒1, can 
then be defined as: 

𝑒𝑒1 = 𝑦𝑦�(𝑘𝑘𝑘𝑘) − 𝑦𝑦(𝑘𝑘𝑘𝑘) (2.34) 
Or, plugging in Equations 2.32 and 2.33: 

𝑒𝑒1 = 𝑊𝑊𝑏𝑏�(𝑘𝑘𝑘𝑘) −𝑊𝑊𝑏𝑏(𝑘𝑘𝑘𝑘) = 𝑊𝑊𝑏𝑏� (2.35) 
 
2.2.1 Standard Least-Squares Estimator 

The standard least-squares method has the advantage of averaging out the effects of noise in measurements. This method 
can be implemented by minimizing the total prediction error with respect to 𝑏𝑏�𝑇𝑇(𝑡𝑡) (Slotine and Li [4]): 

𝐽𝐽 = � ��𝑦𝑦(𝑟𝑟) −𝑊𝑊(𝑟𝑟)𝑏𝑏�(𝑡𝑡)��
2𝑡𝑡

𝑙𝑙
𝑑𝑑𝑟𝑟 

(2.36) 
 

where the estimated parameter 𝑏𝑏� satisfies: 

� (𝑊𝑊𝑇𝑇(𝑟𝑟)𝑊𝑊(𝑟𝑟)𝑑𝑑𝑟𝑟)𝑏𝑏�(𝑡𝑡)
𝑡𝑡

𝑙𝑙
= � 𝑊𝑊𝑇𝑇𝑦𝑦𝑑𝑑𝑟𝑟 

𝑡𝑡

𝑙𝑙
 

(2.37) 

We can then define: 

𝑃𝑃(𝑡𝑡) = [� (𝑊𝑊𝑇𝑇(𝑟𝑟)𝑊𝑊(𝑟𝑟)𝑑𝑑𝑟𝑟)
𝑡𝑡

𝑙𝑙
]−1 

(2.38) 

For computational efficiency, it is better to calculate P, the estimator gain matrix, recursively, so the above equation can 
be replaced with the following differential equation: 

�̇�𝑃−1 = 𝑊𝑊𝑇𝑇(𝑡𝑡)𝑊𝑊(𝑡𝑡) (2.39) 
This can give us the equation: 

𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝑏𝑏�� = −𝑃𝑃(𝑡𝑡)𝑊𝑊𝑇𝑇𝑒𝑒1 
(2.40) 

To be able to update P directly, we use the following identity: 
𝑑𝑑
𝑑𝑑𝑡𝑡

[𝑃𝑃𝑃𝑃−1] =  �̇�𝑃𝑃𝑃−1 + 𝑃𝑃�̇�𝑃−1 = 0 
(2.41) 

to get the equation: 
�̇�𝑃 = −𝑃𝑃𝑊𝑊𝑇𝑇𝑊𝑊𝑃𝑃 (2.42) 

To successfully implement this method, P and 𝑏𝑏� must be initialized with finite values. The initial value of P should be 
as high as possible within noise sensitivity constraints and 𝑏𝑏� should be a best guess. 
 
2.2.2 Convergence 
Solving the differential Equations 2.39 and 2.40 above and using Equation 2.42 we can show that (Slotine and Li [4]): 

𝑃𝑃−1(𝑡𝑡) = 𝑃𝑃−1(0) + � 𝑊𝑊𝑇𝑇(𝑟𝑟)𝑊𝑊(𝑟𝑟)𝑑𝑑𝑟𝑟
𝑡𝑡

0
 

(2.43) 

𝑑𝑑
𝑑𝑑𝑡𝑡 �

𝑃𝑃−1(𝑡𝑡)𝑏𝑏�(𝑡𝑡)� = 0 
(2.44) 

From which we can define: 
𝑏𝑏�(𝑡𝑡) = 𝑃𝑃(𝑡𝑡)𝑃𝑃−1(0)𝑏𝑏�(0) (2.45) 

If 𝑊𝑊 meets the criteria of: 
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 ∫ 𝑊𝑊𝑇𝑇𝑊𝑊𝑑𝑑𝑟𝑟𝑡𝑡

0 → ∞ as 𝑡𝑡 → ∞ 
where 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 is the smallest eigenvalue of 𝑊𝑊, then the gain matrix converges to zero and the estimated parameters 
asymptotically converge to their true values. Additionally, for any positive integer value of 𝑘𝑘: 

� 𝑊𝑊𝑇𝑇𝑊𝑊𝑑𝑑𝑟𝑟
𝑘𝑘𝑘𝑘+𝑘𝑘

0
= �� 𝑊𝑊𝑇𝑇𝑊𝑊𝑑𝑑𝑟𝑟

𝑚𝑚𝑘𝑘+𝑘𝑘

𝑚𝑚𝑘𝑘

𝑘𝑘

𝑚𝑚=0

≥ 𝑘𝑘𝛼𝛼1𝐼𝐼 (2.46) 
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where 𝛿𝛿 and 𝛼𝛼1 are positive constants. Therefore, if 𝑊𝑊 is under persistent excitation, the above equation is satisfied and 
𝑃𝑃 → 0 and 𝑏𝑏� → 0. An initial parameter error, 𝑏𝑏�(0), or large initial gain, 𝑃𝑃(0), can lead to a small parameter error for all time. 
If the initial gain is chosen such that 𝑃𝑃(0) = 𝑢𝑢0𝐼𝐼, then: 

𝑏𝑏�(𝑡𝑡) = �𝐼𝐼 + 𝑢𝑢0 � 𝑊𝑊𝑇𝑇(𝑟𝑟)𝑊𝑊(𝑟𝑟)𝑑𝑑𝑟𝑟
𝑡𝑡

0
�
−1

𝑏𝑏�(0) (2.47) 

 
2.2.3 Least-Squares with Exponential Forgetting 

When estimating time-varying parameters, it is known that past data is generated by past parameter values. Therefore, 
this past data should be discounted when estimating the current value of parameters. To implement exponential forgetting 
into least square estimation, the following cost function is defined (Slotine and Li [4]): 

𝐽𝐽 = � 𝑒𝑒𝑥𝑥𝑢𝑢[−� 𝜆𝜆(𝑟𝑟)𝑑𝑑𝑟𝑟
𝑡𝑡

𝑠𝑠
] ��𝑦𝑦(𝑠𝑠) −𝑊𝑊(𝑠𝑠)𝑏𝑏�(𝑡𝑡)��

2
𝑑𝑑𝑠𝑠

𝑡𝑡

𝑙𝑙
 (2.48) 

where 𝜆𝜆(𝑡𝑡) ≥ 0 is the time-varying forgetting factor. The parameter update law stays the same as: 
𝑑𝑑
𝑑𝑑𝑡𝑡
𝑏𝑏� = −𝑃𝑃(𝑡𝑡)𝑊𝑊𝑇𝑇𝑒𝑒1 

(2.49) 

but the gain update law has changed to be: 
𝑑𝑑
𝑑𝑑𝑡𝑡

[𝑃𝑃−1(𝑡𝑡)] = −𝜆𝜆(𝑡𝑡)𝑃𝑃−1 + 𝑊𝑊𝑇𝑇(𝑡𝑡)𝑊𝑊(𝑡𝑡) 
(2.50) 

which can be implemented to directly update P in the form of: 
�̇�𝑃 = 𝜆𝜆(𝑡𝑡)𝑃𝑃 − 𝑃𝑃𝑊𝑊𝑇𝑇(𝑡𝑡)𝑊𝑊(𝑡𝑡)𝑃𝑃 (2.51) 

This exponential forgetting method improves parameter convergence over the traditional least-squares method by 
creating exponential convergence of the parameters to their final values.  This is done while still guaranteeing asymptotic 
convergence of estimated parameters. 

 
2.2.4 Control Law Implementation 

Including a boundary layer, we define the sliding condition as: 
𝑠𝑠�̇�𝑠 ≤ (�̇�𝜙 − 𝜂𝜂)|𝑠𝑠| (2.52) 

To ensure the global asymptotic stability of the system, we want to ensure that the sliding condition is met. Thus, we 
define our instantaneous parameter estimation error based on meeting the sliding condition as shown below: 

𝑒𝑒1 = (�̇�𝜙 − 𝜂𝜂)|𝑠𝑠| − 𝑠𝑠�̇�𝑠 (2.53) 
The value of 𝑒𝑒1 is minimized as the state trajectories reach the boundary layer. A boundary layer closing function is also 

defined as: 
|𝑠𝑠| ≥ 𝜙𝜙 ⇒ 𝑒𝑒1 = (�̇�𝜙 − 𝜂𝜂)|𝑠𝑠| − 𝑠𝑠�̇�𝑠 (2.54) 

|𝑠𝑠| < 𝜙𝜙 ⇒ 𝑒𝑒1 = −�(�̇�𝜙 − 𝜂𝜂)|𝑠𝑠| − 𝑠𝑠�̇�𝑠� (2.55) 
As the state trajectory reaches a point within the boundary layer, this function starts to reduce the size of the boundary 

layer. Reducing the size of the boundary layer decreases tracking error and controller input over time. 
For the implementation of Equation 2.51, the signal matrix, 𝑊𝑊 was defined as: 

𝑊𝑊 = |𝑠𝑠| (2.56) 
This was done to ensure that the value of 𝑏𝑏� varied while the value of the sliding surface varied over time. 
 

2.2.5 Bounded Gain Forgetting Factor Tuning 
The benefit of data forgetting is the ability to track slowly varying parameters, but the gain matrix 𝑃𝑃 can grow unbounded 

when 𝑊𝑊 is not persistently exciting. It is desirable to tune the forgetting factor such that data forgetting is active when 𝑊𝑊 is 
persistently exciting and not active when 𝑊𝑊 is not exciting. The magnitude of 𝑃𝑃 shows the excitation level of 𝑊𝑊. Therefore, 
the forgetting factor variation can be made dependent on ‖𝑃𝑃(𝑡𝑡)‖  (Slotine and Li [4]) such that: 

𝜆𝜆(𝑡𝑡) = 𝜆𝜆0 �1 −
‖𝑃𝑃(𝑡𝑡)‖
𝑘𝑘0

� 
(2.57) 
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Figure 7: Position Tracking Figure 8: Velocity Tracking Figure 9: Acceleration Tracking 

Figure 10: Controller Input Figure 11: Sliding Condition Figure 12: Boundary Layer Dynamics 

Figure 13: Input Influence Gain 
Estimate 

Figure 14: Lambda Estimate 

where 𝜆𝜆0 is the maximum forgetting rate and 𝑘𝑘0 is the bound for the gain matrix magnitude and both are positive 
constants. A higher value of 𝜆𝜆0 leads to faster forgetting but more oscillations in the estimated parameters. A higher value 
of 𝑘𝑘0 updates the parameter estimation values faster but makes the estimator less robust to disturbances in the prediction 
error. In order for 𝑘𝑘0 to be the upper bound of the gain matrix, we choose ‖𝑃𝑃(0)‖ ≤ 𝑘𝑘0. 
2.3 Implementation Results 
2.3.1 SISO System 

The derived control law was implemented on the following nonlinear second-order system: 
�̈�𝑥 + 3𝑥𝑥�̇�𝑥 + 5𝑥𝑥2 = 𝑏𝑏𝑏𝑏 

with the desired tracking being: 
𝑥𝑥𝑑𝑑(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝜂𝜂 �

𝜋𝜋
2
𝑡𝑡� 

To demonstrate the robustness of this control law, the input influence gain was varied using a sine wave defined as:  

𝑏𝑏(𝑡𝑡) = �
𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙

2 � sin(𝑡𝑡) +
𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙

2
 

where 𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙 are the upper and lower estimated bounds of the input influence gain respectively. The results of 
simulating the system with the derived control law for 60 seconds with a sampling of 0.001 seconds are shown below: 

 
 
 
 
 
 
 
 
 
 

 
 

  



 

 
201-7 

Figure 15: Roll Rate Tracking Figure 16: Roll Acceleration Tracking Figure 17: Control Input 

Figure 20: Sliding Condition Figure 22: Input Influence Gain 
Estimate 

Figure 21: Boundary Layer 
Dynamics 

As seen in Figures 7, 8, and 9, the system had excellent tracking. The sliding condition was also met as time went on 
and the estimate for the input influence gain and 𝜆𝜆 were both convergent as shown by Figures 11, 13, and 14. This was 
accomplished with a controller input that was smooth and adequately small as shown in Figure 10.  

Note: the control input influence gain value does not need to be known before simulating the system with the control 
system as the control system is wholly model-free. However, to decrease controller activity, the upper and lower bounds of 
the input influence gain estimate can be redefined in further simulations to encompass the final estimated value of the input 
influence gain. 

 
2.3.2 First-Order System 

In preparation for the control of roll and yaw rate for an aircraft, the control law was updated to control a first-order 
SISO system. This included the re-derivation of the control law after Equations 2.7 and 2.8 are updated such that: 

𝑠𝑠 = 𝑥𝑥 − 𝑥𝑥𝑑𝑑 + 𝜆𝜆� (𝑥𝑥 − 𝑥𝑥𝑑𝑑)𝑑𝑑𝑡𝑡
𝑡𝑡

0
 

(2.57) 

�̇�𝑠 = �̇�𝑥 − �̇�𝑥𝑑𝑑 + 𝜆𝜆(𝑥𝑥 − 𝑥𝑥𝑑𝑑) (2.58) 
This control law was implemented on an example first-order SISO system defined as: 

�̇�𝑥 + 7𝑥𝑥 + 5𝑥𝑥3 = 𝑏𝑏𝑏𝑏 
where the input influence gain, 𝑏𝑏, was time-varying as described in Section 2.3.1. The desired tracking signal was updated 
to be a step function with a magnitude of 1 ran through a transfer function. To generate a desired “roll” signal, a first-order 
transfer function was used such that: 

𝑋𝑋𝑑𝑑
𝑈𝑈

=
𝐾𝐾

𝜏𝜏𝑠𝑠 + 1
 

where 𝑈𝑈 is the step function input, 𝜏𝜏 is a roll-mode time constant set to 0.3 seconds, and 𝐾𝐾 is a gain set to 1. The results of 
simulating the system with the updated control law for 60 seconds with a sampling of 0.001 seconds are shown below: 
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Figure 23: Lambda Estimate 
  

 
As seen in Figures 15 and 16, the controller still provides excellent tracking of roll rate and acceleration. Again, the 

sliding condition is met and the estimates for the input influence gain and 𝜆𝜆 are both convergent while the control input is 
smooth and adequately small. 
 
4. Conclusion 

The majority of existing control methods require extensive development and tuning. This is becoming a problem as 
nonlinear systems become more complex with advancements in technology. It is becoming time intensive to define a 
mathematical model of these systems. Oftentimes, the final models are not perfect and have parameter uncertainty. SMC is 
being applied more widely for its robustness against modeling uncertainty and external disturbances. Thus, SMC saves time 
and money by eliminating most of the development and tuning needed. However, accurate approximations of system 
dynamics are still needed for traditional SMC design.  

The work shown here is truly model-free, requiring only knowledge of the system order, state measurements, and the 
previous control inputs for derivation of the control law. Thus, the time, money, and effort needed for the system modeling 
and tuning usually required by traditional SMC and other control methods is eliminated. The MFSMC derived in section 2.1 
can be expanded to MIMO systems which will expand the utility of the MFSMC to a wide range of systems. This includes 
the control of an aircraft. The re-derivation and application of the control law for single order systems described in section 
2.3.2 is in preparation for future work to control an aircraft in the lateral and directional axes. The MFSMC is theoretically 
the most efficient in terms of fuel-efficiency as the controller output is only dependent on state measurements. Thus, the 
development and application of the MFSMC to aircraft autopilot designs and other similar applications will increase fuel-
efficiency and reduce emissions. 
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