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Abstract - Various types of control methods are utilized in wind turbines to obtain the optimal amount of power from wind. The 
dynamics of the turbines are required in said methods, and the speed of the wind is a critical component of the analysis. However, the 
stochastic nature of wind means that wind speed sensor signals are noisy. This paper proposes the utilization of a radial basis function 
neural network (RBFNN) based filter to process the signal, by training the network with a simulated wind signal. The results showed that 
the proposed scheme has versatility in terms of noise removal and signal smoothing, and if required, can viably match performance with 
a Butterworth filter. Three “modes” of processing the signal are determined based on choosing certain ranges of values for parameters 
which comprise the RBFNN (number of neurons used and learning rate), and the control designer can choose which one to implement 
based on performance requirements.  
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1. Introduction 

A neural network is a generalized term for a configuration where units are interconnected and are able to communicate 
with each other to perform some task. In a contemporary sense, the term refers specifically to the design of artificial systems 
that are imitating the framework of biological neural structures. Such systems are mathematical models that utilize nodes, 
generally referred to as “neurons”, that take one piece of information, “activate” it, and pass the information to the next 
neuron in the chain. At the beginning is a set of input(s), and the end a set of output(s). In the middle are layers of said nodes 
that transform the input(s) to output(s). The nodes themselves have fixed “activation functions”. However, the connections 
between the nodes can have variable weights. It is the nature of the activation functions, the weights, and the number of 
hidden layers (layers between the input and the output) that dictates the type of neural network it is.  

Here, the interest lies in using radial basis functions as the activation functions. Such neural networks are appropriately 
named Radial Basis Function Neural Networks (RBFNN). Radial basis functions use exponentials and are inherently non-
linear. As such, the RBFNN is sometimes referred to as a universal approximator as it can replicate any inputs with arbitrary 
precision. For functions with highly non-linear dynamics, input-output mapping algorithms that use RBFNNs can be 
developed that can accurately reproduce said dynamics. Unlike other types of neural network which have multiple hidden 
layers (Multilayer Perception Networks), a RBFNN only has one hidden layer composed of nodes that utilize the radial basis 
activation function.   

This paper uses an RBFNN to estimate wind speed in real-time based on simulated sensor data to bypass modeling any 
wind turbine dynamics. This is done by utilizing an RBFNN as a filter on the sensor data. The flexibility of the parameters 
of the RBFNN allow the filtered signal to have desired characteristics. The method of development is as follows, based on 
[1]. 
 
2. Methods 
2.1. Literature Review 

Stemming from the work of Powell [2], Broomhead et al [3] introduced the idea of utilizing radial basis functions for 
machine learning purposes. Much of the development of this method has remained more or less the same at a basic level and 
the descriptions given in the following sessions are almost identical to those given in [2]. When it comes to wind turbines, 
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[4][5][6] use an RBFNN for approximating highly non-linear dynamics of a turbine itself. [4] uses input-output mapping 
algorithms to train a RBFNN to obtain the wind speed by approximating the inverse of the function  

 

                                                                      𝑃𝑃𝑚𝑚 = 1
2
𝜌𝜌𝐴𝐴𝑟𝑟𝑣𝑣𝑤𝑤3𝐶𝐶𝑃𝑃(𝜆𝜆,𝛽𝛽)                                          (1) 

 
where 𝑃𝑃𝑚𝑚 is the power extracted from the wind, 𝜌𝜌 is density, 𝐴𝐴𝑟𝑟 is the area swept by the rotor blades, 𝑣𝑣𝑤𝑤  is the wind 

speed, 𝐶𝐶𝑃𝑃 is the power coefficient, 𝜆𝜆 is the tip-speed-ratio, and β is the blade pitch angle. In [4], the errors for the estimated 
wind speed based on turbine dynamics are within 0.2 𝑚𝑚

𝑠𝑠
. [5] utilizes the same approach and covers the entire operating range 

of the turbine and obtains results with almost negligible error. [6] has identical development and error as [4].  
 

There is also application of RBFNN to predict wind speeds for use in weather models, as reported in [7][8][9]. The 
centers of the hidden layers in the RBFNN are determined by K-means clustering with addition of Recursive Least Squares 
in [7] to obtain relatively acceptable errors. [8] uses an RBFNN and compares it to existing algorithms, with a reported 
improvement range of approximately 50%. [9] combines a back-propagation neural network and an RBFNN to improve 
results compared to each alone in wind speed prediction.  

 
2.2 Background 
2.2.1 Radial Basis function 

A radial basis function is a function whose output is based solely on the distance of the input from a particular point. 
While there are many choices for radial basis functions, a Gaussian is suitable for the application of wind speed estimation 
due to its ease of implementation. The Gaussian function has a peak at x=0 and is an exponential decrease to 0 everywhere 
else. Thus any input value has a result based on how far it is from some particular point in the output space (this point can 
be decided to be the origin of the function with no functional drawbacks.)  
 

The Gaussian function itself is the following: 
         

                                                               𝑦𝑦(𝑥𝑥) = 𝜙𝜙(𝑥𝑥) = 𝑒𝑒
−||𝑥𝑥−𝜇𝜇||2

2𝜎𝜎2                                               (2) 
          

Where μ is the center of the function and σ is the standard deviation.  Utilizing the 𝑙𝑙2 norm on the x - μ term generalizes 
its application to higher dimensions. 
 
2.2.2 Radial Basis Function Neural Network 

Neural networks are characterized by the fact that they require training to perform their function. Generally, the more 
training data there is, the better the network performs, although over-training can become an issue wherein the unwanted 
frequencies are introduced back into the output signal. Regardless, the output is inherently dependent on the training data. 
Thus, this data must be incorporated in the network design.  The input layer has n-dimensional input data. Each of these is 
sent to each node in the hidden layer. Assuming just one output, it is the weighted sum of all of the outputs of the hidden 
layer. Each of the ϕ in the hidden layer is the activation function. As stated previously, this is the Gaussian function. 
According to its definition, two properties are still required before it can be activated, μ and σ.  

 
For wind speed estimation, the training data is one dimensional and the sample rate is uniform. As such, the centers of 

the Gaussians can be selected randomly. Each node thus gets one randomly center from the vector 𝑥𝑥1 (simply known as x 
henceforth). As such, μ is now obtained. The standard deviation can be obtained with this process: Obtain the 𝑙𝑙2 norms of 
every centre with respect to each other. Select the maximum value. And the standard deviation is [10]: 

 

                                                               𝜎𝜎 = 5𝜌𝜌𝑚𝑚𝑚𝑚𝑥𝑥

√2𝐻𝐻
                                                                             (3) 
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Where 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum value obtained and H is the number of neurons used. This one singular value can be used 

in every activation function. Finally, the output weights must be determined.  The output of the neural network can be denoted 
to be the following equation: 

 
                                                           𝑧𝑧(𝑥𝑥) = ∑ 𝑤𝑤𝑗𝑗𝜙𝜙(𝑥𝑥, 𝜇𝜇𝑗𝑗𝐻𝐻

𝑗𝑗=1 )                                                           (4) 
  

With each element in the x vector propagating through out the entire network one at a time, the equation above can be 
rearranged to a matrix form as shown below, assuming c elements in the x vector. However, obtaining the weights means 
that the network output must be as close as possible to the training output:  

 

                                                                                                           (5) 
 

As stated before, the left-most matrix here is known as the interpolation matrix. Reducing it to a compact form: 
 

                                                                      𝜙𝜙𝑤𝑤 = 𝑦𝑦                                                                                 (6) 
 

Obtaining the weights then must be a simple matter of inverting the interpolation matrix and multiplying it by the output 
vector on the right hand side. However, unless c=H, as is almost always not the case, inversion is not directly possible as the 
matrix is not square. As such, a pseudoinverse can be utilized:  

 
                                                            𝑤𝑤 = (𝜙𝜙𝑇𝑇 𝜙𝜙)−1𝜙𝜙𝑇𝑇𝑦𝑦                                                                    (7) 

  
This allows a reasonably reliable way to calculate the weights in a batch formulation. There are still limitations to this 

method, namely the size of the training data and invertibility of 𝜙𝜙𝑇𝑇 𝜙𝜙. Using MATLAB, there are many instances in which 
the inversion fails because the condition number of that matrix is practically null. With the same training data, the difference 
in each run is the selection of the data centers. Solution then naturally seems to be to keep the centers identical. However, a 
more robust way to obtain the weights is desired.  

 
A technique known as back-propagation is used extensively in neural network research to modify weights across 

multiple layers. For application to RBFNNs, it is straightforward as only one layer of weights must be determined. This 
involves a gradient descent approach to obtain the weights at each time step. A quadratic cost function can be designed as 
follows, which outlines the error between the actual output and the network output (denoted as z): 

 
                                                  𝐽𝐽 = (𝑦𝑦 − 𝑧𝑧)2         (8) 

 
This cost function must be minimized as it is the error between the network and the training output. To obtain the 

weights, the following update rule is used with the current iteration being the 𝑘𝑘𝑡𝑡ℎ iteration: 
 

                  𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − 𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤

                                 (9) 
 

The parameter η is known as the learning rate and is a critical value to be tuned to obtain the correct results. If this value 
is too large, the weights will increase exponentially and destabilize the network. If it is too small, the network will be 
untrained. Typically, a value of 0.01 is first used to determine how well the network performs. It became evident that this 
value was unable to stay effective for a wide range of neurons and sample rates. With an increase in neurons, the training 
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data was over-fit and noise would effectively be reintroduced. With an increase in the sample rate the frequency of the 
network response would proportionately increase. A reduction in the learning rate as the neurons increased and an increase 
as the sample rate increased was shown to be effective at counter-acting unwanted response noise as a result of changing the 
properties of the network. As such, the following novel equation is proposed: 

 

                                                                   𝜂𝜂 = 𝜆𝜆
𝑚𝑚𝐻𝐻

               (10) 
 

Where a is the sample rate, H is the number of neurons, and λ is a correction constant that is most effective when equal 
to 20 for this particular application. This implies that there is further tuning to be performed, although 20 has demonstrated 
to be reliable for a wide range of neurons and sample rates. 
 
3. Results 

Here are the results of application to simulated wind data. Such data was obtained from TurbSim. A continuous time 
turbulence simulation was run for 600 seconds in three-dimensional space. For all intents and purposes, the x-direction is 
sufficient to test the network. The stochastic nature of wind is evident, and the noisy element is rich enough to reflect non-
ideal conditions, as shown in Figure 1. However, λ has to be modified to 0.5. This implies that the network is not encountering 
the same frequency of noise in the simulation as it did with previous tests which utilized the Weibull distribution. As such, 
a high λ is not required to compensate.  

 

 
Figure 1: RBFNN Performance on Simulated Wind Speeds 

 
3.1 Butterworth Filter 

This section introduces a Butterworth filter to compare performance with the RBFNN. It is a low-pass linear filter which 
ideally is as flat as possible in the band-pass region. The result should thus be a filter that removes higher frequency noise in 
the data. The order of the filter is dictated by the slope of the frequency response after the cut-off frequency. 
Performance wise, there are a few properties that are immediately noticeable in the Butterworth filter (1st order, cut off 
frequency of = 0.5 𝑟𝑟𝑚𝑚𝑟𝑟

𝑠𝑠
 ), as shown in Figure 2.  

 
Firstly, the Butterworth filter takes approximately a quarter of the time compared to the neural network to find suitable 

weights, which is desirable. Secondly, the process delay is about the same as the neural network. Lastly, the noise removal 
ability is notably superior to the neural network, as the “smoothness” of the filtered data is substantially more pronounced. 
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Figure 2: Filtering Performance of the Butterworth Filter 

 
Visually, there is only limited information that can be extracted. Signal analysis is required to numerically compare the 

performance. Furthermore, the neural network has not been finely tuned (learning rate and number of neurons can be 
modified) to achieve optimal performance. 

 
3.2 Performance Analysis  

With a built-in signal analysis tool in MATLAB called Signal Analyzer, the power spectrum of the signals can be 
obtained. In the original signal, there are low-frequency contents in the signal which are most notably present. The slope for 
this region (up to 10−1 𝑟𝑟𝑚𝑚𝑟𝑟

𝑠𝑠
) is approximately 0. Around 10−1 𝑟𝑟𝑚𝑚𝑟𝑟

𝑠𝑠
 is when there is a notable drop in the slope, after which 

there is a region with a slope of approximately -20 𝑟𝑟𝑑𝑑
𝑟𝑟𝑑𝑑𝑑𝑑

. Beyond 10 𝑟𝑟𝑚𝑚𝑟𝑟
𝑠𝑠

, there are 4 dips in the power. When the simulated 
wind signal was designed, these spikes were placed into the signal to give it its stochastic characteristics. Based on the 
understanding developed in the prior section, it is expected that the Butterworth filter will allow lower frequencies to pass 
while rejecting more of the high frequency content. This is exactly the result. At higher frequency, the integrity of the signal 
is preserved while significantly reducing the relative power. Placing the RBFNN into this graphing space shows its 
capabilities in eliminating higher frequency content even still. Figure 3 shows the comparative spectrums of the signals 
shown in Figure 2. The RBFNN can be seen as an “averaging” entity for the simulated signal in Figure 2. This is displayed 
in its sharp rejection of the signals beyond the 10−1 𝑟𝑟𝑚𝑚𝑟𝑟

𝑠𝑠
 frequencies.  

 
Figure 3: Power spectrum of simulated wind, Butterworth, and the RBFNN filter  

 
Modification of the RBFNN such that it has 10 neutrons with λ=3 yields the following results. The power spectrum is 

almost identical at low and middle frequency ranges, and reasonably so in the majority of the high frequency range, as noted 
from Figure 4. Visually, however, there is no practical difference between the outputs in either filter, as seen in Figure 5. In 
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terms of a control method, it would be inconsequential which filter is utilized. However, it demonstrates that with just a few 
neurons and minimal tuning, the RBFNN can match the performance of the Butterworth filter. Figure 3 can then be the result 
is more filtering is desired, and Figure 4 can be the result if the RBFNN is to match the performance of the Butterworth filter. 

                  
 

Figure 4: Power spectrum of RBFNN and Butterworth Filters             Figure 5: Performance of RBFNN and Butterworth Filters 
 

A simple method to compare the filters with a quantifiable result is to compare the relative power of the original signal 
with Butterworth and RBFNN processed signals. This can be done by numerically integrating the signals with the following 
formula: 

  
           𝐹𝐹𝑝𝑝 = ∑ (𝑊𝑊(𝑛𝑛) − 𝐵𝐵𝑊𝑊(𝑛𝑛𝑁𝑁

𝑛𝑛=1 ))𝑠𝑠                          (11) 
  

Where 𝐹𝐹𝑝𝑝 is a performance factor, N is the total number of samples in the data, W is the wind simulation signal vector, 
BW is the Butterworth signal vector, and s is the increment size between data points.  

 
Likewise, the formula can be adjusted for the RBFNN as  

 
                       𝐹𝐹𝑝𝑝 = ∑ (𝑊𝑊(𝑛𝑛) − 𝑁𝑁𝑁𝑁(𝑛𝑛𝑁𝑁

𝑛𝑛=1 ))𝑠𝑠                    (12) 
 
Where NN is the RBFNN signal vector. The Butterworth and the wind signals stay constant and therefore are reasonable 
metrics to compare against the RBFNN. With the equations stated above, the integral is as follows: 

 
      𝐹𝐹𝑝𝑝 = 3200              (13) 

 
The results for the RBFNN can be normalized about the performance factor stated above. It is expected that the network 

will shift about the graphs shown in Figures 3 and 4 as the number of neurons and λ are modified, and this will be reflected 
in its normalized performance factor. The resultant data can be combined into a surface plot shown in Figure 6. Since the 
data is normalized, a semi-transparent plane showing the base value of 1 is shown for clarity. Across the entire range of the 
neurons tested, there are values of λ that can be selected such that the performance of the network is practically identical to 
the Butterworth filter. This range is approximately 2 ≤ 𝜆𝜆 ≤ 6 and increases roughly linearly with the number of neurons. The 
normalized performance factor (NPF) dictates the noise removing element of the network. As such, a higher factor would 
translate to a less noisy signal. However, the cost becomes signal integrity with respect to the original. Conversely, a lower 
factor would translate to more noise, while increasingly preserving the signal integrity. The conclusion being that at a certain 
point, the network would recreate the original unfiltered signal.  
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It is also evident that modification of λ has a significantly higher impact than modification of the number of neurons, 
especially at lower λ ranges as shown in Figure 7. The displayed curve can be approximated by some arbitrary exponential 
decay function. As such, the performance factor has an increasing slope as the λ keeps increasing indicating that there is a 
steady state value. Based on how the performance factor is calculated, this steady state value is 0, which pertains to the 
unfiltered signal as mentioned before. When it comes to the number of neurons, the impact on the performance factor is not 
nearly as drastic as λ, as seen in Figure 8. Here, the displayed curve can be approximated by some arbitrary bounded 
exponential growth function. Similar to λ, the highest impact is in the lower range of neurons utilized, after which there are 
diminishing returns.  

 
              Figure 6: NPF vs. λ and neurons                Figure 7: Impact of λ on the NPF            Figure 8: Impact of neurons on the NPF  
 

The inquiry then becomes the following: in this interplay of computational cost, signal integrity, comparison to an 
existing filter, and noise removal, what are the ideal parameters to choose for the RBFNN? It comes down to the requirements 
of the output signal. The control designer must choose the appropriate parameters for the application that is utilizing the 
output signal. There may be instances where high frequency noise must be eliminated, or the middle range be kept. Or a 
signal delay might be critical or irrelevant to the performance of the whole system. These are a few examples of the factors 
that must be considered. 

 
Tabulated below are the tested λ and neuron ranges. A total of 9 combinations were tested.  

 
Table 1: Ranges tested for λ and neurons 

λ 0.1-1 1-3 3-10 
Neurons 0-50 50-100 100-150 

 
Every additional neuron added is an additional 6 calculations at every time step. Depending on the sample size, this can 

become unfavorable very quickly at high numbers of neurons. For application to control design, and control design for wind 
turbines in particular, it is critical to minimize active delay in the output since wind is extremely stochastic. At the same time, 
wear and tear of moving parts must be taken into account as the controller attempts to overcome the rapid changes in the 
disturbances. As such, there are several modes that can be deduced from the results that a control designer might utilize: 
 

Table 2: Modes for ranges of λ and Neurons 

Mode Parameters Notes 

Neurons λ 

Durability  50-100 0.1 - 1  When fatigue on the electromechanical parts must be minimized, 
this mode can be used. It ensures an extremely smooth output while 
rejecting noise that would cause any sudden output changes. 
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Speed 0-50 3-10 This mode ensures that the appropriate noise is removed while 
maintaining adequate response times. For applications in noisy 
environments and those where maximum power-point tracking is 
desired, these parameters ensure that the output will have enough 
integrity to accurately reflect the real conditions.  

Robustness 100-150 1-3 When rapid changes are to be expected in the disturbances, this mode 
ensures a balance between speed and accuracy of the output. A 
higher number of neurons create smoothness in the data while the 
range can compensate for slower speeds with its ability to overcome 
the largest expected changes in the original signal.  

 
             
5. Conclusions 

This paper proposes a RBFNN based filtering technique for wind speed estimation for application to wind turbine control 
methods. Simulated wind data was input and the resulting signal was analyzed. The parameters of the RBFNN can be 
manipulated as per the tabulated results to obtain the desired characteristics in the filtered signal. The modes that can be 
demonstrated are for wind turbine durability, control method response speed, and control method robustness. The results 
also show that the RBFNN can be on par with a Butterworth filter if the design parameters are particularly set.  
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