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Abstract – This paper presents a method for estimating the varying inertia parameters of unmanned aerial manipulators (UAMs) while 

they perform manipulation maneuvers on a priori unknown objects and execute various flight maneuvers. The varying mass and moment 

of inertia tensor of the UAM are estimated using the UAM’s force and the kinematic model of its robotic arm by means of a novel 

sequential Kalman filter (KF) algorithm. In order to validate the effectiveness of the mechanism, it is implemented on a highly-

maneuverable VTOL-type UAV equipped with a 3 degree-of-freedom (DoF) manipulator capable of moving only on the longitudinal 

plane of the aircraft. 
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1. Introduction 
Over the past few decades, unmanned aerial vehicles (UAVs) have garnered increasing attention for their use in military 

and civilian applications. To further enhance the capabilities of UAVs, researchers have been working on combining robotic 

arms with UAVs, creating what are known as unmanned aerial manipulators (UAMs) [1-2].  

Controlling UAMs for complex missions that require simultaneous arm manipulation while performing flight maneuvers 

has been a challenging task that requires further attention. Controlling the arm motion while the UAV is stationary (i.e., 

hovering) has been the traditional approach used in UAM control [3-4]. Performing manipulation under such conditions, 

however, is limited and does not maximize the capabilities of UAMs. As a result, current UAMs are incapable of performing 

diverse tasks that are needed, such as dynamically capturing objects while maintaining translational motions or using the 

arm as an agent to enhance the flying capabilities of the UAV (e.g., flight maneuvers that eagles perform with captured prey 

in nature). One of the main factors that make the control of UAMs challenging is the varying inertia parameters, such as 

changes in the total mass of the UAV, moments of inertia, and variations in the UAV’s center of mass. Control performance 

heavily depends on the accuracy of the model parameters used in the UAM’s mathematical model, including drag coefficient 

changes and, more importantly, inertia parameters. However, even small manipulation maneuvers performed by the UAM 

cause these inertia parameters to change. These changes are typically more pronounced when grasping and manipulating a 

priori unknown mass objects. For example, when a given UAM picks up an object, all of its inertia parameters and dynamics 

are altered. Similarly, changes in the arm's position and (unknown) deflection of its linkages can result in changes to the 

moment of inertia and the center of mass of the UAM. These changes can significantly degrade control performance or 

disrupt the UAV’s flight maneuvers. Therefore, it is necessary to develop real-time estimation algorithms to handle changes 

in inertia parameters in order to maintain the stability and maneuverability of UAMs at all times during a given mission. 

There have been numerous research papers dealing with varying inertia parameters for aerial vehicles. The most 

commonly used methods to cope with this problem has been the use of adaptive laws [5-6]. In [7], Min et al. utilized an 

adaptive robust controller to estimate the mass of UAVs that carry unknown payloads to achieve effective altitude control. 

Baraban et al. [8] designed a model reference adaptive law to estimate the varying mass of UAMs during pick-up maneuvers 

using acceleration measurement and low-pass filters. These and other approaches typically take several seconds for 

estimation variables to converge, which is not suitable for real-time control purposes during critical flight maneuvers. In [9-

10], Lee and Kim suggested the use of an online parameter estimator for unknown payloads picked up using Lyapunov 

candidate functions. Mellinger et al. in [11] used recursive least square methods for mass, center of mass, and lateral 

aerodynamic disturbance estimation through a set of independent online estimation algorithms. Although practical and 
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somewhat generic, the approach proposed in [11] requires that the UAV be in a stable and controllable hover flight when 

the presence of varying parameters exists. 

Although previous research works have been effective, they did not consider the highly nonlinear kinematics and 

dynamics of the manipulator, which are closely related to changes in the inertia parameters of the UAM. In this paper, 

a cascade Kalman Filter (KF) mechanism [12] is proposed to control a novel highly maneuverable Vertical Take-Off 

and Landing (VTOL) UAV with a 3-DoF robotic arm developed for operations inside confined spaces [13]. The 

proposed mechanism leverages the UAV dynamics and the 3-DoF manipulator kinematics to enhance the UAV’s flight 

characteristics. 

The remainder of this paper is organized as follows. Section 2 describes the UAM used in this research work. 

Section 3 presents the procedure of estimation for the mass and moment of inertia tensor of the UAM. Section 4 provides 

simulation results and finally, the conclusions are given in Section 5. 

 

2. The UAM 
The UAM of interest is a VTOL-type UAV named Navig8. It has the unique ability to perform flight maneuvers 

that other aircraft cannot execute, such as pitch hovering at any angle within the range of -90° to +90° (Fig. 1-(a)) [13-

15]. This UAV has been equipped with a 3-DoF manipulator that can only move within the longitudinal plane of the 

aircraft, as shown in Fig. 1-(b) and Fig. 1-(c). The joints of the arm are all revolute, with axes of the rotation parallel to 

each other (Fig. 3). The UAV component of the UAM is controlled by two tilting ducted variable-pitch propellers and 

one variable-pitch horizontal tail propeller. The two main propellers are independently tiltable in the longitudinal 

direction to produce thrust vectoring forces, as illustrated in Fig. 1-(c), where the left and right propellers are tilted 

forward and backwards, respectively. 

 

 
(a) The Navig8 UAV.                                     (b) The Navig8 UAM.                                      (c) UAV planes. 

 
Fig. 1: The Navig8 UAV and hypothetical Navig8 UAM.  

 

3. Estimation Filter Design 
The proposed estimation algorithm comprises two intertwined Kalman Filters to estimate the mass including any 

mass grabbed by the arm and moments of inertia of the UAM, as schematically illustrated in Fig. 2. The first Kalman 

filter utilizes measurements of the propellers’ angular velocities (𝜔⃗⃗ 𝑝𝑟𝑜𝑝), the UAV’s linear acceleration (𝑎 𝑈𝐴𝑉), and its 

angular velocity (𝜔⃗⃗ 𝑈𝐴𝑉 = [𝑃, 𝑄, 𝑅]𝑈𝐴𝑉
𝑇 ) and acceleration (𝛼 𝑈𝐴𝑉 = [𝑃̇, 𝑄̇, 𝑅̇]

𝑈𝐴𝑉

𝑇
) to estimate the UAM’s mass. The 

estimated mass is then used in the moment of inertia tensor estimator along with measurements from the manipulator’s 

joint angles (𝜃𝑖) and corresponding angular velocities (𝜃̇𝑖), where the 𝑖 represents the joint of the robotic arm (𝑖 =
1,2,3). Through an iterative process, the mass and moment of inertia tensor of the UAM are estimated at every instant 

in time during the UAM’s maneuver. 
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Fig. 2: The flowchart of inertia parameter estimators for a UAM. 

 
3.1. Mass Estimator 

The output of the mass estimator is the total mass of the UAM, 𝑚𝑈𝐴𝑀. As with traditional KF algorithms, the proposed 

approach employs two models: a motion model and a measurement model. The motion model for the UAM mass is set as a 

random walk model [16], represented by Eq. (1), where 𝜀𝑚 is defined as a Gaussian noise for the mass. 

 

𝑚̇𝑈𝐴𝑀 = 𝜀𝑚 (1) 

 

For the measurement model, the force of the UAM expressed in the UAV frame is used as given by Eq. (2). This model 

represents the relationship between the mass of the UAM and the forces acting on it. 

 

∑ 𝐹 𝑈𝐴𝑀 
𝑈𝐴𝑉 + 𝑚𝑈𝐴𝑀 𝑅𝐼 

𝑈𝐴𝑉 ∙ 𝑔 = 𝑚𝑈𝐴𝑀 𝑎 𝑈𝐴𝑀 
𝑈𝐴𝑉  (2) 

 

The term ∑ 𝐹 𝑈𝐴𝑀 
𝑈𝐴𝑉  in Eq. (2) represents the forces acting on the center of mass of the UAM in the UAV frame of 

reference. The term 𝑅𝐼 
𝑈𝐴𝑉  is the rotational transformation matrix from the inertial reference frame to the UAV reference 

frame. The gravitational acceleration vector in the inertial reference frame is represented by 𝑔 , and 𝑎 𝑈𝐴𝑀 
𝑈𝐴𝑉  represents the 

acceleration of the UAM in the UAV reference frame. It is worth noting that 𝑎 𝑈𝐴𝑀 
𝑈𝐴𝑉  is difficult to measure directly since, 

in a typical UAV, an Inertia Measurement Unit (IMU) is fixed to the UAV and only provides the acceleration of the center 

of mass of the UAV but not the UAM. This is because, while the center of mass of the UAM continuously changes during 

any manipulation maneuvers, the center of mass of the UAV is fixed with respect to the UAV’s frame of reference. Therefore, 

𝑎 𝑈𝐴𝑀 
𝑈𝐴𝑉  in Eq. (2) is converted to the UAV’s acceleration, 𝑎 𝑈𝐴𝑉 

𝑈𝐴𝑉 , using the derivatives of the vector relation between 

the UAM and the UAV, 𝑟 𝑜𝑓𝑓 
𝑈𝐴𝑉  as illustrated in Fig. 3 and represented by Eq. (3).  

 

𝑎 𝑈𝐴𝑀
 

 
𝑈𝐴𝑉 = 𝑎 𝑈𝐴𝑉

 
 

𝑈𝐴𝑉 + 𝑟̈ 
 

𝑈𝐴𝑉
𝑜𝑓𝑓 + 𝛼  

𝑈𝐴𝑉
𝑈𝐴𝑀 × ( 𝑟 

 
𝑈𝐴𝑉

𝑜𝑓𝑓 ) + 2 ∙ 𝜔⃗⃗  
𝑈𝐴𝑉

𝑈𝐴𝑀 × ( 𝑟̇ 
 

𝑈𝐴𝑉
𝑜𝑓𝑓  ) + 𝜔⃗⃗  

𝑈𝐴𝑉
𝑈𝐴𝑀

× ( 𝜔⃗⃗ 𝐼
𝑈𝐴𝑉

𝑈𝐴𝑀 × ( 𝑟 
 

𝑈𝐴𝑉
𝑜𝑓𝑓 )  ) 

(3) 

  

The term 𝑟 
 

𝑈𝐴𝑉
𝑜𝑓𝑓  in Eq. (3) represents the position vector of the center of mass of the UAM in the UAV frame. 

Assuming that the mechanical design and the kinematic motion of the robotic arm are fully known, it is reasonable to assume 

that the location of the center of mass of the UAM is known. Under this assumption, Eqs. (2) and (3) can be used to obtain 

Eq. (4). 

 

∑ 𝐹 𝑈𝐴𝑀 
𝑈𝐴𝑉 = 𝑚𝑈𝐴𝑀 ( 𝑎 𝑈𝐴𝑉

 
 

𝑈𝐴𝑉 + 𝑟̈ 
 

𝑈𝐴𝑉
𝑜𝑓𝑓 + 𝛼  

𝑈𝐴𝑉
𝑈𝐴𝑀 × ( 𝑟 

 
𝑈𝐴𝑉

𝑜𝑓𝑓 ) + 2 ∙ 𝜔⃗⃗  
𝑈𝐴𝑉

𝑈𝐴𝑀 × ( 𝑟̇ 
 

𝑈𝐴𝑉
𝑜𝑓𝑓 )

+ 𝜔⃗⃗  
𝑈𝐴𝑉

𝑈𝐴𝑀 × ( 𝜔⃗⃗  
𝑈𝐴𝑉

𝑈𝐴𝑀 × ( 𝑟 
 

𝑈𝐴𝑉
𝑜𝑓𝑓 )  ) − 𝑅𝐼 

𝑈𝐴𝑉 ∙ 𝑔 ) 
(4) 
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If the movement of the robotic arm is ignored, that is, assuming the arm is not moving during the time the estimation 

process is taking place, the center of mass of the UAM becomes static. Under such conditions, the UAM’s angular 

𝜔⃗⃗ 𝑈𝐴𝑀 , and angular acceleration, 𝛼 𝑈𝐴𝑀 , become equivalent to the UAV’s angular velocity, 𝜔⃗⃗ 𝑈𝐴𝑉 , and the angular 

acceleration, 𝛼 𝑈𝐴𝑉 , which can be directly measured by the IMU on the UAV. Consequently, Eq. (4) can then be 

as Eq. (5), where 𝑎 𝑈𝐴𝑉
𝑃

 
𝑈𝐴𝑉 = 𝑎 𝑈𝐴𝑉 

𝑈𝐴𝑉 − 𝑅𝐼 
𝑈𝐴𝑉 ∙ 𝑔 . 

 

   
Fig. 3: Reference frames and vector relations. 

 

∑ 𝐹  
𝑈𝐴𝑉

𝑈𝐴𝑀 = 𝑚𝑈𝐴𝑀 ( 𝑎 𝑈𝐴𝑉
𝑃

 
𝑈𝐴𝑉 + 𝛼  

𝑈𝐴𝑉
𝑈𝐴𝑉 × ( 𝑟 

 
𝑈𝐴𝑉

𝑜𝑓𝑓 ) + 𝜔⃗⃗  
𝑈𝐴𝑉

𝑈𝐴𝑉 × ( 𝜔⃗⃗  
𝑈𝐴𝑉

𝑈𝐴𝑉 × ( 𝑟 
 

𝑈𝐴𝑉
𝑜𝑓𝑓 )  )) (5) 

 

Thus, 𝑎 𝑈𝐴𝑉
𝑃

 
𝑈𝐴𝑉  can be directly measured by the accelerometers on the UAV. It should be noted that for this process 

to be effective, it is assumed that the UAM is not moving fast enough to be impacted by aerodynamic effects (e.g., drag 

force) during the mass estimation process. Therefore, the major forces acting on the UAM are the thrust forces from the 

UAV propellers (see Fig. 1-(c)). As a result, the term ∑ 𝐹  
𝑈𝐴𝑉

𝑈𝐴𝑀 can be obtained by measuring the angular velocities 

of the propellers and combining them with the propellers’ thrust coefficients [17], which are assumed to be known. The 

z-component of Eq. (5) can now be reformulated and a measurement noise (𝛿𝑚) is added to derive a measurement 

model, Eq. (6). To prevent Eq. (6) from diverging when the denominator becomes zero, which occurs when the aircraft 

is hovering, only the z-component of Eq. (5) is used. 

 

𝐹𝑈𝐴𝑀 
𝑈𝐴𝑉

𝑧
∙ {𝑎𝑈𝐴𝑉𝑧

𝑃 + 𝑃̇𝑈𝐴𝑉𝑟𝑜𝑓𝑓𝑦
− 𝑄̇𝑈𝐴𝑉𝑟𝑜𝑓𝑓𝑥

+ 𝑃𝑈𝐴𝑉 (𝑅𝑈𝐴𝑉𝑟𝑜𝑓𝑓𝑥
− 𝑃𝑈𝐴𝑉𝑟𝑜𝑓𝑓𝑧)

− 𝑄𝑈𝐴𝑉 (𝑄𝑈𝐴𝑉𝑟𝑜𝑓𝑓𝑧 − 𝑅𝑈𝐴𝑉𝑟𝑜𝑓𝑓𝑦)}
−1

= 𝑚𝑈𝐴𝑀 + 𝛿𝑚 
(6) 

 
3.2. Moment of Inertia Tensor Estimator 

After obtaining the estimation of the UAM’s mass, the estimation of the UAM’s inertia tensor can be obtained (Fig. 

2). The parameters that need to be estimated are the moments of inertia (𝐼𝑥𝑥,   𝐼𝑦𝑦, 𝐼𝑧𝑧) and the product of inertia (𝐼𝑥𝑧) 

of the UAM, represented in a virtual frame of reference, UAV* (Fig. 3). This virtual UAV frame of reference is obtained 

by translating the UAV's frame of reference from its current position to the center of mass of the UAM. This 
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approach serves to ease the representation of the moments of inertia of the UAM with respect to the UAV. Since the given 

UAM is symmetric about its longitudinal plane (i.e., x-z plane) (Fig. 1-(c)), the products of inertia of the UAM in the x-y 

plane (𝐼𝑥𝑦) and the y-z plane (𝐼𝑦𝑧) are zero, which reduces the complexity in the estimation process. 

To derive the motion and measurement model for the moment of inertia tensor estimation, the moment of inertia tensor 

tensor of each component of the UAM and their derivatives in the UAV* frame are obtained using the rotated and parallel 

axis theorem [18] as Eq. (7). 

 

𝐼𝑐𝑖 
𝑈𝐴𝑉∗

     = 𝑅𝑐𝑖 
𝑈𝐴𝑉∗

∙ 𝐼𝑐𝑖 
𝑐𝑖 ∙ 𝑅𝑐𝑖

𝑇
 

𝑈𝐴𝑉∗
− 𝑚𝑐𝑖

∙ [ 𝑟 𝑐𝑖𝑈𝐴𝑀
𝑈𝐴𝑉∗

]
×

∙ [ 𝑟 𝑐𝑖𝑈𝐴𝑀
𝑈𝐴𝑉∗

]
×

 (7) 

 

In Eq. (7), the term [   ]× refers to the skew-symmetric matrix, 𝑐𝑖 represents one of the components comprising the given 

UAM. Herein, the components, 𝑐𝑖, comprising the UAM are the UAV, three arm linkages (𝐿1, 𝐿2, 𝐿3), and the object being 

picked up (𝑜𝑏𝑗) (𝑖. 𝑒., 𝑐 = [𝑈𝐴𝑉, 𝐿1, 𝐿2, 𝐿3, 𝑜𝑏𝑗]𝑇). It is assumed that the object picked up by the manipulator is a point 

mass, and that it remains stationary once it has been picked up (i.e., a secure grasp is assumed). The time derivative of Eq. 

(7) is expressed as Eq. (8) 

 

𝐼𝑐̇𝑖 
𝑈𝐴𝑉∗

= [ 𝜔⃗⃗ 𝑈𝐴𝑉∗
𝑈𝐴𝑉∗

𝑐𝑖
]
×

∙ 𝑅𝑐𝑖 
𝑈𝐴𝑉∗

∙ 𝐼𝑐𝑖 
𝑐𝑖 ∙ 𝑅𝑐𝑖

𝑇
 

𝑈𝐴𝑉∗
− 𝑅𝑐𝑖 

𝑈𝐴𝑉∗
∙ 𝐼𝑐𝑖 
𝑐𝑖 ∙ 𝑅𝑐𝑖

𝑇
 

𝑈𝐴𝑉∗
∙ [ 𝜔⃗⃗ 𝑈𝐴𝑉∗

𝑈𝐴𝑉∗

𝑐𝑖
]
×

 

                               +𝑚𝑐𝑖
∙ 2 𝑟 𝑐𝑖

𝑇
𝑈𝐴𝑀
𝑈𝐴𝑉∗

 ∙ 𝑟̇ 𝑐𝑖𝑈𝐴𝑀
𝑈𝐴𝑉∗

∙ 𝐼3×3 − 𝑟̇ 𝑐𝑖𝑈𝐴𝑀
𝑈𝐴𝑉∗

∙ 𝑟 𝑐𝑖

𝑇
𝑈𝐴𝑀
𝑈𝐴𝑉∗

− 𝑟 𝑐𝑖

 
𝑈𝐴𝑀
𝑈𝐴𝑉∗

∙ 𝑟̇ 𝑐𝑖

𝑇
𝑈𝐴𝑀
𝑈𝐴𝑉∗

 
(8) 

 

where 𝜔⃗⃗ 𝑈𝐴𝑉∗
𝑈𝐴𝑉∗

𝑐𝑖
 represents the angular velocity of 𝑐𝑖, which is measured and expressed with respect to the UAV* frame 

of reference. The moment of inertia tensor of the given UAM system and its derivative are then expressed as Eqs. (9) and 

(10), respectively. 

 

𝐼𝑈𝐴𝑀 
𝑈𝐴𝑉∗

= 𝐼𝑈𝐴𝑉 
𝑈𝐴𝑉∗

+ 𝐼𝐿1 
𝑈𝐴𝑉∗

+ 𝐼𝐿2 
𝑈𝐴𝑉∗

+ 𝐼𝐿3 
𝑈𝐴𝑉∗

+ 𝐼𝑜𝑏𝑗 
𝑈𝐴𝑉∗

 (9) 

𝐼𝑈̇𝐴𝑀 
𝑈𝐴𝑉∗

= 𝐼𝑈̇𝐴𝑉 
𝑈𝐴𝑉∗

+ 𝐼𝐿̇1 
𝑈𝐴𝑉∗

+ 𝐼𝐿̇2 
𝑈𝐴𝑉∗

+ 𝐼𝐿̇3 
𝑈𝐴𝑉∗

+ 𝐼𝑜̇𝑏𝑗 
𝑈𝐴𝑉∗

 (10) 

 

As a result, the matrix components of Eq. (9) with additive gaussian noises (𝜀) serve as the measurement model, Eq. 

(11). 

 

𝐼𝑈𝐴𝑀 
𝑈𝐴𝑉∗ (1,1) = 𝐼𝑥𝑥 + 𝜀𝑥𝑥 

𝐼𝑈𝐴𝑀 
𝑈𝐴𝑉∗

(2,2) = 𝐼𝑦𝑦 + 𝜀𝑦𝑦 

𝐼𝑈𝐴𝑀 
𝑈𝐴𝑉∗

(3,3) = 𝐼𝑧𝑧 + 𝜀𝑧𝑧 

𝐼𝑈𝐴𝑀 
𝑈𝐴𝑉∗

(3,1) = 𝐼𝑥𝑧 + 𝜀𝑥𝑧 

(11) 

 

Similarly, the matrix components of Eq. (10) with additive gaussian noises (𝛿) serve as the motion model, Eq. (12). 

 

𝐼𝑥̇𝑥 = 𝐼𝑈̇𝐴𝑀 
𝑈𝐴𝑉∗

(1,1) + 𝛿𝑥𝑥 

𝐼𝑦̇𝑦 = 𝐼𝑈̇𝐴𝑀 
𝑈𝐴𝑉∗

(2,2) + 𝛿𝑦𝑦 

𝐼𝑧̇𝑧 = 𝐼𝑈̇𝐴𝑀 
𝑈𝐴𝑉∗

(3,3) + 𝛿𝑧𝑧 

𝐼𝑥̇𝑧 = 𝐼𝑈̇𝐴𝑀 
𝑈𝐴𝑉∗

(3,1) + 𝛿𝑥𝑧 

(12) 

 

By discretizing Eqs. (1), (6), (11) and (12), a KF mechanism can be used to estimate the mass and moment of inertia 

tensor of the UAM at all times. 
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4. Simulation Results 
The proposed estimation mechanism has been validated in the MATLAB simulation environment by performing 

grasping tasks and flight motions using the Navig8 UAM (Fig. 1-(b)). Due to space constraints herein, a representative 

of results is presented which exemplifies the overall outcomes. For this, the mass and moment of inertia tensor of the 

components used during the simulations is summarized in Table. 1. It should be noted that the mass of the arm linkages 

assumed (i.e., In theory, it is not feasible for VTOL systems to lift more than one-third of their weight in real-life 

situations.) to test the proposed estimation filter under severe conditions. Furthermore, each of the three linkages 

comprising the arm is assumed to have the same inertia properties. 

 
Table 1: Mass and moment of inertia of the UAM components. 

 

 𝑚[𝑘𝑔] 𝐼𝑥𝑥[𝑘𝑔 ∙ 𝑚2] 𝐼𝑦𝑦[𝑘𝑔 ∙ 𝑚2] 𝐼𝑧𝑧[𝑘𝑔 ∙ 𝑚2] 𝐼𝑥𝑧[𝑘𝑔 ∙ 𝑚2] 

Navig8 UAV 5.0 0.0667 0.1492 0.2019 0.0147 

Each arm linkage 1.0 0.0075 0.00001 0.0075 0.00001 

 

During the simulation, the UAV is commanded to follow a set of sinusoidal roll (𝜙) and pitch (𝜃) motions, each 

having a different frequency and amplitude as shown in Fig. 4, while the robotic arm executes a pick-and-place operation 

of an unknown object. As illustrated in Fig. 5, the arm is initially positioned hanging from the UAV facing downward 

as the aircraft starts its motion (t = 0 s). Subsequently, at time t=5s the arm is commanded to move forward for 5 seconds, 

after which it picks up a 2 kg object at t = 10s. The arm is then commanded to move back to its initial position at time 

t=15s (which executes in 5 seconds), and the object is released at 20 s.  

 

   
Fig. 4: Attitude angles of the UAV 

 

 
Fig. 5: Time history of the arm and the UAV motion. 

 

Additive Gaussian noise with a standard deviation of 20 𝑟𝑎𝑑/𝑠 is added to the measurement of the propellers’ 

angular velocities. Additionally, the standard deviations of the noise added to the UAV’s linear acceleration and angular 

velocity and acceleration measurements are defined to be 0.5 𝑚 𝑠2⁄ , 0.2 𝑟𝑎𝑑 𝑠⁄  and 0.4 𝑟𝑎𝑑 𝑠2⁄ , respectively. The 
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standard deviations of the measurement noises of the arm joints’ angular positions and velocities are set to 0.08 𝑟𝑎𝑑 and 

0.2𝑟𝑎𝑑 𝑠⁄ , respectively. With these parameters, the proposed KF algorithm runs at 100 Hz. 

Fig. 6 shows the estimated mass and moment of inertia tensor of the UAM during the entire duration of its task. The 

solid lines represent the estimated values, while the dashed lines indicate the corresponding true values. The top plot 

demonstrates that the total mass can be estimated within 1 second when mass variations exist (about 10 and 20 seconds). The 

The rest of the plots show that the moment of inertia tensor can be tightly estimated when the manipulator is moving, and 

the estimated results converge to the true values within 1 second when the moment of inertia changes due to the added mass. 

 

   
Fig. 6: Estimation results of the mass and the moment of inertia tensor and their corresponding true values. 

 

5. Conclusions 
In this paper, a method for estimating the varying mass and moment of inertia tensor of UAMs during manipulation 

maneuvers is presented. By considering both the dynamics of the UAM and the kinematics of the robotic arm, the mass and 

the moment of inertia tensor of the UAM are effectively estimated while the UAV performs flight maneuvers. The proposed 

method is validated through Matlab simulations, which result in tight estimations of varying inertia. Our future work will 

focus on developing estimation methods for the position of the center of mass of UAMs performing manipulation maneuvers. 
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