
Proceedings of the 10th International Conference of Control Systems, Dynamic Systems, and Robotics (CDSR'23) 

Ottawa, Canada – June 01 - 03, 2023 

Paper No. 217 

DOI: 10.11159/cdsr23.217 

217-1 

 

First Order Dynamic Sliding Mode Control of a Wind Turbine with 
Optimized Tip Speed Ratio 

 

Nishanth Padmanabhuni1, Jeff Pieper2 
University of Calgary  

Calgary, Alberta 

nishanth.padmanabhun@ucalgary.ca; pieper@ucalgary.ca 

 

 
Abstract - This paper presents a novel sliding mode control method to enhance power generation from wind turbines, with a focus on 

power optimization. Generator torque only is used as an input since maximizing power using pitch and yaw control is not deemed worth 

decreasing the life of the turbine due to wear of the mechanical system. The controller is designed based on a 3rd-order model with rotor 

aerodynamic torque as a disturbance input. Simulation is done using a nonlinear wind turbine model. The first objective is to determine 

the optimal tip speed ratio for maximum power. To do this, Recursive Least Squares (RLS) is used to estimate a polynomial relating the 

Tip-Speed Ratio (TSR) and aerodynamic power coefficient. This gives the optimal operating point. To ensure that the system can adapt 

to changing environments, a forgetting factor is used. The second objective, a first-order dynamic sliding mode controller with integration 

(FODSMCI), is used to control the wind turbine and maintain it at the optimal TSR with good transient dynamics. The results show that 

the RLS with high forgetting factor is effective in determining the optimal TSR. FODSMCI allows the user to adjust trade-offs between 

controller performance and rotor speed tracking, resulting in a response without chattering. 
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1. Introduction 
In recent years, the Canadian government has made a commitment to reduce greenhouse gas emissions and achieving 

net-zero emissions by 2050[1], in an effort to address the negative impacts of climate change. To meet this goal, the adoption 

of renewable sources of energy, such as wind, solar, and hydro, has become increasingly important. Among these sources, 

wind energy has emerged as a particularly promising option, with the potential to provide up to 20% of global electricity 

production by 2050[2].  

Wind turbines convert the wind kinetic energy into electricity through blades that efficiently capture the wind's energy. 

The rotor, composed of blades mounted on a shaft, turns due to the wind, causing the generator to rotate, producing electricity 

which is then sent to a transformer and distributed through power lines. Common wind turbine designs are 3 bladed horizontal 

axis wind turbines with blades parallel to the ground which is the focus of this paper. 

The wind turbine operates within three specific regions, each characterized by the wind energy potential that can be 

captured. In Region I, the level of wind energy is insufficient to justify the operation of a wind turbine, making it an unviable 

area for wind energy production. In contrast, Region II is an area where wind energy is abundant and can be utilized to 

generate electricity. However, in Region III, the wind speed is so high that it poses a risk to the turbine's structure. To prevent 

damage, the turbine is controlled to ensure that it does not overproduce electricity that could damage the turbine. Pitch and 

yaw control are used in power regulation for wind turbines. However, to reduce wear, generator torque control is a better 

option for in the power optimization region(Region II)[3],to control rotor speed and maximize power production. 

This paper proposes using recursive least squares with a forgetting factor as a reference tracking method to determine 

the optimal tip-speed ratio for wind turbine systems, in order to maximize power captured from the wind. The controller 

used will be a first-order dynamic sliding mode controller with integration (FODSMCI), an adaptation of the Pieper[4] 

method, for power optimization. Fig. 1 illustrates the implementation of the proposed method: 
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Fig.  1: Diagram of this system that will be implemented in this paper. 

 

2. Dynamic Modelling of the Wind turbine 
The reference tracker and controller will be evaluated using the wind turbine model developed by Bianchi et al. [5]. 

It should be noted that the model represents an idealized scenario and may not accurately reflect a real-world system. 

The wind turbine model was created using the dynamic equations of the drivetrain. These equations drive the system, 

based on Soltani et al. [6] and Bianchi et al. [5]: 
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Where 𝑥 ∈ 𝑅𝑛, 𝑢 ∈ 𝑅 and 𝑑 ∈ 𝑅, are the wind turbine state, generator input torque (𝑇𝑔) as input and rotor 

aerodynamic torque (𝑇𝑟) as disturbance. 𝑨, 𝑩𝒄, and 𝑩𝒅 are the state, control and disturbance matrix. 𝜔𝑟 denotes the rotor 

speed, 𝜔𝑔 denotes the generator speed, and 𝜃 denotes the torsion angle of the drivetrain. 

 𝑇𝑟 is a function of the wind speed and power coefficient, defined as: 
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1
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The aerodynamic power coefficient (𝐶𝑝) measures the power that the wind turbine extracts from the wind, it is the 

ratio of generated power to total power in the wind passing through the rotor. Its dependent on the tip speed ratio (λ) and 

pitch angle (β). Different techniques like exponential, sinusoidal, polynomial, or data-driven algorithms[7] can be used 

to model 𝐶𝑝. However, for this paper, this specific model will be used: 
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(4) 

 

Table 1 below shows the wind turbine characteristics to develop the wind turbine model for simulation. These 

parameters are based on the 5MW onshore horizontal wind turbine[8].  

 



 

 

 

 

 

 

 

217-3 

 

 
Table 1: Wind Turbine Parameters used in Simulation for a 5MW wind turbine. 

Symbol Description Value  

𝐵𝑑  Drivetrain damping coefficient 
6.215E6

Nms

𝑟𝑎𝑑
 

𝐾𝑑 Drivetrain spring constant 
8.68E8

Nm

rad
 

𝐽𝑟 Rotor inertia 38677056 kg m2 

𝐽𝑔 Generator inertia 534.1 kgm 
2
 

𝑁 Gearbox ratio 97 

𝑅 Rotor blade radius 63 m 

𝜌 Air density 
1.225

kg

m3
 

 

Fig. 2 below shows how the wind turbine system will be designed in Simulink. The generator torque will be used as the 

control input to make sure the rotor speed tracks the optimal rotor speed. The aerodynamic rotor torque is a function of the 

rotor speed, wind speed and power coefficient and will be used as the disturbance input. This paper will not incorporate pitch 

control to maximize power and will maintain the pitch at 0°. 

 

 
Fig.  2: Wind turbine System used to test the controller. 

 

3. Reference Tracking with Recursive Least square with an forgetting factor 
This paper assumes that wind speed and rotor speed are known. Measuring rotor speed is relatively simple with an 

encoder or tachometer, however, measuring wind speed can be difficult due to factors such as turbulence and sensor accuracy. 

Methods for measuring wind speed include the use of anemometers, lidar, and sodar. 

Recursive least squares (RLS) is a linear model parameter estimation algorithm that updates estimates using recent data. 

It has fast convergence rate and is well suited for online learning.  RLS is also robust to noise. It is useful in determining the 

optimal TSR for a wind turbine. 

This paper assumes that the results obtained from the wind turbine system are in continuous time. However, RLS requires 

sampled data. To minimize computational complexity while preserving the accuracy of TSR estimation, a sampling period 

(𝑇𝑠) will be chosen. The method of implementing RLS with a forgetting factor will be based on the work of Vahidi et al [9]. 

The input used in this method will be the TSR, and the output will be the Aerodynamic Power Coefficient (𝐶𝑃) for the 

polynomial equation. 

 

𝐶𝑝(𝑖) = 𝛼𝑚𝑇𝑆𝑅𝑖
𝑚 + 𝛼𝑚−1𝑇𝑆𝑅𝑖

𝑚−1 + ⋯+𝛼2𝑇𝑆𝑅𝑖
2 + 𝛼1𝑇𝑆𝑅𝑖 + 𝛼𝑜 (5) 

 

Where 𝛼𝑚 is the coefficients. Then, initialize the covariance matrix(𝑷), input vector(𝝈), and estimated parameters 

vector(�̂�): 
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𝑷 = 100 [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] , 𝝈 = [
𝑇𝑆𝑅𝑖

𝑚

⋮
1

] , �̂� = [

𝛼𝑚

⋮
𝛼𝑜

] = [
0
⋮
0
] (6) 

 

Update the parameter gain value 𝐾: 

𝑲 =
𝑷(𝑖 − 1)𝝈

𝜇 + 𝝈𝑇𝑷(𝑖 − 1)𝝈
 (7) 

Calculate the covariance matrix: 

 

𝑷(𝑖) =
𝑷(𝑖 − 1)

𝜇
(𝑰(𝑚 + 1) − 𝑲𝝈𝑻) (8) 

 

The forgetting factor (µ) in Eqs. (7) and (8) is a parameter that determines the weight given to new data. It typically 

ranges from 0.9 to 1, with lower values indicating that only more recent data should be trusted, and a value of 1 indicating 

that all data should be given equal weight. 

 

�̂�(𝑖) = �̂�(𝑖 − 1) + 𝑲(𝑦(𝑖) − 𝝈𝑻�̂�(𝑖 − 1)) (9) 

 

To find the optimal TSR that yields the maximum power, the derivative of the power coefficient polynomial (Eqs. 

(5)) with respect to TSR is taken and set equal to zero: 

 
𝑑𝐶𝑝(𝑖)

𝑑𝑇𝑆𝑅
= 𝛼𝑚𝑚 ∗ 𝑇𝑆𝑅𝑚−1 + 𝛼𝑚−1 ∗ (𝑚 − 1) ∗ 𝑇𝑆𝑅𝑚−2 + ⋯+ 𝛼2 ∗ 2 ∗ 𝑇𝑆𝑅 + 𝛼1 = 0 (10) 

 

In this study,  𝑚 = 3 is utilized, simplifying the process of determining the optimal TSR that yields the maximum 

𝐶𝑃 value. The MATLAB 'roots' function will be used to accomplish this. 

Repeat this entire process for the next sample data with the new �̂� and next 𝝈. 

 

4. Controlling the System with First Order Dynamic Sliding mode control with Integration 
This paper will use sliding mode control (SMC) to maximize power generation from the turbine. SMC is a robust 

and finite-time converging control strategy for systems with uncertain dynamics and disturbances. However, a major 

issue with SMC is chattering, caused by the discontinuity of the sliding surface. This can lead to increased wear and tear 

on the system. 

In this case, first-order dynamic sliding mode control with integration (FODSMCI) will be used. This modified 

model is based on the work of Pieper[4]. The first-order dynamics of the controller filter the error signal, eliminating 

chattering at the actuator as a result. This is achieved by incorporating an integral term directly into the sliding function, 

which eliminates steady-state errors and compensates for persistent disturbances. Additionally, linear quadratic optimal 

design conditions can be used to select the sliding surface vector parameter. 

To start, the controllable portion Eqs. (2) is needed: 

 

�̇� = 𝑨𝒙 + 𝑩𝒄𝑢 (11) 

And then selected sliding surface: 

 

𝑠 = 𝑪𝟏𝒙 + 𝐶2∫ 𝑪𝟏𝒙 + 𝐷𝑢 (12) 

 

Where 𝐶1is the sliding gains of the state and 𝐶2is the sliding gains for the integral terms. Then, to find the control 

model, take the derivative of Eqs. (12) and substitute in Eqs. (11). Finally, isolate for 𝐷�̇�. 
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𝐷�̇� = −𝑪𝟏𝑨𝒙 − 𝑪𝟏𝑩𝒄𝑢 − 𝐶2𝑪𝟏𝒙 + �̇� (13) 

 

The sliding mode condition(�̇�) defined by satisfying the reaching condition[10](𝑠�̇� < −𝜂|(𝑠)|). Therefore, the sliding 

sliding mode condition will be: 

�̇� = −η ∗ 𝑠ign(𝑠) (14) 

 

It can be assuming that 𝐷 ≠ 0 and further, without loss of generality that D = 1. Therefore, the controller can be 

reformed as a first order differential equation as: 

�̇� = −𝑪𝟏𝑨𝒙 − 𝑪𝟏𝑩𝒄𝑢 − 𝐶2𝑪𝟏𝒙 − 𝜂 ∗ 𝑠𝑖𝑔𝑛(𝑠) (15) 
 
4.1. Hyperplane Design for First Order Dynamic Sliding Modes with Integration 

To find 𝐶1 and 𝐶2, the system can be assumed to be on the sliding surface which gives the closed loop equations of the 

system to be: 

[
�̇�
�̇�𝒊

�̇�
] = [

𝑨 0 𝑩
𝑪𝟏 0 0

−𝑪𝟏𝑨 − 𝐶2𝑪𝟏 0 −𝑪𝟏𝑩𝒄

] [
𝒙
𝒙𝒊

𝑢
] (16) 

 

To use the Hyperplane design method in [11], Eqs. (16) above needs to be transformed: 

 

[
�̇�𝒔

�̇�
] = [

𝑨𝒂 𝑩𝒂

−𝑪𝒂𝑨𝒂 −𝑪𝒂𝑩𝒂
] [

𝒙𝒔

𝑢
] 

(17) 

Where: 

𝑨𝒂 = [
𝑨 0
𝑪𝟏 0

] , 𝑩𝒂 = [
𝑩𝒄

0
] , 𝑪𝒂 = [𝑪𝟏 𝐶2], 𝒙𝒔 = [

𝒙 

𝒙𝒊
] (18) 

 

Then quadratic performance index[4], [11] chosen as: 

 

𝐽 = ∫  
∞

0

[𝒙𝒔
𝑻    𝒖𝑻] [

𝑯𝟏𝟏 𝑯𝟏𝟐

𝑯𝟐𝟏 𝑅
] [

𝒙𝒔

𝑢
] 𝑑𝑡 (19) 

 

𝑯𝟏𝟏 and 𝑅 are positive semi-definite matrices that is used to weigh the importance of the states and control inputs for 

the performance index. 𝑯𝟏𝟏 determines how much the control strategy should try to minimize the deviation of the states 

from their desired values. 𝑅 determines how much the control strategy should try to minimize the control effort.  

In order to minimize Eqs. (19), cross product terms are considered since 𝑯𝟏𝟐 and 𝑯𝟐𝟏 are generally non-zero. First, a 

new state is defined and the transformed system is solved using the state transition matrix (𝐅∗) and state weighting matrix 

(𝐑∗) in the Algebraic Riccati Equation (ARE): 

 

𝐅∗ = 𝑨𝒂 − 𝑩𝒂𝑅
−1𝑯𝟐𝟏

𝐑∗ = 𝑯𝟏𝟏 − 𝑯𝟏𝟐𝑅
−1𝑯𝟐𝟏

 (20) 

 

Then solve ARE for 𝑺: 

 

𝑺𝑭∗ + 𝑭⋆𝑻𝑺 − 𝑺𝑩𝒂𝑅
−1𝑩𝒂

𝑻𝑺 + 𝑹∗ = 0 (21) 

 

Once the solution has been obtained, the coordinates are transformed back to the original ones to obtain the pseudo-

control as defined in Eq. (22), which serves as the choice of sliding mode defining vector: 

𝑪𝒂 = 𝑅−1(𝑯𝟐𝟏 + 𝑩𝒂
𝑻𝑺) (22) 
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However, since 𝑨𝒂 is based on 𝑪𝟏, which is based on 𝑪𝒂, the system needs to be solved iteratively until the sliding 

surface(𝑪𝒂) gain converges to the stopping criteria(i.e. 𝑚𝑎𝑥(𝑪𝒂(𝑖)) − 𝑚𝑎𝑥(𝑪𝒂(𝑖 − 1)) > 0.01). Then, to minimize the 

cost function along the sliding surface, redefine: 

𝑯𝟏𝟏 = 𝑪𝒂
𝑻𝑪𝒂 (23) 

Repeat the process from Eqs. (18) to (22) until 𝐶𝑎 converges as shown in Fig. 3 below: 

 
Fig.  3: Flow chart on solving for the Sliding surface gains. 

 
Our aim is to make the rotor speed track the optimal rotor speed to maximize power generation, while also reducing 

the usage of generator torque to extend the life of the turbine. However, this introduces a trade-off as reducing the usage 

of generator torque will lower the rotor speed tracking, thus reducing power. 

 

5. Simulations Results 
The reference tracking and controller are tested using a model outlined in Section 2. The wind is generated using 

TurbSim[12], a software tool developed by NREL for simulating turbulent wind fields. This software allows users to 

generate time-series wind field data, which serves as input to represent wind disturbances in the system. 

Before entering the controller, the wind data is filtered through a low-pass filter, as shown in Fig. 4. This effectively 

suppresses high-frequency noise and improves the control system's performance. By removing the rapid fluctuations, 

the filter leaves only the underlying steady-state wind. This enables the controller to make more accurate and stable 

decisions, thus reducing the risk of damage to the controller and other components. 

 

 
Fig.  4: Wind Speed Profile to be used a disturbance input for the aerodynamic rotor torque 

 

5.1. Results from the Recursive least square method with a forgetting factor 
The method outlined in Section 3 was used to find the optimal TSR. To simulate the change in optimal TSR, the 

pitch angle of the system was changed from 0° to 30° for Eqs. (4) after 300 seconds. A sample period of 𝑇𝑠 = .05 

seconds was also selected, and a third order (𝑚 = 3) polynomial was used. 

As shown in Fig. 5, the RLS method successfully tracks the optimal TSR, but with a slow reaction time. Utilizing 

a high forgetting factor (𝜇) allows for a quicker response to changes in the system. However, when μ = 0.9, tracking 

becomes unstable and less desirable. 
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A low forgetting factor can lead to less optimal system performance but changes in wind turbine characteristics occur 

gradually, so a higher forgetting factor allows better adaptation to these changes. 

 
Fig.  5: Optimal TSR using RLS with a forgetting factor 

  
5.2. Results from the First order dynamic sliding mode controller with Integration 

The FODSMCI offers flexibility in the design of sliding surfaces and closed-loop dynamics to achieve specific 

performance objectives. In particular, the aim is to balance the conflicting goals of maximizing power generation and 

extending the life of the wind turbine. The design parameters selected for this case were: 

 

𝑯𝟏𝟏 = [

. 1 0 0 0
0 . 01 0 0
0 0 . 01 0
0 0 0 𝐻11(4,4)

] ,𝑯𝟏𝟐
𝑻 = 𝑯𝟐𝟏 = [0 0 0 0] 

 

Table 2 below compares the power generated with different penalties on 𝑅 for the performance index (Eqs. (19)). 

 
Table 2 Power generated over 300 seconds with difference weights 

Parameters Energy Generated (MJ) for 300s % Change from R=1 RMSE Rotor Speed 

𝑅 = 0.1,𝐻11(4,4) = 1 658.30 0.1% 0.1% 

𝑅 = 1,𝐻11(4,4) = 1 657.73 - 1.1% 

𝑅 = 10,𝐻11(4,4) = 10 648.23 -1.4% 5.7% 

PI control 656.76 -0.1% 1.2% 

 

As seen in Fig. 6 and 7 below,  the FODSMCI effectively filters the error signal before it is sent to the generator, resulting 

in a smooth response without chattering, eliminating the need for boundary layers. Additionally, it is observed that as the 

parameter R increases, controller performance in terms of smoothness improves, however, rotor speed tracking deteriorates. 

Conversely, as 𝑅 decreases, the controller becomes more aggressive, resulting in an improvement in rotor speed performance. 

These findings demonstrate a trade-off between the smoothness of controller performance and rotor speed tracking. 

 

 
Fig.  6: Results of FODSMCI with different penalties 
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Fig.  7: Power Generated over time compared with different penalties. 

 
4. Conclusion 
This study aimed to improve the power optimization of wind turbines. Results from the reference tracking portion showed 

that RLS with a forgetting factor was successful in determining the optimal TSR. However, the use of the FODSMCI was 

found to have trade-offs between controller performance and rotor speed tracking. Increasing the control penalty improved 

controller performance in terms of smoothness, but negatively impacted rotor speed tracking. Conversely, decreasing the 

control penalty improved rotor speed performance but decreased controller performance. Additionally, the FODSMCI was 

effectively able to eliminate chattering. These findings provide useful insights for future research in the implementation of 

wind turbine models. 
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