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Abstract – This paper presents a geometric controller, consists of an altitude and separated attitude control components, for trajectory 

tracking purpose suitable for quadrotors. To facilitate easier gain tuning, the proposed controller is developed, so that the roll, pitch and 

yaw controllers are separated from each other. Meanwhile, the inner attitude controller is developed on SO(3), which prevents 

singularities or ambiguities arising from using minimal representations. 
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1. Introduction 
Quadrotor unmanned aerial vehicles (UAVs), known for their mechanically simple design yet capable of vertical take-

off and landing (VTOL), have gained popularity across various applications such as surveillance and aerial transportation 

[1], [2], [3]. However, due to mechanical constraints, thrust can only be generated along the body z axes. Attitude controllers 

developed based on Euler angles are prone to singularities while those developed based on quaternions exhibit ambiguities 

due to the double-covering behaviour. In contrast, geometric control eliminates these disadvantages by developing the 

controller directly on SE(3). 

In regard to control inputs, although quadrotors are generally considered to be able to generate moment arbitrarily, the 

resultant moment about the body z axis is typically orders of magnitude lower than the other axes, because it is generated by 

reaction torques rather than differences in thrust over moment arm. As a result, achieving moderate yawing moment requires 

significant and rapid changes in rotor speeds. This not only risks impacting rolling and pitching dynamics as rotor responses 

will not be perfect but may also lead to saturation issues [2], [3]. To address this problem, there is a desire to separate yaw 

from roll and pitch control as shown in [2], [3]. Building upon this work, this paper further separates the roll and pitch control, 

where the separated roll, pitch and yaw controllers are all developed on unit circles, facilitating easier gain tuning without 

compromising the performance. Additionally, the controller design proposed in this paper relaxes the assumption of identical 

moments of inertia about the x and y axes, providing a versatile framework applicable not only to standard quadrotors, but 

also to non-square quadrotors, other multi-rotor configurations, and UAV systems with payloads or movable components. 

 

2. Problem Formulation  
 

2.1. Dynamic Model of a Quadrotor UAV 

In this paper, the following dynamic model for a quadrotor is considered. The inertial frame (ex, ey, ez) and the vehicle 

body frame (bx, by, bz) are defined following a North-East-Down convention. Assuming thrust, weight and motor torque 

are dominant compared to all other external forces and moments, such as drag and wall effect, the kinematics and dynamics 

of the quadrotor position and attitude can be modelled as follows, 

 

ṗ = v, (1) 

mv̇ = R[0 0 −T]T + [0 0 mg]T, (2) 

Ṙ = Rω̂, (3) 

Jω̇ + ω × (Jω) = M, (4) 

R = [bx by bz], (5) 
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where hat map ̂ : ℝ3 → SO(3) is defined as x̂y = x × y, and p ∈ ℝ3 and v ∈ ℝ3are linear position and velocity vectors in 

the inertial frame, R ∈ SO(3) is rotational matrix from the body frame to the inertial frame, ω ∈ ℝ3 is angular velocity vector 

in the body frame, mg ∈ ℝ and J ∈ ℝ3×3 are weight and moment of inertia matrix of the quadrotor UAV, T ∈ ℝ and M =
[Mx My Mz]T ∈ ℝ3 are sum of thrust from all four rotors and vector of sum of external moments in the body frame, d ∈
ℝ is distance from the quadrotor UAV center of mass to the center of each rotor, T𝑖 ∈ ℝ and CQT ∈ ℝ are thrust from the i-

th rotor and ratio of rotor torque to thrust, 𝕋 ∈ ℝ4×4 maps T𝑖 to T and M. Subscripts x, y and z are to show element around 

first, second and third basis and subscripts d and c are to indicate desired and computed values. 

 

 
Fig.  1: Illustration of the Quadrotor Model [1] 

 
Fig.  2: Block Diagram of the Proposed Controller 

 

With a diagonal inertia matrix, J = diag(Jxx, Jyy, Jzz), note there is no structural requirement for Jxx = Jyy as was in 

[2], [3], Eq. (4) can be re-written as 

 

Jxxω̇𝑥 = Mx − (Jzz − Jyy)ωyωz, (7) 

Jyyω̇𝑦 = My − (Jxx − Jzz)ωxωz, (8) 

Jzzω̇𝑧 = Mz − (Jyy − Jxx)ωxωy. (9) 

 
2.2. Control Objective 

The objective of the proposed controller is to determine the thrust of each rotor (T1, T2, T3, T4), under certain 

assumptions described in Section 3, such that the actual trajectory, p(t), and the body x axis, bx(t), follows an arbitrary 

desired trajectory, pd(t), and a converted body x axis, bxc(t), asymptotically. bxc(t), is obtained by converting an 

arbitrary desired yaw angle, ψd(t), into a vector for tracking purpose as explained in Section 3.5. 

With Eq. (6), there is a one-to-one transformation between the thrust of each rotor (T1, T2, T3, T4) and the sum of 

thrust and moments (T, Mx, My, Mz) as long as d ≠ 0 and CQT ≠ 0, which should always be true. Therefore, the control 

objective is equivalent to the determination of the desired sum of thrust and external moment (T, Mx, My, Mz). 

 

3. Controller Design 
The proposed controller follows a similar approach in [1], [2], [3], but a separated roll, a separated pitch and a 

separated yaw controller are used for the attitude control. 
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3.1. Position Controller 

In [1] , the desired external force vector is defined as A ∈ ℝ3,  

 
A = −kpep − kvev − mgez + mad, (10) 

 

where kp  and kv  are positive control gains, and ep = p − pd , ev = v − vd , vd = ṗd  and ad = v̇d . Due to mechanical 

constrains, the sum of thrust of a quadrotor is always pointing along the negative body z axis, −bz, and has a magnitude of 

T ∈ ℝ. Therefore, A is tracked as long as −bz → −bzd =
A

‖A‖
 and T → −A ∙ bz. The former part can be defined as the control 

objective of the attitude controller while the latter part can be defined as the control objective of the altitude controller. 

 
3.2. Altitude Controller 

The control objective of the altitude controller is to make T tracks −A ∙ bz. Since T is a control input, we can set 

 

T = −A ∙ bz. (11) 

 
3.3. Separated Roll Controller 

The control objective of the attitude controller is to make −bz tracks −bzd =
A

‖A‖
. From this, the roll error function and 

its derivative can then be defined similar to [2], [3], [4] as follows, 

 

Ψφ =
1

2
‖bz − bzd,φ‖

2
= 1 − bz ∙ bzd,φ, (12) 

Ψ̇φ = eφeφ̇, (13) 

 

where bzd,φ =
bx×(bx×A)

‖bx×(bx×A)‖
, eφ = bzd,φ ∙ by , eφ̇ = ωx − ωzd,φ,x , ωzd,φ,x = ωzd,φ ∙ bx  and ωzd,φ = bzd,φ × ḃzd,φ . By 

considering the following Lyapunov candidate, 

 

Vφ =
1

2
Jxxeφ̇

2 + cφJxxeφeφ̇ + kφΨφ, (14) 

 

where kφ  and kφ̇  are positive control gains and cφ  is a non-negative constant, the equilibrium (eφ, eφ̇) = (0,0) can be 

proven to be (asymptotically) stable by defining ėφ̇ as follows, 

 

Jxxėφ̇ = −kφeφ − kφ̇eφ̇. (15) 

 

Meanwhile, by differentiating eφ̇ = ωx − ωzd,φ,x and multiply it by Jxx, we can obtain 

 

Jxxėφ̇ = Jxxω̇x − Jxxω̇zd,φ,x. (16) 

 

With Eq. (7) and Eq. (15), and rearranging them, the desired Mx can then be defined as follows, 

 

Mx = −kφeφ − kφ̇eφ̇ + (Jzz − Jyy)ωyωz + Jxxω̇zd,φ,x (17) 

 

Please refer to Section 6.1 for the proof. 
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3.4. Separated Pitch Controller 
 

Similar to Section 3.3, the pitch error function can then be defined as follows, 

 

Ψθ =
1

2
‖bz − bzd,θ‖

2
= 1 − bz ∙ bzd,θ, (18) 

Ψ̇θ = eθeθ̇, (19) 

 

where bzd,θ =
by×(by×A)

‖by×(by×A)‖
, eθ = −bzd,θ ∙ bx , eθ̇ = ωy − ωzd,θ,y , ωzd,θ,y = ωzd,θ ∙ by  and ωzd,θ = bzd,θ × ḃzd,θ . By 

considering the following Lyapunov candidate, 

 

Vθ =
1

2
Jyyeθ̇

2 + cθJyyeθeθ̇ + kθΨθ, (20) 

 

where kθ and kθ̇ are positive control gains and cθ is a non-negative constant, the equilibrium (eθ, eθ̇) = (0,0) can be proven 

to be (asymptotically) stable by defining ėθ̇ as follows, 

 

Jyyėθ̇ = −kθeθ − kθ̇eθ̇. (21) 

 

Meanwhile, by differentiating eθ̇ = ωy − ωzd,θ,y and multiply it by Jyy, we can obtain 

 

Jyyėθ̇ = Jyyω̇y − Jyyω̇zd,θ,y. (22) 

 

With Eq. (8) and Eq. (21) and rearranging them, the desired My can then be defined as follows, 

 

My = −kθeθ − kθ̇eθ̇ + (Jxx − Jzz)ωxωz + Jyyω̇zd,θ,y. (23) 

 

Please refer to Section 6.1 for the proof. 

 
3.5. Separated Yaw Controller 

Since position control of a quadrotor can be accomplished with (T, Mx, My) obtained from the altitude, separated 

roll and separated pitch controllers described in the Sections 3.2, 3.3 and 3.4. The last control input, Mz, can be utilized 

for yaw control to track an arbitrary desired yaw angle, ψd or, equivalently, an arbitrary desired body x axis, 

 

bxd = [cos(ψd) sin(ψd) 0]T. (24) 

 

Since bzd is defined in the position control, bxd cannot always be tracked. Instead, Mz can be utilized to track a 

converted body x axis, bxc, derived from bxd. The yaw error function can then be defined accordingly as in [2], [3], [4]. 

 

Ψψ =
1

2
‖bx − bxc‖2 = 1 − bx ∙ bxc, (25) 

Ψ̇ψ = eψeψ̇, (26) 

 

where bxc = −
bz×(bz×bxd)

‖bz×(bz×bxd)‖
, eψ = −bxc ∙ by, eψ̇ = ωz − ωxc,z, ωxc,z = ωxc ∙ bz and ωxc = bxc × ḃxc. By considering the 

following Lyapunov candidate, 
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Vψ =
1

2
Jzzeψ̇

2 + cψJzzeψ̇eψ + kψΨψ, (27) 

 

where kψ and kψ̇ are positive control gains and cψ is a non-negative constant, the equilibrium (eψ, eψ̇) = (0,0) can be 

proven to be (asymptotically) stable by defining ėψ̇ as follows, 

 

Jzzėψ̇ = −kψeψ − kψ̇eψ̇. (28) 

 

Meanwhile, by differentiating eψ̇ = ωz − ωxc,z and multiply it by Jzz, we can obtain 

 

Jzzėψ̇ = Jzzω̇z − Jzzω̇xc,z. (29) 

 

With Eq. (9) and Eq. (28) and rearranging them, the desired Mz can then be defined as follows, 

 

Mz = −kψeψ − kψ̇eψ̇ + (Jyy − Jxx)ωxωy + Jzzω̇xc,z. (30) 

 

Please refer to Section 6.1 for the proof. 

 

4. Numerical Simulation 
Physical parameters are chosen to match the quadrotor UAV described in [1], where m =  4.34 kg , J =

diag(0.0820, 0.0845, 0.1377) kg ∙ m2, d = 0.315 m and CQT = 8.004 × 10−3 m. 

Considering a typical propeller blade is usually designed for providing positive thrust and depending on the motor used, 

there are limits on the minimum and maximum thrust each rotor can provide. With these two mechanical constraints, the 

minimum and maximum thrust output for each rotor in this numerical simulation are set to T𝑚𝑖𝑛 = 0 N and T𝑚𝑎𝑥 = 25 N, 

respectively, which the maximum total thrust output is 100 N and is slightly above twice the weight of the quadrotor UAV. 

With the limits on the thrust output, a quadrotor UAV could be unstable if the control gains were set too high. This is because 

the thrust of each rotor (T1, T2, T3, T4) will become saturated at the minimum and maximum thrust output and cannot track 

the commanded thrusts.  

To illustrate the legitimacy of the separated attitude controller under the limits on the thrust output, all control gains in 

this numerical simulation are arbitrarily set to 1, i.e. k𝑝 = k𝑣 = k𝑅 = kΩ = k𝜑 = k�̇� = k𝜃 = k�̇� = k𝜓 = k�̇� = 1. The 

desired trajectory is chosen as a figure eight shape, where the position and yaw angle are defined as follows, pd(t) =

 [sin(t) sin(2t) −1 + 0.2 cos(2t)]T m  and ψd(t) =  
π

5
t  rad. The initial conditions are set as follows, p(0) =

 [0 0 0]T m, v(0) =  [0 0 0]T m ∙ s−1, R(0) =  I3×3 and ω(0) =  [0 0 0]T rad ∙ s−1.  

The numerical simulation results are shown in Fig.  3 to Fig.  6, where “Classical” denotes the position controller 

proposed in [1] and “Separated” denotes the controller proposed in this paper. As shown in Fig.  3 and Fig.  4, both controllers 

approach the desired trajectory even under the thrust output limits. Meanwhile, this results also show that the separated 

attitude controller does not sacrifice in performance compared to the previous work [1]. Fig.  5 and Fig.  6 illustrate the 

control effort and the separated attitude controller has the same level of control effort compared to the previous work. 

 

5. Conclusion 
This paper presents a geometric control system for a quadrotor UAV, which the attitude control is accomplished by three 

separate controllers. This was achieved by designing each of the roll, pitch and yaw controllers on a unit circle. The numerical 

simulation result shows that separating the attitude controller does not compromise the performance. Furthermore, this 

separation allows the deterioration of the rolling and pitching dynamics induced by the yawing moment to be handled 

explicitly. Meanwhile, this configuration facilitates easier gain tuning and can be adopted for other attitude control purposes. 
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Fig.  3: Position vs Time 

 
Fig.  4: Attitude Errors vs Time 

 

 
Fig.  5: Control Inputs vs Time 

 
Fig.  6: Thrusts vs Time 

 

6. Appendix: Proofs 
Due to the page limit, the proof of asymptotic stability and instability of the other equilibrium for the separated roll, 

pitch and yaw controller are not included here, but can be shown in a similar fashion as in [2], [3], [4]. 

 
6.1. Proof of Stability for the Separated Roll, Separated Pitch, and Separated Yaw Controllers 

As per Proposition 2.1 Property (iv) in [4],  

 

Ψφ ≥
1

2
‖bzd,φ × bz‖

2
=

1

2
eφ

2, 

 
(31) 

With Eq. (14) and set cφ = 0, Vφ is positive definite. By differentiating Eq. (14) and substituting Eq. (15), 

 

V̇φ = −kφ̇eφ̇
2. 

 
(32) 

Therefore, V̇φ is negative semi-definite, and the separated roll controller is stable. The stability of the separated 

pitch controller and separated yaw controller can be shown in the same fashion. 
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6.2. Proof of Asymptotic Stability for the Position Controller 
As in [1], consider the following Lyapunov candidate for position control, 

 

Vp =
kp

2
ep

Tep + cpmep
Tev +

m

2
ev

Tev. (33) 

 

By taking derivative of the Lyapunov candidate, 

 

 

V̇p = kpep
Tev + cpmev

Tev + (cpep
T + ev

T)(−kpep − kvev) + (cpep
T + ev

T)(−Tbz − A), (34) 

V̇p ≤ −Xp
TQPXp + m(g + ‖ad‖)(cp‖ep‖ + ‖ev‖)‖A‖‖eφθ‖, (35) 

eφθ
2 =

Ax
2+Ay

2

Ax
2+Ay

2+Az
2 =

‖A×bz‖2

‖A‖2 ≤ 1, (36) 

Xp = [‖ep‖ ‖ev‖]
T

, (37) 

Qp = [
cpkp(1 − ‖eφθ‖)

−cpkv(1−‖eφθ‖)−kp‖eφθ‖

2

−cpkv(1−‖eφθ‖)−kp‖eφθ‖

2
kv(1 − ‖eφθ‖) − mcp

]. (38) 

 

Consider Bφ𝜃 < 1 to be the upper bound of ‖eφθ‖ for Qp to be positive definite, 

 

Qp(‖eφθ‖ = Bφ𝜃) = [
cpkp(1 − Bφ𝜃)

−cpkv(1−Bφ𝜃)−kpBφ𝜃

2

−cpkv(1−Bφ𝜃)−kpBφ𝜃

2
kv(1 − Bφ𝜃) − mcp

]. (39) 

 

Therefore, Qp(‖eφθ‖ = Bφθ)  is positive definite if cp <
kv(1−Bφθ)

m
 and 4cpkp(1 − Bφθ)(kv(1 − Bφθ) − mcp) >

(−cpkv(1 − Bφθ) − kpBφθ)
2

. As Bφθ → 0 , the two conditions become  cp <
kv

m
 and cp <

4kpkv

kv
2+4mkp

. Since cp  can be 

chosen to be arbitrarily small, there exists a region where Qp is positive definite and  

 

−λmax(QP)‖Xp‖
2

≤ −Xp
TQPXp ≤ −λmin(QP)‖Xp‖

2
 (40) 

 

Meanwhile, from roll and pitch error functions,  

 

eφθ
2 =

Ax
2+Ay

2

Ax
2+Ay

2+Az
2 ≤

Ax
2

Ax
2+Az

2 +
Ay

2

Ay
2+Az

2 = eφ
2 + eθ

2. (41) 

 

Therefore, from Eq. (41), eφθ will also approach the region where Qp is positive definite as eφ and eθ will diminish 

asymptotically because of the separated roll and pitch control. Also, by taking the derivative of Eqs. (14) and (20), 

 

−λmax(Qφ)‖Xφ‖
2

≤ V̇φ ≤ −λmin(Qφ)‖Xφ‖
2

, (42) 

−λmax(Qθ)‖Xθ‖2 ≤ V̇θ ≤ −λmin(Qθ)‖Xθ‖2, (43) 
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Xφ = [eφ eφ̇]T, (44) 

Qφ = [
cφkφ

1

2
cφkφ̇

1

2
cφkφ̇ kφ̇ − cφJxx

], (45) 

Xθ = [eθ eθ̇]T, (46) 

Qθ = [
cθkθ

1

2
cθkθ̇

1

2
cθkθ̇ kθ̇ − cθJyy

]. (47) 

 

Then, considering the combined position, roll and pitch controls, 

 

Vpφθ = Vp + Vφ + Vθ, (48) 

V̇pφθ ≤ −[‖Xp‖ ‖Xφ‖] [
δλmin(Qp) −

1

2
‖Qpφ‖

−
1

2
‖Qpφ‖ λmin(Qφ)

] [
‖Xp‖

‖Xφ‖
] 

−[‖Xp‖ ‖Xθ‖] [
(1 − δ)λmin(Qp) −

1

2
‖QPθ‖

−
1

2
‖QPθ‖ λmin(Qθ)

] [
‖Xp‖

‖Xθ‖
], 

(49) 

Qpφ = [
mcp(g + ‖ad‖) 0

m(g + ‖ad‖) 0
], (50) 

Qpθ = [
mcp(g + ‖ad‖) 0

m(g + ‖ad‖) 0
], (51) 

0 < δ < 1. (52) 

 

Vpφθ is positive definite as cp, cφ and cθ can be chosen to be arbitrarily small. Assuming ‖ad‖ is bounded, the 

combined position, roll and pitch control would be asymptotically stable as V̇pφθ  would be negative definite as 

λmin(Qφ) >
‖Qpφ‖

2

4δλmin(Qp)
 and λmin(Qθ) >

‖Qpθ‖
2

4(1−δ)λmin(Qp)
, which requires k𝜑, k�̇�, k𝜃 and k�̇� to be sufficiently large. 

 
6.3. Proof of Asymptotic Stability for the Overall System 

Since the separated yaw controller is asymptotically stable, the asymptotic stability of the overall system can be 

shown by adding Vψ and V̇ψ to Vpφθ and V̇pφθ, respectively. 
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