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Abstract – Due to the correlation between increasing system complexity and performance requirements, the need for globally robust 

control systems is more and more apparent. This paper proposes two extensions to a novel globally robust control system called model 

free sliding mode control (MFSMC). First, a new approach to estimating the boundaries of the influence matrix without a system model 

is developed. Next, the use of hyper-plane transformations in MFSMC is discussed. Both techniques were individually paired with sliding 

mode controllers and simulated against a nonlinear test system. In the future, the methods will be added to MFSMC to broaden the 

applicability of this type of controller. 
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1. Introduction 
As technology advances, systems modelling has become increasingly difficult. Further, today’s complicated, high 

performing systems contain severe nonlinearities. As a result, traditional control methods such as PID control are often used 

at the cost of efficiency and performance. Modern Lyapunov-based controllers are more robust, which is important when 

stability is desired even with modelling assumptions and uncertainties. In many cases, however, the amount of uncertainties 

makes using most Lyapunov-based controllers impractical. For example, a sliding mode controller used to control a system 

with high uncertainties would require a large controller gain, and, as a result, a high control output. 

In order to feasibly control these systems, multiple globally robust controllers have been developed. These controllers 

generally use two methods to achieve stability no matter the uncertainty: limiting the form of the error in the system or 

estimating the maximum uncertainty. One example of the first method was given in [1]. This LQR-based controller was 

proven to cause stability so long as the uncertainties were in the image of the control influence matrix. On the other hand, 

the controller in [2] would cause stability when a certain parameter was larger than a linear combination of the uncertainty 

and its derivative. An estimator was created to keep the parameter above the combination. Both controllers were tested and 

performed well but are limited in their scope (linear systems for [1] and second-order SISO systems for [2]). These two 

controllers illustrate the need for a broadly applicable globally robust controller; such a controller would guarantee stability 

no matter the system form. 

A controller with the potential to be broadly globally robust was introduced in [3] and developed in [4] and [5]. This 

controller method – known as Model Free Sliding Mode Control (MFSMC) – solved the issue of large uncertainties in the 

system by avoiding a system model entirely. Instead, it relied on the following unity gain equation and assumptions: 

 

x⃑  (𝑛) =   x⃑  (𝑛) + 𝐵[u⃑  − u⃑  𝑘−1] + ε   (1) 

ε  =  𝐵[u⃑  𝑘−1 − u⃑  ] (2) 

ε̂   =  𝐵[u⃑  𝑘−2 − u⃑  𝑘−1] (3) 

|ε  | < (1 + 𝜎𝑢)|ε̂ | (4) 

𝐵𝑚𝑖𝑛 < 𝐵 < 𝐵𝑚𝑎𝑥 (5) 

 

Sliding mode control techniques are then applied. The resultant controller is as follows: 
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u⃑   =   B̂ −1[−x̃  − ε̂  − (s  ̇  − x̃ (𝑛))  − κ⃑   ∘ 𝑠𝑔𝑛(s  )] (6) 

κ⃑  =   |𝛽 − 𝐼|(|x̃ (𝑛)| + |𝐿 x̃ ̇  |) + |𝛽 (1 + 𝜎𝑢) − 𝐼||ε̂ | + 𝛽η⃑  (7) 

 

A boundary layer Φ⃑⃑⃑  was also introduced to reduce dithering. A derivation in a sliding mode context is given in 

[6].  
These papers demonstrated that MFSMC was applicable to all square systems (systems in which the number of control 

inputs is equal to the number of non-derivative states) so long as the bounds of the influence matrix were known. [7] 

proposed the use of an estimator for the parameter η⃑ , which would avoid the need to know the bounds. Due to 

efficiency concerns, [8] adapted the estimator to find the matrix directly. While the controller-estimator combination 

stabilized several test systems, the estimator’s performance was sub-par in some circumstances. 

Currently work is being performed to solve both limitations. In this work, both a method for estimating the bounds on 

the influence matrix and the use of a hyper-plane transformation for the control of non-square systems are presented. 

Results of using these techniques in a sliding mode context are given. In the future, the methods will be adapted to 

MFSMC. 

 

2. Boundary Estimation 
Using a traditional estimator in MFSMC is more difficult than it may first seem – without a model, finding a suitable 

regression equation is not straightforward. The method in [8] was adapted from least squares with bounded gain forgetting. 

Rather than deriving the estimator from a relationship involving the influence matrix, [8] created a least squares with 

bounded gain forgetting estimator using the sliding condition. This condition was developed as a part of sliding mode 

control: 

 

(Φ⃑⃑⃑  ̇  − η⃑  ) ∘ |s  | ≥ s   ∘ s  ̇  (8) 

s = [
𝑑

𝑑𝑡
+ 𝛬]

𝑛−1

x̃ (9) 

 

where �̃�  is the difference between the current states x⃑   and their desired values  x⃑  𝑑 and “∘” is an elementwise product. 
When Eq. (8) is satisfied, the system is stable. The estimate is multiplied by a factor to get the matrix’s bounds. 

The new technique similarly uses the sliding condition. Given a system of the form 

 

x⃑  (𝑛) =   f  (x⃑  (𝑖)  , 𝑡) + 𝐵(x⃑  (𝑖)  , 𝑡)u⃑   (10) 

 

the estimator’s goal is to find the influence matrix bounds. Start by substituting Eq. (10) into Eq. (9) and rearranging to get 

 

𝑠𝑔𝑛(s  ) ∘ 𝐵u⃑ ≥ 𝑠𝑔𝑛(s  ) ∘ [x⃑  𝑑
(𝑛)

− f  − (s  ̇  − x̃ (𝑛))] + (Φ⃑⃑⃑  ̇   − η⃑  ) (11) 

 

Next, multiply both sides by a factor 𝛼  which is 1 when the sliding condition is not satisfied and -1 in all other 

situations. Note doing so flips the inequality. The factor generalizes the inequality to all states of the sliding 

condition. 
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At this point, the derivation diverges for coupled and decoupled systems. First, consider the case when the 

system is decoupled (𝐵 is diagonal). If b⃑   is a vector of the diagonal elements of 𝐵 (𝐵 =  𝑑𝑖𝑎𝑔(b⃑  )), the left side reduces 

to  

 

𝛼  ∘ 𝑠𝑔𝑛(𝑠  ) ∘ 𝐵�⃑�  = 𝛼   ∘ 𝑠𝑔𝑛(𝑠  ) ∘ �⃑�   ∘ �⃑�  =  𝑑𝑖𝑎𝑔(𝛼   ∘ 𝑠𝑔𝑛 ( 𝑠   )  ∘  �⃑�  )�⃑�  (12) 

 

The final step is to define the following values: 

 

𝐴 =   |𝑑𝑖𝑎𝑔 ( α⃑⃑   ∘ 𝑠𝑔𝑛 ( s   ) ∘ u⃑   )| (13) 

q⃑   =   α⃑⃑   ∘ (|Φ⃑⃑⃑  ̇   − η⃑   + 𝑠𝑔𝑛 ( s   ) ∘ (x⃑  𝑑
(𝑛)  − 𝐿 x̃ ̇  )| + 𝑓 ∘ (𝑠𝑔𝑛 ( s   ))2) (14) 

𝑓  = {
𝑚𝑖𝑛(|𝑓  𝑚𝑖𝑛| , |𝑓  𝑚𝑎𝑥|), 𝐵𝑚𝑖𝑛 𝑖𝑠 𝑏𝑒𝑖𝑛𝑔 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝑚𝑎𝑥(|𝑓  𝑚𝑖𝑛| , |𝑓  𝑚𝑎𝑥|), 𝐵𝑚𝑎𝑥 𝑖𝑠 𝑏𝑒𝑖𝑛𝑔 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
 (15) 

 

Using these definitions, the influence matrix bounds may be estimated as  

 

𝐵𝑘|𝑘 =  𝑚𝑎𝑥(𝐵𝑘|𝑘−1
 , 𝐵𝑘−1|𝑘−1) (16) 

𝐵𝑘|𝑘−1 =  𝑑𝑖𝑎𝑔(𝐴+  𝑞  ) (17) 

 

Where 𝐴+ is the pseudoinverse of 𝐴 and 𝐵𝑘|𝑘 is the current bounds estimate. 𝐵𝑘|𝑘−1 is the exact solution to the equation. 

However, if any of the current values of 𝐵 are less than their corresponding maxima, some of the estimated values will be 

too low. For that reason, the actual estimate 𝐵𝑘|𝑘 is found by comparing the equation’s solution with the last estimates. A 

similar approach may be taken to derive an estimator for coupled systems. In testing, these definitions – which are derived 

from the maximizations of each side of the inequality – performed better than alternatives. 

 

3. Hyper-plane Transformation 
Using the MFSMC approach perfect tracking and stability for square MIMO systems was obtained but additional 

methods are needed to guarantee tracking for underactuated (non-square) MIMO systems. A challenge in dealing with non-

square systems is the non-invertibility of the input gain matrix, making the formulation of the control law impossible. To 

address this issue, a potential solution involves employing a coordinate transformation on the system. Through this 

transformation, the originally "non-square" matrix can effectively be "squared," overcoming the non-invertibility limitation 

and facilitating the formulation of the control law. This method being implemented in this work is the hyperplane 

transformation.  

Consider the following 𝑛𝑡ℎ -order autonomous system: 

 

𝑥𝑝
𝑛 = 𝑓𝑝(𝑥) + [𝐵]𝑝×𝑚𝑢𝑚 (18) 

 

where 𝑚 < 𝑝, and the matrix [𝐵] is non-square. Let: 

 

�⃗� = [𝑇]�⃗� (19) 

 

where the dimensions of matrix [𝑇] = the dimensions of [𝐵]′. The above can be rewritten as: 

 

𝑦𝑝
(𝑛)

= [𝑇]𝑚×𝑝𝑓𝑝(𝑥) + [[𝑇]𝑚×𝑝[𝐵]𝑝×𝑚]𝑢𝑚 (20) 
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and the product of [[𝑇][𝐵]] is now square and invertible. The matrix [𝑇] can be thought of as a weighing matrix. Since the 

system under consideration is underactuated, and states cannot display perfect tracking simultaneously, [𝑇] can be used to 

track certain outputs "more heavily" than others. 

To apply the model-free SMC method to an underactuated MIMO system, knowledge of the size of the [𝐵] matrix of 

the system is required to formulate the transformation matrix [𝑇]. Once that is known, the model-free SMC scheme is 

developed in the 𝑦 coordinate system, in a similar manner to the derivation in square MIMO systems, and [𝑇] is used to 

relate 𝑦 to 𝑥, and vice versa. 

 

4. Results 
4.1. Simulation Results for Boundary Estimator SMC 

Simulated results for SMC with and without boundary estimation for the system  

 

�̈�1 = −𝑎1(𝑡)�̇�1
2 𝑐𝑜𝑠(2𝑥1) 𝑥2 + 𝑏11(𝑡)𝑢1 (21) 

�̈�2 = −𝑎2(𝑡)�̇�2
2�̇�1𝑥2 + 𝑏22(𝑡)𝑢2 (22) 

 

Fig. 2: Simulated results for SMC with and without estaimtion 

against desired states  (solid, dashed, and dotted, respectively). 
Fig. 1: Influence matrix boundary estimates (dotted) along 

with its estimated (dashed) and actual (solid) values. 
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are given in Figs. 1 and 2. Unsurprisingly, the controller with known bounds reaches the desired states faster overall 

(though state 2 of the estimated controller beats that of the regular SMC). This discrepancy is due to the time spent 

estimating the boundaries. Fig. 2 shows the boundary estimates are above the maximum values. While the amount of 

estimation would seem to cause inefficiencies, Fig. 3 indicates the estimated SMC has a lower control output. 

  

Figs. 4 and 5 show the SMC with boundary estimation’s performance, this time against a coupled system. In Fig. 5, the 

estimator is giving values of 𝛿, a parameter related to 𝐵 by 

 

𝛿 =  𝐵�̂� −1 − 𝐼 (23) 

 

Fig. 3: Control output for SMC with estimated (left) and known (right) influence matrix boundaries. 
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The test system is the same as in Eqs. (21) and (22), except with 𝑏12(𝑡) and 𝑏21(𝑡) terms. Again, state 1 is sluggish, but 

the system is still stable.  
 

4.2. Simulation Results for Hyper Plane Transformation in SMC  
Simulated results for traditional SMC with hyperplane transformation including boundary layer for the following 

system:  

 

𝑥1̈ + 𝑎1(𝑡)[𝑥1 + 𝑥1̇] 𝑐𝑜𝑠 (𝑥2)  = 𝑢(𝑡) (24) 

𝑥2̈ + 𝑎2(𝑡)[𝑥2 + 𝑥2̇ − 𝑥1̇]|𝑥1| = 0 (25) 

 

 

 

Fig. 6: Closed loop response of 𝑥1 𝑣𝑠 𝑥1𝑑
 𝑎𝑛𝑑 𝑥1 ̇ 𝑣𝑠 𝑥1𝑑

̇   

 
 

Fig. 5: Estimated delta matrix bounds (solid) against their 

actual values (dashed). 
Fig. 4: Desired (dotted) and simulated (solid) state 

trajectories for SMC with boundary estimation on a coupled 

system. 
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It can be seen from Figs. 6 and 7 that the tracking of 𝑥1 and 𝑥1̇ with the desired signals is not so great but there is 

close to perfect tracking for 𝑥2 and 𝑥2̇. This is because of the values set in the transformation matrix [T]. 𝑥2 and  𝑥2̇ is more 

heavily tracked than 𝑥1 and 𝑥1̇ . Based on the requirement the [T] matrix can be set to either track 𝑥1 and 𝑥1̇ or 𝑥2 and 𝑥2̇. 

 

 

 

 

   Fig. 7: Closed loop response of 𝑥2 𝑣𝑠 𝑥2𝑑
 𝑎𝑛𝑑 𝑥2̇ 𝑣𝑠 �̇�2𝑑

 

 

 

   Fig. 8: Closed loop response of 𝑦 ̇ 𝑣𝑠 𝑦�̇� and the controller effort “u” 

 

While the original system’s signal tracking is based on the [T] matrix, it can be seen from the left side of Fig. 8 that 

the transformed systems signal tracking is close to its desired value. The controller effort for the system is displayed on the 

right of Fig. 8.  

 

Left side of Fig. 9 shows that the system's sliding condition is satisfied which proves that the system is stable. The S-

trajectories lie within the defined boundary layer which can be seen on the right side of Fig. 9.  
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Fig. 9: Sliding and boundary layer condition satisfied. 

 

5. Conclusion 
 This paper introduced two methods: One, the integration of MFSMC approach with an online parameter (boundary) 

estimation method for complex nonlinear systems which allows for dynamic updates to the control law based on evolving 

system characteristics. The introduced approach includes a boundary layer to limit chattering and has precise tracking along 

with proven stability. The second method is the integration of hyperplane transformation with a traditional SMC for non-

square MIMO systems with the inclusion of boundary layer. The tracking in this method depends on the values chosen in 

the transformation matrix. The next steps would be to apply both methods to model free control and evaluate their 

performance. Upon obtaining the results for model free control then this type of control approach can be applied to any 

physical systems making it more robust and stable.    
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