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Abstract – The multiple-user terminals in a satellite transponder’s communication channel compete for limited radio resources to meet 
their own data rate needs. Because inter-user interference limits on the satellite transponder’s performance, the transponder’s power-
control system needs to coordinate all its users to reduce interference and maximizes overall performance of this channel. This paper 
studies Stackelberg competition among the asymmetrical users in a transponder’s channel, where some users called leader have priority 
to choose their power control strategy, but other users called followers have to optimize their power control strategy with given leader’s 
controls. A Stackelberg Differential Game (SDG) is set up to model the Stackelberg competition in a transponder’s communication 
channel. Each user’s utility function is a trade-off between transmission data rate and power consumption. The dynamics of the system 
is the changing of channel gain. The optimality condition of Stackelberg equilibrium of leaders and followers is a set of Differential 
Algebraic Equations (DAE) with an imbedded control strategies from its counterpart. In order to solve for Stackelberg equilibrium, an 
algorithm based on optimizing leaders’ and followers’ Hamiltonians iteratively is developed. The numerical solution of the SDG model 
provides the transponder’s power control system with each user’s power-control strategy at the Stackelberg equilibrium.  
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1. Introduction 

This paper studies satellite communication channels. The first important feature of satellite communication channel is 
interference. Each satellite transponder represents an individual communication channel. Within a 36-MHz bandwidth 
channel, each transponder can handle an enormous amount of information by using different multiple-access schemes, so 
each channel contains many pairs of senders and receivers [1], [2]. This study assumes each pair is selfish to maximize its 
own performance by a specific power-allocation scheme. The interference from other pairs affects the channel performance 
[3]. Satellites most commonly use the C band (6/4 GHz), and the C band’s heavier use leads to more interference. Shifting 
satellite communication to higher frequencies is one effective way to minimize interference, but crowding and interference 
problems will still exist, which motivates this study to develop a technique that increases bandwidth efficiency and signal-
caring capacity, and decreases interference of satellite communication subsystems. The second important feature of satellite 
communication is long distance, which implies the dynamic and controllable feature of channel gain has to be considered 
when modelling the transponder’s communication channel. The third important feature of a satellite transponder, which is 
interesting and studied in this paper is the existence of Stackelberg competition in this channel. The status of users in a 
channel are not always same. Some users called leader have priority to select their power control strategy, which implies 
other users called followers have to optimize with the given leader’s control strategy. Thus, it is interesting to study how the 
leaders take advantage of this opportunity to improve their utility, and how the followers survive better. 

This paper models a transponder’s communication channel as an interference channel with aim to optimize the trade-off 
between transmission data rate and power consumption. Section II reviews a transponder’s communication channel and 
existing energy-efficient power control game models. Section III models the power-allocation optimization problem for all 
users in a transponder as a Stackelberg Differential Gaussian Interference Channel Game (SDGICG) based on the special 
properties of satellite wireless communications. Section IV and Section V derive and analyse the SDGICG model’s 
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optimality condition, and develop numerical methods to solve for Stackelberg equilibrium and then solve the model. 
The numerical solution from the model provides all users in a transponder’s channel with the optimal power-allocation 
scheme at the Stackelberg equilibrium.  

 
2. Preliminaries 
2.1. Satellite Wireless Communications Subsystem 

A transponder is a repeater that implements a wideband communication channel that can carry many simultaneous 
one-to-one communication transmissions [1], so it can be modelled as a multiuser interference channel as Fig. 1 [4], [5]. 
This interference channel is an M-to-M network where a one-to-one correspondence exists between senders and 
receivers such that each sender communicates information only to its corresponding receiver [4]. This study models 
each pair of sender-receiver in a transponder channel as a user (a player). The interference limits the system’s 
performance. Interference cancellation is an option when the interference signal is sufficiently strong, but its 
implementation is complex, requiring prior knowledge of users’ transmission schemes is accessible by other users [5], 
[6]. This study assumes that each user applies power to affect the cross-coupling gain and then reduce interference 
without any interference cancellations.  

 
Fig. 1: Multiuser Interference Channel 

2.2. Static Power Control Game 
Goodman and Mandayam [7] study a static energy-efficient power control game on a distributed multiple-access 

channel with a finite number of users, denoted by 𝐾𝐾. Each user chooses its own power control policy 𝑝𝑝𝑖𝑖 to maximize its 
energy-efficiency 𝑢𝑢𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖)

𝑝𝑝𝑖𝑖
, where 𝑅𝑅𝑖𝑖 is the information transmission rate in bit/s for user 𝑖𝑖, and 𝑓𝑓 is an efficiency 

function representing the block success rate, which is assumed to be sigmoidal and identical for all the users [7], [8].  
It is called a static game because (a) it assumes that the users transmit data over quasi-static or block-fading channels at the 
same time and in the same frequency band, assuming each channel gain 𝐻𝐻𝑖𝑖(𝑛𝑛) to be constant over each block. (b) Each user 
in the game applies a fixed power policy, once per block, to maximize its utility. However, for long-distance wireless 
communication such as satellite communication, channel gain varies with time, so its modulus is usually assumed to be in a 
compact set |𝐻𝐻𝑖𝑖|2 ∈ [𝜂𝜂𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,𝜂𝜂𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚]. A variable power policy is expected to be designed to control channel gain. Furthermore, 
with assumption of complete information and rationality, the existence of Nash Equilibrium is guaranteed by Debreu-Fan-
Glicksberg existence theorem [9]. The Nash Equilibria are found by solving equations 𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖
(𝑝̅𝑝) = 0, 𝑖𝑖 = 1,⋯ ,𝐾𝐾. And the 

static power game has unique pure Nash Equilibrium, which is discussed by Yates [10], and Saraydar [11].  
Besides the energy-efficient game for communication channel, there are other types of noncooperative games 

constructed for different utility, which are generally called Gaussian Interference Games (GIGs) [12], [13]. The water-
filling algorithm also solves for Nash Equilibrium of GIG without the need for centralized control [13].  Amir Leshem 
applied cooperative game theory for analysing interference channels [14]. Wei Wan created a cooperative static game 
for a transponder’s centralized power control to maximize overall channel data transmission rate [15]. 
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2.3. Non-cooperative vs Stackelberg Differential Game (DG) 
In non-cooperative DG models, all the competitors make decision at the same time, and their controls are combined 

in the same dynamics. No competitor has knowledge of the strategies of others as he decides on his own. The player 𝑖𝑖’s 
objective function is  

𝑚𝑚𝑚𝑚𝑚𝑚 𝐽𝐽𝑖𝑖(𝑢𝑢1,⋯ ,𝑢𝑢𝑛𝑛) = � 𝑔𝑔𝑖𝑖�𝑥𝑥1(𝑡𝑡),⋯ , 𝑥𝑥𝑛𝑛(𝑡𝑡),𝑢𝑢1(𝑡𝑡),⋯ ,𝑢𝑢𝑛𝑛(𝑡𝑡)�𝑑𝑑𝑑𝑑
𝑇𝑇

0
,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 ∈ 𝜅𝜅 (1) 

and all competitors’ controls are combined in the same dynamics: 

�
𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑖𝑖�𝑡𝑡, 𝑥𝑥1(𝑡𝑡),⋯ , 𝑥𝑥𝑛𝑛(𝑡𝑡),𝑢𝑢1(𝑡𝑡),⋯ ,𝑢𝑢𝑛𝑛(𝑡𝑡)�

𝑥𝑥𝑖𝑖(0) 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.
,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 ∈ 𝜅𝜅 (2) 

The most interesting solution of non-cooperative DG model is Nash Equilibrium. Optimality condition for Nash 
Equilibrium of non-cooperative DG is a set of Differential-Algebraic Equations (DAE). Wei Wan and John Cioffi [16] set 
up a non-cooperative Differential Game (DG) to model the users’ competition in a transponder’s communication channel. 
In this game model, each user’s energy efficiency is redefined, and logistic growth is adopted to approximate the changing 
of channel gain under specific energy consumption. The objective function of each user is a weighted sum of energy 
efficiency and targeted channel gain. Then, the optimality condition for Nash Equilibrium of the model is derived. At last, 
an algorithm is developed to solve for Nash Equilibrium. The design of algorithm is based on a steep-descent method and 
optimizes all players’ objective functions simultaneously. 

Stackelberg game provides a model for a system where the status of competitors is not same. Stackelberg game is played 
as follows in Fig. 2. The users who select control first are leader. The leader first announces his control policy 𝑢𝑢. Then, the 

Fig. 2: Stackelberg Competition 

other users who are able to observe leader’s control 𝑢𝑢 and then select their controls are followers. The followers select their 
control 𝑣𝑣∗ by solving 𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣
𝐽𝐽2(𝑣𝑣,𝑢𝑢). In the end, the leaders select their optimal control 𝑢𝑢∗ by solve 𝑚𝑚𝑚𝑚𝑚𝑚

𝑢𝑢
𝐽𝐽1(𝑢𝑢, 𝑣𝑣∗).  

Furthermore, when controls are combined in a dynamic system, above game is played as Stackelberg Differential 
Game (SDG). The leader announces at time 𝑡𝑡 = 0 that he will use the control 𝑢𝑢(𝑥𝑥(𝑡𝑡), 𝑡𝑡) for 𝑡𝑡 ∈ [0,𝑇𝑇]. Then, the follower 
has to take the leader’s control path as given and selects his own control 𝑣𝑣(𝑥𝑥(𝑡𝑡), 𝑡𝑡) to minimize his objective functional 

𝐽𝐽2 = � 𝑔𝑔2(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑣𝑣(𝑥𝑥(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0
+ ℎ2(𝑥𝑥(𝑇𝑇))

𝑠𝑠. 𝑡𝑡.
⬚
⬚
⬚

�

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑣𝑣(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑡𝑡)

𝑥𝑥(0) = 𝑥𝑥0
𝑣𝑣(𝑥𝑥(𝑡𝑡), 𝑡𝑡) ∈ 𝑉𝑉

 

 

(3) 
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Thus, there exists a set-valued mapping:  

𝐹𝐹:𝑈𝑈 → 𝑉𝑉 
by 𝐹𝐹𝐹𝐹 = �𝑣𝑣 ∈ 𝑉𝑉�𝑣𝑣 = argmin

𝑣𝑣
[𝐽𝐽2(𝑢𝑢, 𝑣𝑣)]�.  From Pontryagin minimum principle, if an optimal 𝑣𝑣  exists, with 𝑣𝑣 ∈ 𝐹𝐹𝐹𝐹 , we 

must have a function 𝜆𝜆: [0,𝑇𝑇] → 𝑅𝑅𝑛𝑛 such that 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑣𝑣(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑡𝑡)

0 =
𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜆𝜆

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

+ (
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)𝜆𝜆

𝑥𝑥(0) = 𝑥𝑥0

𝜆𝜆(𝑇𝑇) =
𝜕𝜕ℎ2(𝑇𝑇)
𝜕𝜕𝜕𝜕

 (4) 

For 𝑣𝑣 ∈ 𝐹𝐹𝐹𝐹, the leader’s problem is to select his control 𝑢𝑢(𝑥𝑥, 𝑡𝑡) to minimize his objective function 

𝐽𝐽1 = � 𝑔𝑔1(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑣𝑣(𝑥𝑥(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0
+ ℎ1(𝑥𝑥(𝑇𝑇))

𝑠𝑠. 𝑡𝑡.
⬚
⬚
⬚
⬚ ⎩

⎪
⎨

⎪
⎧
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑣𝑣(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑡𝑡)

𝑥𝑥(0) = 𝑥𝑥0
𝑢𝑢(𝑥𝑥, 𝑡𝑡) ∈ 𝑈𝑈
𝑣𝑣(𝑥𝑥, 𝑡𝑡) ∈ 𝐹𝐹𝐹𝐹

 (5) 

, which can be written explicitly as follows: 

𝐽𝐽1 = � 𝑔𝑔1(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑣𝑣(𝑥𝑥(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0
+ ℎ1(𝑥𝑥(𝑇𝑇))

𝑠𝑠. 𝑡𝑡.
⬚
⬚
⬚
⬚
⬚
⬚
⬚
⬚
⬚ ⎩

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑣𝑣(𝑥𝑥(𝑡𝑡), 𝑡𝑡), 𝑡𝑡)

𝑢𝑢(𝑥𝑥, 𝑡𝑡) ∈ 𝑈𝑈

0 =
𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜆𝜆

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

+ (
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)𝜆𝜆

𝑥𝑥(0) = 𝑥𝑥0

𝜆𝜆(𝑇𝑇) =
𝜕𝜕ℎ2(𝑇𝑇)
𝜕𝜕𝜕𝜕

 (6) 

By solving above problem, the optimal control 𝑢𝑢(𝑥𝑥, 𝑡𝑡) for the leader could be obtained, and then solving the follower’s 
optimal control problem to get his optimal control 𝑣𝑣(𝑥𝑥, 𝑡𝑡). 
 
3. Stackelberg Differential Game for a Transponder 

In the process of designing power-control policy, it is assumed that some users in one satellite transponder’s channel 
have priority over others in terms of the order of making decision. That is there exists Stackelberg competition when 
allocating power among the users in this channel. 

Each pair of (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 ∈ 𝜅𝜅 represents a user in a transponder’s channel. All users choose their power-control policy 
before establishing communication. Each user’s communication is through 𝑁𝑁 sub-frequency channels simultaneously, 
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and each user applies independent power control policy in each sub-frequency channel. Furthermore, each user has two types 
of power consumption policy: the first improves its own channel gain, and the second decreases interference. The major 
variables are defined as follows:  

𝐻𝐻𝑖𝑖𝑖𝑖
𝑓𝑓(𝑡𝑡): the direct channel gain from the transmitter to the receiver of user 𝑖𝑖 over frequency 𝑓𝑓 at time 𝑡𝑡. 

𝐻𝐻𝑗𝑗𝑗𝑗
𝑓𝑓(𝑡𝑡): the cross-coupling gain from the transmitter 𝑗𝑗 to the receiver of user 𝑖𝑖 over frequency 𝑓𝑓 at time 𝑡𝑡. 

𝑝𝑝𝑖𝑖
𝑓𝑓(𝑡𝑡): the transmit power spectrum density used by user 𝑖𝑖 over frequency 𝑓𝑓 at time 𝑡𝑡. 

𝜏𝜏𝑖𝑖
𝑓𝑓: the fixed constant over frequency 𝑓𝑓 for user 𝑖𝑖, which stands for the proportion of user 𝑖𝑖’s 𝑝𝑝𝑖𝑖

𝑓𝑓(𝑡𝑡), used by user 𝑖𝑖 to 
decrease cross-coupling channel gain. 

𝜎𝜎𝑖𝑖
𝑓𝑓(𝑡𝑡): the noise power spectrum density at user 𝑖𝑖 over frequency 𝑓𝑓 at time 𝑡𝑡.  

Construction of objective function: Since the first and most interesting objective for each user in this transponder is 
to optimize the trade-off between the achievable data rate and energy consumption. With an assumption of no channel 
interference cancellation, the interference from other users is consequently noise. Then, the achievable rate for player 𝑖𝑖 at 
time 𝑡𝑡 over frequency (𝑓𝑓1,𝑓𝑓2)  is as follows [5], [3]: 

𝑅𝑅𝑖𝑖(𝑡𝑡) = � 𝑙𝑙𝑙𝑙𝑙𝑙2 �1 +
𝑝𝑝𝑖𝑖
𝑓𝑓(𝑡𝑡)|𝐻𝐻𝑖𝑖𝑖𝑖

𝑓𝑓(𝑡𝑡)|2

𝜎𝜎𝑖𝑖
𝑓𝑓(𝑡𝑡) + ∑ 𝑝𝑝𝑗𝑗

𝑓𝑓(𝑡𝑡)|𝐻𝐻𝑗𝑗𝑗𝑗
𝑓𝑓(𝑡𝑡)|2𝑗𝑗≠𝑘𝑘

� 𝑑𝑑𝑑𝑑

𝑓𝑓2

𝑓𝑓1

≅ 𝑙𝑙𝑙𝑙𝑙𝑙2 �1 +
𝑝𝑝𝑖𝑖
𝑓𝑓(𝑡𝑡)|𝐻𝐻𝑖𝑖𝑖𝑖

𝑓𝑓|2

𝜎𝜎𝑖𝑖
𝑓𝑓(𝑡𝑡) + ∑ 𝑝𝑝𝑗𝑗

𝑓𝑓(𝑡𝑡)|𝐻𝐻𝑗𝑗𝑗𝑗
𝑓𝑓|2𝑗𝑗≠𝑘𝑘

� ∆𝑓𝑓 (7) 

, where approximation assumes the variables to be constant over small bands. The energy efficiency for user 𝑖𝑖, 𝑖𝑖 ∈ 𝜅𝜅 over 
time [0,𝑇𝑇] is  

���𝑅𝑅𝑖𝑖(𝑡𝑡) − 𝑐𝑐𝑖𝑖
𝑓𝑓(𝑝𝑝𝑖𝑖

𝑓𝑓(𝑡𝑡))2�
𝑁𝑁

𝑓𝑓=1

𝑑𝑑𝑑𝑑
𝑇𝑇

0

 (8) 

, which is the log transformation of ratio of information bits that are transmitted without error per unit time to the transmit 
power. It is to be maximized. The second goal of transponder power control is for the direct channel gain to reach a certain 
channel-capacity level and also to reduce the cross-coupling gain to certain level. This second objective is to minimize the 
following expression: 

�𝑤𝑤1
(𝑓𝑓,𝑖𝑖)(|𝐻𝐻𝑖𝑖𝑖𝑖

𝑓𝑓(𝑇𝑇)|2 − 𝑟𝑟𝑖𝑖𝑖𝑖
𝑓𝑓𝜂𝜂𝑖𝑖𝑖𝑖

𝑓𝑓)2 + 𝑤𝑤2
(𝑓𝑓,𝑖𝑖)(|𝐻𝐻𝑗𝑗𝑗𝑗

𝑓𝑓(𝑇𝑇)|2 − 𝑟𝑟𝑗𝑗𝑗𝑗
𝑓𝑓𝜂𝜂𝑗𝑗𝑗𝑗

𝑓𝑓 )2
𝑁𝑁

𝑓𝑓=1

 (9) 

, where 𝑤𝑤1
(𝑓𝑓,𝑖𝑖),𝑤𝑤2

(𝑓𝑓,𝑖𝑖)  are weights between different objectives; 𝜂𝜂𝑖𝑖𝑖𝑖
𝑓𝑓 , 𝜂𝜂𝑗𝑗𝑗𝑗

𝑓𝑓  are constants, and upper bounds of 
|𝐻𝐻𝑖𝑖𝑖𝑖

𝑓𝑓(𝑇𝑇)|2, |𝐻𝐻𝑗𝑗𝑗𝑗
𝑓𝑓(𝑇𝑇)|2; and 𝑟𝑟𝑖𝑖𝑖𝑖

𝑓𝑓 , 𝑟𝑟𝑗𝑗𝑗𝑗
𝑓𝑓 are targeted channel-gain levels. 

Construction of dynamics: Generally, |𝐻𝐻𝑖𝑖𝑖𝑖
𝑓𝑓(𝑡𝑡)|2, |𝐻𝐻𝑖𝑖𝑖𝑖

𝑓𝑓(𝑡𝑡)|2  belong to a compact set [𝜂𝜂𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,𝜂𝜂𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚] , and can be 
approximated by Kronecker’s delta function [17]. In satellite wireless communication, satellite transponders can apply 
energy 𝑝𝑝𝑖𝑖

𝑓𝑓(𝑡𝑡)  to impact and control channel gain. The analysis in this paper assumes that the growth rate is proportional to 
power consumption. Thus, logistic growth with carrying capacity is adopted to approximate the dynamics of |𝐻𝐻𝑖𝑖𝑖𝑖

𝑓𝑓(𝑡𝑡)|2:  

𝑑𝑑|𝐻𝐻𝑖𝑖𝑖𝑖
𝑓𝑓(𝑡𝑡)|2

𝑑𝑑𝑑𝑑
= 𝛼𝛼𝑖𝑖

𝑓𝑓(1 − 𝜏𝜏𝑖𝑖
𝑓𝑓)𝑝𝑝𝑖𝑖

𝑓𝑓(𝑡𝑡)�𝜂𝜂𝑖𝑖𝑖𝑖
𝑓𝑓 − |𝐻𝐻𝑖𝑖𝑖𝑖

𝑓𝑓(𝑡𝑡)|2� (10) 

, where (1 − 𝜏𝜏𝑖𝑖
𝑓𝑓) is the fixed constant over frequency 𝑓𝑓 for user 𝑖𝑖, which stands for the proportion of 𝑝𝑝𝑖𝑖

𝑓𝑓(𝑡𝑡), used by user 𝑖𝑖 
to increase channel gain. Furthermore, when user 𝑖𝑖 applies 𝑝𝑝𝑖𝑖

𝑓𝑓(𝑡𝑡) to improve the channel gain |𝐻𝐻𝑖𝑖𝑖𝑖
𝑓𝑓(𝑡𝑡)|, it also increases the 

cross-coupling gain |𝐻𝐻𝑖𝑖𝑖𝑖
𝑓𝑓(𝑡𝑡)|. Furthermore, user 𝑗𝑗 is able to cost power 𝜏𝜏𝑗𝑗

𝑓𝑓𝑝𝑝𝑗𝑗
𝑓𝑓(𝑡𝑡) to decrease interference brought by 𝑝𝑝𝑖𝑖

𝑓𝑓(𝑡𝑡). 
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At last, because of threshold effects existing in channel gain, cross-coupling gain has a lower bound. Thus, the dynamics of 
|𝐻𝐻𝑖𝑖𝑖𝑖

𝑓𝑓(𝑡𝑡)|2 is approximated by: 

𝑑𝑑|𝐻𝐻𝑖𝑖𝑖𝑖
𝑓𝑓(𝑡𝑡)|2

𝑑𝑑𝑑𝑑
= 𝛽𝛽𝑖𝑖𝑖𝑖

𝑓𝑓�𝑝𝑝𝑖𝑖
𝑓𝑓(𝑡𝑡) − 𝜏𝜏𝑗𝑗

𝑓𝑓𝑝𝑝𝑗𝑗
𝑓𝑓(𝑡𝑡)� �𝜂𝜂𝑖𝑖𝑖𝑖

𝑓𝑓 − �𝐻𝐻𝑖𝑖𝑖𝑖
𝑓𝑓(𝑡𝑡)�

2
� ��𝐻𝐻𝑖𝑖𝑖𝑖

𝑓𝑓(𝑡𝑡)�
2
− 𝜉𝜉𝑖𝑖

𝑓𝑓� (11) 

, where 𝑖𝑖 ≠ 𝑗𝑗, and 𝛽𝛽𝑖𝑖
𝑓𝑓 represents the growth rate.  

After each player’s objective function, control, and dynamics of the system are defined, the SDGICG model 
(𝜅𝜅, �𝑝𝑝𝑖𝑖

𝑓𝑓�𝑖𝑖∈𝜅𝜅 , {𝐽𝐽𝑖𝑖}𝑖𝑖∈𝜅𝜅) is played according to (3)-(6).  
 

4. Solution of SDGICG model 
There are two methods to solve SDGICG models. The first one is based on solving (6). If the control 𝑣𝑣 could be 

solved from 0 = 𝜕𝜕𝑔𝑔2
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜆𝜆, the following nonclassical optimal control problem is obtained: 

min
𝑢𝑢∈𝑈𝑈

𝐽𝐽(𝑢𝑢) = � 𝐿𝐿(𝑥𝑥, 𝜆𝜆,𝑢𝑢(𝑥𝑥, 𝑡𝑡), 𝑡𝑡)
𝑇𝑇

0
+ ℎ�𝑥𝑥(𝑇𝑇)�

𝑠𝑠. 𝑡𝑡.
⬚
⬚
⬚
⬚
⬚ ⎩

⎪
⎨

⎪
⎧
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥, 𝜆𝜆,𝑢𝑢(𝑥𝑥, 𝑡𝑡), 𝑡𝑡) ⬚ ⬚ ⬚ ⬚ ⬚

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓̅(𝑥𝑥, 𝜆𝜆,𝑢𝑢(𝑥𝑥, 𝑡𝑡), 𝑡𝑡) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑓𝑓(𝑥𝑥, 𝜆𝜆,𝑢𝑢(𝑥𝑥, 𝑡𝑡), 𝑡𝑡)

𝑥𝑥(0) = 𝑥𝑥0,𝜆𝜆(𝑇𝑇) =
𝜕𝜕ℎ(𝑥𝑥(𝑇𝑇))

𝜕𝜕𝜕𝜕

 (12) 

By solving above optimal control problem, the optimal control 𝑢𝑢(𝑥𝑥, 𝑡𝑡) for the leader is obtained, and then the follower’s 
optimal control problem is solved to get his optimal control 𝑣𝑣(𝑥𝑥, 𝑡𝑡). The obvious disadvantage of this method is: (1) the 
solvability of control 𝑣𝑣. (2)  Deriving optimality condition for (12) is challenging, which is usually Differential Algebraic 
Equations and is difficult to solve [18].  

The second method is iterative method. The design of the following iterative method is straightforward, which is 
based on the procedure of how Stackelberg game is played in Fig. 2. The iterative steps are as follows: 
Step 1: Leader and follower initiate a random discrete control {𝑢𝑢𝐿𝐿

𝑓𝑓,𝑗𝑗(𝑘𝑘)} and {𝑢𝑢𝐹𝐹
𝑓𝑓,𝑗𝑗(𝑘𝑘)} over 𝑡𝑡 ∈ [0,𝑇𝑇].  

𝑢𝑢𝐿𝐿
𝑓𝑓,𝑗𝑗(𝑘𝑘) = 𝑢𝑢𝐿𝐿

𝑓𝑓,𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1),𝑘𝑘 = 1,⋯ ,𝑀𝑀 

𝑢𝑢𝐹𝐹
𝑓𝑓,𝑗𝑗(𝑘𝑘) = 𝑢𝑢𝐹𝐹

𝑓𝑓,𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈ [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1),𝑘𝑘 = 1,⋯ ,𝑀𝑀        

where  𝑓𝑓 = 1, … ,𝑁𝑁. 𝑗𝑗 stands for 𝑗𝑗𝑗𝑗ℎ iteration, and set 𝑗𝑗 = 0.  

Then, solve the dynamics and calculate both leader and follower’s objective function values: 𝐽𝐽𝐿𝐿
𝑗𝑗 and 𝐽𝐽𝐹𝐹

𝑗𝑗.  

Step 2: Follower embed leaders’ discretized control {𝑢𝑢𝐿𝐿
𝑓𝑓,𝑗𝑗(𝑘𝑘)}   to solve his own game model for an optimal control 

{𝑢𝑢𝐹𝐹
𝑓𝑓,𝑗𝑗+1(𝑘𝑘)}, and calculate follower’s objective function values: 𝐽𝐽𝐹𝐹

𝑗𝑗+1.  

Step 3: Leader embeds follower’s optimal control {𝑢𝑢𝐹𝐹
𝑓𝑓,𝑗𝑗+1(𝑘𝑘)} to solve his own game model for {𝑢𝑢𝐿𝐿

𝑓𝑓,𝑗𝑗+1(𝑘𝑘)}  and calculate 
his state variable values and his objective function value 𝐽𝐽𝐿𝐿

𝑗𝑗+1.  

Step 4: Check if |𝐽𝐽𝐿𝐿
𝑗𝑗 − 𝐽𝐽𝐿𝐿

𝑗𝑗+1| < 𝜖𝜖, then stop, and output {𝑢𝑢𝐿𝐿
𝑓𝑓,𝑗𝑗+1(𝑘𝑘)} and {𝑢𝑢𝐹𝐹

𝑓𝑓,𝑗𝑗+1(𝑘𝑘)}; otherwise, set 𝑗𝑗 = 𝑗𝑗 + 1 go back to 
Step 2. 
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In Step 2 of above iterative method, after follower embeds leaders’ discretized control to solve his own game model, the 
iterative algorithm in [16] is used and embedded. In Step 3, iterative algorithm in [16] is also used to solve for leader’s 
optimal control.  
 

 
Fig. 3: Iterative Algorithm to Solve Stackelberg Game Models 

5. Numerical Experiments 
A two-player SDGICG over one sub-frequency channel is solved by Algorithm 1. The numerical experiment aims to 

study the effects of cost of power on Stackelberg Equilibrium. The values of parameters are chosen as follows. Comparing 
the values of parameters in Table I and II, these two players are symmetric except for the cost of power, where 𝑐𝑐1 > 𝑐𝑐2 
implies player 1’s cost of power is more expensive than player 2, and the order of selecting their power control policies. 

TABLE I.  PARAMTERS OF OBJECTIVE FUNCTIONS 
Player 1-leader Player 2-follower 

𝑐𝑐1 6 𝑐𝑐2 4 
𝜎𝜎1 0.2 𝜎𝜎2 0.2 
𝑤𝑤1

(1) 2 𝑤𝑤1
(2) 2 

𝑤𝑤2
(1) 1 𝑤𝑤2

(2) 1 
𝑟𝑟11

(1) 0.9 𝑟𝑟22
(2) 0.9 

𝑟𝑟21
(1) 0.3 𝑟𝑟12

(2) 0.3 
TABLE II.   PARAMTERS OF DYNAMICS 

Player 1-leader Player 2-follower 
𝛼𝛼1 6 𝛼𝛼2 6 
𝛽𝛽12 3 𝛽𝛽21 3 
𝜏𝜏1 0.5 𝜏𝜏2 0.5 
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𝜂𝜂11 1 𝜂𝜂22 1 
𝜂𝜂12 0.5 𝜂𝜂21 0.5 
𝜉𝜉12 0.001 𝜉𝜉21 0.001 

𝑥𝑥11(0) 0.1 𝑥𝑥22(0) 0.1 
𝑥𝑥12(0) 0.02 𝑥𝑥21(0) 0.02 

Convergence of the algorithm is shown by convergence of leaders’ objective functions in Fig. 4, where 
|𝐽𝐽L(𝑛𝑛 + 1) − 𝐽𝐽L(𝑛𝑛)| ≈ 1 ∗ 10−7. And in each iteration, and the vanishing of 𝑑𝑑𝐻𝐻𝑖𝑖

𝑑𝑑𝑝𝑝𝑖𝑖
𝑓𝑓 is observed: �𝑑𝑑𝐻𝐻L

𝑑𝑑𝑝𝑝L
1  � ≈ 3.5 ∗ 10−7, 

�𝑑𝑑𝐻𝐻F
𝑑𝑑𝑝𝑝F

1  � ≈ 1 ∗ 10−5. The total number of iterations for leader is 8 (Fig. 4).  

 
Fig. 4. Convergence of Leader and Follower Objective Function 

Values 

 
Fig. 5. Trajectories of Optimal Control 𝑝𝑝1(𝑡𝑡) and 𝑝𝑝2(𝑡𝑡) 

 
Fig. 6. Trajectories of Direct Channel Gain |𝐻𝐻11

𝑓𝑓 |2 and |𝐻𝐻22
𝑓𝑓 |2 

 

 
Fig. 7. Comparison of |𝐻𝐻12

𝑓𝑓 |2 and |𝐻𝐻21
𝑓𝑓 |2 
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Two players’ optimal controls at Stackelberg Equilibrium are given in Fig. 5. The most important feature of optimal 
controls is that both players compete intensely at the beginning of the game, and reduce competition level gradually over 
time. Furthermore, Leader’s competition level is always lower than follower’s. This is explained by first-mover 
advantage of leader, and the cost of player 1’s control is higher than follower.  

Two players’ direct channel gain at Stackelberg Equilibrium behave similar and approach to the channel carrying 
capacity (Fig. 6). The follower’s direct channel gain level is slightly higher than leader’s. It is expected that the cost of 
follower’s control is cheaper with other parameters of these two players being at the same level.  

In the end, it is interesting to observe the cross-coupling gain of these two players behave different (Fig. 7). Leader’s 
interference to follower (|𝐻𝐻12

𝑓𝑓 |2) is increasing slightly, but |𝐻𝐻21
𝑓𝑓 |2 is increasing sharply over time. It could be understood 

since the cost of follower is cheaper, and follower is able to apply more power to reduce leader’s interfering to follower. 
 

6. Summary and Conclusion 
This paper is a continuing study of a satellite transponder’s communication channel following [16], [19]. It aims to 

improve energy efficiency by studying the power allocation of satellite transponder’s channel. In satellite communication 
subsystems, the performance of each pair of transmitters and receivers depends not only on its own power allocation, but 
also on the other pairs’. Each user in the transponder’s channel would be competing for limited radio resources to meet their 
selfish data rates with less energy consumption. Another feature of satellite communication is its long-distance, so the channel 
gain is not constant. Thus, each user is able to apply energy to improve its own channel gain and reduce interference. This 
paper introduced a SDGICG model for all users in one transponder’s communication channel. It is assumed that the status 
of these users are not same: some users have priority to select their power control policy. In the setup of the game model, 
energy efficiency, dynamics of channel gain, and the objective function of each user follows [16]. The optimality condition 
for follower’s decision problem is an optimal control problem with imbedded leader’s controls, and leaders’ problem is to 
search for their optimal control with imbedded followers’ optimal controls. An iterative algorithm is developed to solve the 
SDGICG model. In each iteration, the algorithm from [19] which is based on steep-descent method to search for optimal 
control is imbedded. Numerical experiment shows this algorithm is effective and efficient to solve the SDGICG model. The 
numerical solution of the game model can be used to support designing power allocation scheme of transponders with 
Stackelberg competition. In the end, one limitation of research work in this paper is proof of existence and uniqueness of 
Stackelberg equilibrium. Continuing research is necessary and expected since we need to guarantee the convergency of the 
iterative algorithm: the existence of followers’ optimal control with the imbedded leader’s control; the existence of leaders’ 
optimal control with the embedded followers’ optimal control. 
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