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Abstract - This study investigates how ResNet architectures (ResNet18, ResNet34, ResNet50) perform in recognising facial expressions 
using the FER-2013 dataset. It applies transfer learning, fine-tunes the models, and conducts real-time tests to evaluate their performances. 
The results show that ResNet18 achieves the best balance between accuracy and efficiency, despite its simplicity. This research highlights 
the essential role that comprehensive datasets play in improving model generalisation, particularly for underrepresented expressions. It 
points out the need for a nuanced balance between model complexity, computational efficiency, and suitability for real-world applications, 
making a significant contribution to the field of real-time facial expression recognition. 
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1. Introduction  

Facial expression recognition is crucial in fields such as human-computer interaction, security, and health assessment. 
The use of deep learning, particularly Convolutional Neural Networks (CNNs), has greatly enhanced its capabilities, 
providing major improvements over older methods [1][2][3][4]. Among these advancements, Deep Residual Networks 
(ResNets) stand out for their ability to tackle deep network training challenges, offering more accurate and efficient 
recognition solutions [5][6]. Their use has particularly been beneficial in recognizing subtle changes in facial expressions, 
essential for seamless human-computer interactions. 

The need for real-time and dynamic facial expression recognition has grown with advancements in technology, 
especially in surveillance and real-time communications, where high accuracy and low latency are paramount [7]. ResNets 
have been instrumental in addressing these needs due to their superior performance and computational efficiency. 

The success of facial expression recognition also depends on advanced feature extraction methods like higher-order 
statistical features and Local Binary Patterns, although integrating these into ResNet architectures yielded minimal 
performance gains in our trials [8][9][10][11][12][13]. This exploration, though not central to our study due to its limited 
impact, indicates our attempts to refine recognition models, which we don't detail further. However, the application of these 
technologies in areas such as education and social cognition highlights their broad utility [3][14]. 

Our study begins with an analysis of the FER-2013 dataset [15], emphasizing its diversity and the challenges it presents, 
which are pivotal for evaluating advanced deep learning models in facial expression recognition. The methodology section 
outlines our approach using ResNet architectures and transfer learning, detailing the fine-tuning necessary for emotion 
recognition tasks. Experimental results compare model performances, assessing accuracy, efficiency, and real-time 
applicability through webcam tests. We conclude by highlighting the balance between model complexity and training data 
comprehensiveness, proposing future research avenues for improving model sensitivity and real-time performance. 

 
2. Dataset 

The FER-2013 dataset [15] provides a comprehensive collection specifically designed for facial expression recognition 
tasks. It originally includes seven distinct emotion categories: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. The 
dataset comprises a total of 35,886 images, with 28,708 designated for training and 3,589 for testing. Each image within the 
dataset is a grayscale picture of 48x48 pixels, offering a uniform standard for processing and analysis. The images' relatively 
low resolution, in contrast to the high-resolution input from webcams, poses a significant challenge in ensuring the model's 
effectiveness in real-world scenarios. 
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To bridge this gap and boost the model's robustness, we have opted to use grayscale images in our training process. This 
strategy achieves two objectives: first, it simplifies the model by concentrating on structural features rather than colour 
information, which holds less significance for recognising facial expressions. Second, it replicates the conditions of real-time 
webcam input, where lighting conditions and background variability can drastically change colour information. By adopting 
this grayscale method and combining it with our other data augmentation techniques, such as random flips, rotations, and 
adjustments in brightness, contrast, and affine transformations, we ensure the development of a robust model capable of 
accurately classifying facial expressions in a variety of dynamic real-world settings. 

 
3. Methodology 
3.1. Transfer Learning Approach 

In our research, we have adopted the concept of transfer learning to exploit the advanced capabilities of pre-trained 
models for feature extraction. Specifically, we chose the ResNet18, ResNet34, and ResNet50 architectures—variants of the 
Residual Network—guided by our aim to find a careful balance between model depth and computational efficiency, essential 
for real-time application deployment. 
 

Fig. 1: Architecture of ResNet18 model. 
 
The illustration in Fig. 1 outlines the architecture configurations of the ResNet18 model. The text in each box indicates 

the module name in bold, the kernel size, and the output dimensions in brackets. We customised the architecture of these 
chosen ResNet models by adjusting their final fully connected, fc layer to classify images into seven specific classes: Angry, 
Disgust, Fear, Happy, Sad, Surprise, and Neutral. This modification was crucial to customise the models for the unique 
demands of our study, especially for the classification task using the FER-2013 dataset—a dataset noted for its facial 
expression recognition challenges. We aimed to create a framework that demonstrates how we have modified the network. 

To optimally fine-tune the models for our task, we performed a fine-tuning process. This involved freezing the initial 
layers of the models to retain the features learned from the ImageNet dataset, while training the latter layers to adapt to our 
specific classification requirements. This strategy enabled us to significantly reduce training time and resource use, 
maintaining high accuracy and efficiency for real-time facial expression classification. A novel aspect of our methodology 
was our decision to not only modify the last fully connected layer but also to unfreeze and train the penultimate layer, layer4. 
We based this decision on our finding that allowing layer4 to learn from our specific dataset could enhance the model's 
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classification accuracy. This approach indeed led to a marked improvement in training accuracy, which jumped from 41.6% 
to an impressive 91.2%. This strategic use of transfer learning, alongside selective fine-tuning of network layers, highlights 
our dedication to developing an efficient and accurate system for real-time facial expression recognition. Through this 
method, we have effectively harnessed existing deep learning architectures, adapting them to confront the particular 
challenges posed by our research field. 

 
3.2. Real-Time Processing 

The core of our methodology for real-time prediction involves deploying a pre-trained model to detect and classify facial 
expressions in real time, utilising webcam input. This section describes the technical implementation designed to enable live 
classification of facial expressions, fostering interactive user engagement. We have constructed the system within a Python 
environment, utilising  the OpenCV library for video capture and face detection, alongside PyTorch for deploying the trained 
model. The process initiates with activating the user's webcam, which continuously streams live images into the system. We 
then employ OpenCV's ̀ CascadeClassifier`, specifically the ̀ haarcascade_frontalface_default.xml`, to process these images 
and detect the presence of a face. Upon detecting a face within the video frame, the system extracts the region of interest 
(ROI), the detected face. We subsequently preprocess and transform this face ROI to meet the input specifications of the pre-
trained model. This transformation typically includes resizing the image, normalising pixel values, and converting the image 
into a tensor format apt for model input. After preprocessing, we feed the face ROI tensor into the trained ResNet model, set 
in evaluation mode to ensure batch normalisation and dropout layers function in inference mode. The model then predicts 
the facial expression by outputting a class label corresponding to the detected expression. 

The real-time prediction functionality resides within a user-friendly interface that exhibits the live video feed from the 
webcam. When the system identifies and classifies a facial expression, it outlines the detected face with a bounding box and 
displays the predicted expression label on the screen. This enables users to witness the classification results in real time as 
they exhibit various facial expressions to the webcam. The real-time prediction system's implementation is encapsulated in 
the ̀ realtime_prediction` function, which accepts several parameters including the model, transformation procedures, display 
duration for the classification label, and the preferred computational device (CPU or GPU). This function controls the entire 
procedure from video capture, face detection, and expression classification to result display, ensuring a smooth and 
interactive user experience. 
   
4. Experimental Results and Discussion 

This section provides a comprehensive analysis of the performance and effectiveness of various ResNet architectures—
ResNet18, ResNet34, and ResNet50—in tasks related to facial expression recognition. We carefully record and examine the 
training performance, covering both training accuracy and time, for later analysis on the computational efficiency and 
learning capabilities of each model. Additionally, we evaluate the testing performance across different models and within 
specific classes, illustrating how each architecture performs overall and in identifying the seven distinct facial expressions: 
Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. We broaden our analysis to include real-world relevance by 
assessing the models in a live setting using a webcam, thereby offering a complete picture of each model's practical value.  

 
4.2. Training Performance 

Fig. 2 displays the training performance for each ResNet model, covering training loss, training accuracy, and training 
time. Following is our observations: 

● Performance Over Time: Initially, ResNet50 led with the best performance, yet by the 9th epoch, ResNet18, the 
simplest model, overtook it. This indicates that although deeper networks might initially excel, simpler 
architectures can catch up and even surpass them as training advances. 

● Consistency in Performance: ResNet34 consistently delivered the least effective performance throughout the 
training. Despite its medium complexity, it never reached the higher accuracy rates of ResNet18 or ResNet50 at 
any measured epoch. 

● Training Efficiency: By the 9th epoch, ResNet18 not only matched ResNet50 in accuracy but also required 
significantly less training time, showcasing greater training efficiency. 
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● Resource Utilisation: ResNet50 took the longest to train, indicating a higher computational cost, which might not 
be justifiable since its performance was equalled and then exceeded by the simpler ResNet18. 

● Model Complexity vs. Performance Trade-Off: There seems to be a diminishing return on added model 
complexity, as illustrated by ResNet50, where the extra complexity does not equate to a proportionate 
improvement in performance in later epochs. 

● Practical Implications for Model Selection: Selecting a model for practical applications necessitates a 
consideration of the trade-off between accuracy, training time, and computational resources. ResNet18 might 
present the best balance in scenarios where resource efficiency is crucial. 

● Potential for Further Improvement: None of the models showed a plateau in accuracy after 20 epochs, suggesting 
room for further enhancement in model performance with more training. This hints that continued training could 
yield better accuracy, provided that overfitting is managed. 
 

 
 

Fig. 2: Training performances of ResNet models. 
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4.2. Testing Performance 
 

Table 1: Test performance for each ResNet model. 
 

Model Precision Recall F1-Score Support Accuracy AUC 
resnet18 0.648 0.650 0.646 7178 0.650 0.898 
resnet34 0.652 0.651 0.650 7178 0.651 0.893 
resnet50 0.664 0.654 0.658 7178 0.654 0.885 

 
Table 1 provides a comprehensive overview of the testing performance for three distinct ResNet models: ResNet18, 

ResNet34, and ResNet50. Six key metrics are reported for each model, which include Precision, Recall, F1-Score, Support, 
Accuracy, and AUC (Area Under the Curve). Notably, the Precision, Recall, and F1-Score values correspond to the 'weighted 
avg' figures obtained from the `classification_report` function of `sklearn.metrics`, which accounts for the imbalance in the 
support of each class. The Support is consistent across all models, signifying the total count of test dataset instances used to 
evaluate each model. The Accuracy metric reported is the overall accuracy across all classes. The AUC values represent the 
arithmetic mean of the AUC for the seven different facial expressions, providing a consolidated view of the model's 
discriminative power. 

 
Table 2: Test performance for each Facial Expression. 

 
Expression Precision Recall F1-Score Support AUC 
angry 0.560 0.590 0.571 958 0.872 
disgust 0.727 0.583 0.647 111 0.958 
fear 0.522 0.483 0.500 1024 0.805 
happy 0.849 0.857 0.851 1774 0.965 
neutral 0.589 0.619 0.601 1233 0.856 
sad 0.516 0.507 0.511 1247 0.832 
surprise 0.811 0.768 0.789 831 0.956 

 
Table 2 offers a detailed analysis of classification performance metrics for seven different facial expressions: angry, 

disgust, fear, happy, neutral, sad, and surprise. These metrics encompass Precision, Recall, F1-Score, Support, and AUC, 
representing the arithmetic mean values from the performance of three ResNet models (ResNet18, ResNet34, and ResNet50). 
The following are our observations:  

● Model Complexity vs. Performance: Increased complexity through deeper networks, such as ResNet50, does not 
always lead to improved performance metrics. Often, ResNet18 either surpasses or equals ResNet50 in accuracy 
and AUC, underscoring the importance of adopting a balanced approach in model selection. 

● Precision-Recall Trade-off: The models exhibit a nuanced trade-off between precision and recall across different 
expressions, with no single model consistently outperforming others in all categories. This stresses the 
significance of evaluating multiple metrics for a comprehensive performance assessment. 

● Variability in Expression Recognition: The models demonstrate significant variability in recognising different 
facial expressions. Expressions like 'happy' and 'surprise' are classified with high precision and recall, whereas 
recognising 'fear' and 'sad' poses greater challenges, pointing towards the need for model adjustments or targeted 
data augmentation. 
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● AUC: AUC scores differ among expressions, with 'happy' and 'disgust' achieving the highest scores. This 
indicates that the models more easily distinguish these expressions, likely due to more distinct or consistent 
features. 

● Impact of Support on Performance: The support number, or the count of instances, does not directly correlate with 
performance, as illustrated by the 'fear' and 'sad' expressions. This highlights the importance of both the quantity 
and quality of training data. 

● Opportunity for Model Optimisation: The close range of metrics such as precision, recall, and F1-scores suggests 
room for improvement through hyperparameter tuning, further training, or experimenting with alternative 
architectures to boost performance. 

● Importance of a Balanced Dataset: Differences in performance across expressions stress the need for a balanced 
and representative training dataset, crucial for enhancing model generalisation and improving accuracy on less 
precisely classified expressions. 

 
4.3. Real-Time Webcam Performance 

In this section on Real-Time Webcam, we explore the practical application of our trained models in a live environment. 
Using a standard webcam, we carried out real-time facial expression recognition to assess the models' capacity to interpret 
and classify expressions as they naturally occur. 

 

 
Fig. 5: Real-Time Facial Expression Detection Snapshots. 

 
We captured the real-time performance through a series of snapshots that displayed the models' analytical interpretation 

of six discernible facial expressions: Angry, Fear, Happy, Sad, Surprise, and Neutral. Each snapshot matches a detected 
facial expression, apart from 'Disgust', which we notably omitted from our real-time analysis. The absence of 'Disgust' stems 
not from oversight but as a result of the initial training phase. The FER-2013 dataset, used for training our models, provides 
limited representation of the 'Disgust' expression, leading to the models' ineffectiveness in recognising and classifying 
'Disgust' confidently in real-world situations. This limitation highlights a critical challenge in machine learning and deep 
learning projects: the performance of models closely links to the quality and breadth of the training data. The training set's 
insufficient instances of the 'Disgust' expression have created a proficiency gap, evident during live webcam testing. 

Our real-time analysis not only verified the models' ability to operate interactively but also observed that the models 
showed variable accuracy across different expressions, particularly excelling in detecting 'Happy' and 'Surprise', which 
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benefited from robust datasets during training. The volume of expression data in the training set and the models' real-time 
detection accuracy showed a clear correlation, reinforcing the maxim that 'data is king' in machine learning. Despite the 
generally impressive performance under real-time conditions, the models' adaptability to less represented expressions, such 
as 'Disgust', was limited, indicating a need for dataset enrichment and possibly model retraining. The analysis of real-time 
performance offers essential insights into the models' readiness for deployment in real-world scenarios, where a variety of 
expressions and unpredictability are standard.  

In summary, while the models demonstrated notable real-time performance, their inability to detect 'Disgust' underscores 
an important area for future research and development: enhancing the dataset to encompass underrepresented expressions 
and refining the models to improve their detection capabilities across a broader expression spectrum. 
 
5. Conclusion 

The conclusion brings together the findings of the research, emphasising the subtle interaction between model 
architecture complexity and performance in tasks of facial expression recognition. It underlines the effectiveness of ResNet18 
in achieving a balance between computational efficiency and predictive accuracy, challenging the assumption that greater 
complexity leads to better results. The study further uncovers essential insights into the models' abilities and limitations in 
real-world settings, especially through testing with a real-time webcam. These outcomes support a strategic approach to 
choosing models, highlighting the significance of comprehensive datasets for training to improve model generalisation across 
various expressions. This research contributes to the ongoing discussion within machine learning communities on optimising 
model performance within practical limits, setting the stage for future developments in real-time facial expression recognition 
technologies. 
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