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Abstract - In this paper, static output feedback control is proposed to stabilize a general class of discrete-time stochastic nonlinear 

systems. Knowledge of the precise form of the nonlinearity or its statistics are not required. Instead, it is only necessary that a bound on 

the second moment of nonlinearity can be determined. The control gain is determined by solving a linear matrix inequality which is 

sufficient to show that the controlled system is stable in the mean square and almost sure senses. 
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1. Introduction 
This paper considers static output feedback stabilizing control for a general class of discrete-time nonlinear stochastic 

systems given by the following equations 

 
 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘) (1) 

   

 𝑦𝑘 = 𝐶𝑥𝑘 (2) 

 

where 𝑥𝑘 ∈ ℝ𝑛 is the state, 𝑢𝑘 ∈ ℝ𝑚 is the input, 𝑤𝑘 ∈ ℝ𝑝 is an independent zero mean noise sequence, 𝑦𝑘 ∈ ℝ𝑞 is the 

output, and 𝑓(𝑥𝑘, 𝑢𝑘, 𝑤𝑘):ℝ𝑛 × ℝ𝑚 × ℝ𝑝 → ℝ𝑛 is a nonlinear function satisfying the following properties 

 

 𝑓(0,0,𝑤𝑘) = 0 (3) 

   

 𝐸𝑥𝑘
{𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)} = 0 (4) 

   

 𝐸𝑥𝑘
{𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)𝑓T(𝑥𝑗, 𝑢𝑗, 𝑤𝑗)} = 0 ∀𝑘 ≠ 𝑗 (5) 

   

 
𝐸𝑥𝑘

{𝑓(𝑥𝑘 , 𝑢𝑘, 𝑤𝑘)𝑓T(𝑥𝑘, 𝑢𝑘, 𝑤𝑘)} ≤ ∑𝑇𝑖(𝑥𝑘
T𝑀𝑖𝑥𝑘 + 𝑢𝑘

T𝑁𝑖𝑢𝑘)

𝑟

𝑖=1

 
 

(6) 

 

where 𝐸𝑥𝑘
{𝑓} denotes the expectation of 𝑓 conditional on 𝑥𝑘, and 𝑟 = 𝑛(𝑛 + 1)/2. Additionally, the matrix bounds 𝑇𝑖, 𝑀𝑖 ∈

ℝ𝑛×𝑛, and 𝑁𝑖 ∈ ℝ𝑚×𝑚, are known for all 𝑖. Further, since Eqn. (6) represents the upper bound of a covariance relation, it 

follows that all matrices on the right-hand side of the inequality are symmetric and at least positive semidefinite.  

This particular class of systems, as pointed out in [1]-[4], is in fact quite general and includes several well-known systems 

such as linear systems with additive noise, linear systems with state and control multiplicative noise, state and control norm 

dependent random vectors, random vector dependent on the sign of a nonlinear function of the state, and many others. 

 Several researchers have investigated this particular class of systems in the past. It was shown in [1] that the optimal 

finite horizon controller which minimizes a quadratic performance criteria, is a linear function of the states of the system. 

However, this method assumes perfect knowledge of the states of the system. Additionally, the form of the nonlinearity is 
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assumed to be known requiring that the inequality given in Eqn. (6) is a strict equality. Further, determination of the 

control law relies on the solution to a backward running generalized Riccati equation which must be solved offline. A 

suboptimal version of the work in [1] was found in [2]. The benefit of the suboptimal version is that the control law is a 

constant state variable feedback gain. However, perfect knowledge of the states, as well as the form of the nonlinearity, 

are again required. The work in [3] proposed an optimal infinite horizon optimal control which also required all states 

to be measurable and exact form of the nonlinearity to be known. Control of systems with incomplete state knowledge 

was considered in [4] and a reduced-order observer was proposed in [5]. Design of several linear state estimators using 

various performance criteria was considered in [6]. The work in [7] considered a general performance criteria which 

was minimized to achieve several control objectives including 𝐻2, 𝐻∞, and several passivity results. This work relaxed 

the condition that the exact form of the nonlinearity be known and required that only knowledge of the upper bound of 

the covariance of the nonlinearity be known (similar to Eqn. (6)). However, similar to the majority of the previously 

listed works, the work in [7] also required all state variables to be measurable. 

The method proposed in this paper extends the previous work by considering a static gain output feedback controller 

which has not been considered until now. The benefits of the proposed approach are: 1) the exact form of the nonlinearity 

need not be known, rather it is only necessary that an upper bound on the second moment of the nonlinear stochastic 

term can be determined, 2) complete knowledge of the states is not needed, 3) there is no need to design an estimator in 

the event that perfect knowledge of the states is unavailable. 

The following additional notation is used in this paper; ‖𝑥𝑘‖ is used to denote the Euclidean vector norm of 𝑥𝑘, 

𝐸{𝑥𝑘} is the unconditional expectation of 𝑥𝑘, 𝑃 > 0 (𝑃 < 0) and 𝑃 ≥ 0 (𝑃 ≤ 0) are used to respectively denote a 

positive (negative) definite and positive (negative) semidefinite matrix 𝑃. The trace of the matrix 𝑇 is given by Tr[𝑇]. 
Respectively, 𝐼𝑛 and [0]𝑛×𝑚 represent an 𝑛-dimensional identity matrix and a n×m null matrix. The square root (square 

root transpose) of matrix 𝑁 is given by 𝑁1 2⁄  (𝑁𝑇 2⁄ ).  

This paper uses Schur’s complement frequently which is stated as follows; given matrices 𝐴, 𝐵, and 𝐶 of appropriate 

dimensions, the following statements are equivalent: 

 

i) [
𝐴 𝐵
𝐵T 𝐶

] > 0  

 

ii) 𝐴 − 𝐵𝐶−1𝐵𝑇 > 0, 𝐶 > 0  

 

iii) 𝐶 − 𝐵𝑇𝐴−1𝐵 > 0, 𝐴 > 0  

 

2. Main Result 
Let the control be given by 

 

 𝑢𝑘 = 𝐾𝑦𝑘 = 𝐾𝐶𝑥𝑘 
 

(7) 

where 𝐾 ∈ ℝ𝑞×𝑚 is a static gain which is to be determined. By substituting Eqn. (7) into Eqns. (1) and (6), the system 

equation and the upper bound on the covariance of the nonlinearity are given respectively as  

 

 𝑥𝑘+1 = (𝐴 + 𝐵𝐾𝐶)𝑥𝑘 + 𝑓(𝑥𝑘 , 𝑢𝑘, 𝑤𝑘) (8) 

   

 

 𝐸𝑥𝑘
{𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)𝑓T(𝑥𝑘, 𝑢𝑘 , 𝑤𝑘)} ≤ ∑𝑇𝑖𝑥𝑘

T(𝑀𝑖 + 𝐶𝑇𝐾𝑇𝑁𝑖𝐾𝐶)𝑥𝑘

𝑟

𝑖=1

 
 

(9) 
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 Before proceeding further, several definitions, and concepts, related to mean square and almost sure stochastic stability 

are reviewed.  

Definition 1: The system is said to be mean square stable if for any initial state, 𝑥0, sup𝑘 𝐸{‖𝑥𝑘‖
2} < ∞ holds for all 

for all 𝑘. 

Definition 2: The system is said to be mean square asymptotically stable if the system is mean square stable, and 

and 𝐸{‖𝑥𝑘‖
2} → 0 as 𝑘 → ∞ for any initial state, 𝑥0. 

Definition 3: The system is said to be almost surely stable if for any initial state, 𝑥0, ‖𝑥𝑘‖2 < ∞ holds for all 𝑘 with 

probability equal to 1. 

Definition 4: The system is said to be almost surely asymptotically stable if the system is almost surely stable and 

‖𝑥𝑘‖
2 → 0 as 𝑘 → ∞ with probability equal to 1 for any initial state, 𝑥0. 

Defining the Lyapunov function 𝑉𝑘(𝑥𝑘) = 𝑥𝑘
T𝑃𝑥𝑘 for some unknown 𝑃 = 𝑃T > 0, it follows that the system in Eqn. 

(8) will be asymptotically stable in the mean square and almost sure senses if the following condition is satisfied [3] 

 

 𝐸𝑥𝑘
{𝑉𝑘+1(𝑥𝑘+1) − 𝑉𝑘(𝑥𝑘)} = 𝐸𝑥𝑘

{𝑥𝑘+1
T 𝑃𝑥𝑘+1 − 𝑥𝑘

T𝑃𝑥𝑘} < 0 

 

(10) 

Substituting for 𝑥𝑘+1 and using the relation in Eqn. (4) allows us to express Eqn. (10) as 

 

 𝑥𝑘
T[(𝐴 + 𝐵𝐾𝐶)T𝑃(𝐴 + 𝐵𝐾𝐶) − 𝑃]𝑥𝑘 + 𝐸𝑥𝑘

{𝑓T(𝑥𝑘 , 𝑢𝑘, 𝑤𝑘) P 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)} < 0 (11) 

 

 Using the properties of the trace operator and substituting Eqn. (9) into the above inequality yields 

 

 
𝑥𝑘

T [(𝐴 + 𝐵𝐾𝐶)T𝑃(𝐴 + 𝐵𝐾𝐶) − 𝑃 + ∑Tr[𝑃𝑇𝑖](𝑀𝑖 + 𝐶𝑇𝐾𝑇𝑁𝑖𝐾𝐶)

𝑟

𝑖=1

] 𝑥𝑘 < 0 
 

(12) 

 

 which implies 

 

 
𝑃 >  (𝐴 + 𝐵𝐾𝐶)T𝑃(𝐴 + 𝐵𝐾𝐶)  + ∑Tr[𝑃𝑇𝑖](𝑀𝑖 + 𝐶𝑇𝐾𝑇𝑁𝑖𝐾𝐶)

𝑟

𝑖=1

 
 

(13) 

 

Thus, Eqn. (13) is a sufficient condition to ensure the mean square and almost sure asymptotic stability of the system.  

A computational problem arises when attempting to construct a Linear Matrix Inequality (LMI) from the above nonlinear 

matrix inequality due to the unknowns 𝑃 and 𝐾 appearing in a nonlinear form. This can be overcome by considering the 

boundedness and positive definiteness of 𝑃 as follows: 

 

 𝛾𝐼𝑛 ≥ 𝑃 > 0 (14) 

 

with 

 

 𝛾 ∈ ℝ, 𝛾 > 0 (15) 

 

Substituting the bounds for 𝑃 into Eqn. (13) to find a sufficient condition for the inequality to hold, we can write 

 

 
𝑃 >  𝛾(𝐴 + 𝐵𝐾𝐶)T(𝐴 + 𝐵𝐾𝐶) + 𝛾 ∑Tr[𝑇𝑖](𝑀𝑖 + 𝐶𝑇𝐾𝑇𝑁𝑖𝐾𝐶)

𝑟

𝑖=1

 
 

(16) 
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Dividing both sides by 𝛾 we obtain 

 

 
�̃� >  (𝐴 + 𝐵𝐾𝐶)T(𝐴 + 𝐵𝐾𝐶) + ∑Tr[𝑇𝑖](𝑀𝑖 + 𝐶𝑇𝐾𝑇𝑁𝑖𝐾𝐶)

𝑟

𝑖=1

 
 

(17) 

 

where 

 

 
�̃� =

1

𝛾
𝑃, �̃� > 0  

(18) 

 

the inequality follows 

 

 
�̃� − (𝐴 + 𝐵𝐾𝐶)T(𝐴 + 𝐵𝐾𝐶) − ∑Tr[𝑇𝑖](𝑀𝑖 + 𝐶𝑇𝐾𝑇𝑁𝑖𝐾𝐶)

𝑟

𝑖=1

> 0 
 

(19) 

 

Using Schur’s complement we can express the above matrix inequality as 

 

 

[
�̃� − ∑Tr[𝑇𝑖](𝑀𝑖 + 𝐶𝑇𝐾𝑇𝑁𝑖𝐾𝐶)

𝑟

𝑖=1

(𝐴 + 𝐵𝐾𝐶)T

𝐴 + 𝐵𝐾𝐶 𝐼𝑛

] > 0 

 

(20) 

 

Then, by using Schur’s complement on the 1,1 block element of the above inequality, the following LMI in �̃� and 𝐾 is 

obtained 

 

 

[
 
 
 
 
 
 
 
 

�̃� − ∑Tr[𝑇𝑖]𝑀𝑖

𝑟

𝑖=1

(𝐴 + 𝐵𝐾𝐶)T 𝐶𝑇𝐾𝑇 (∑Tr[𝑇𝑖]𝑁𝑖

𝑟

𝑖=1

)

𝑇
2

𝐴 + 𝐵𝐾𝐶   
 
 

𝐼𝑛 [0]𝑛×𝑚

(∑Tr[𝑇𝑖]𝑁𝑖

𝑟

𝑖=1

)

1
2

𝐾𝐶 [0]𝑚×𝑛 𝐼𝑚
]
 
 
 
 
 
 
 
 

> 0 

 

 

 

 

(21) 

 

In summary, by using the definitions of mean square and almost sure asymptotic stability we can conclude that the 

general nonlinear stochastic system given by Eqns. (8) and (9) can be stabilized, in the mean square and almost sure 

senses, using a static output feedback gain, 𝐾, which can be obtained by solving the LMI in Eqn. (21) with the restriction 

given in Eqn. (18). 

 

3. Simulation Study 
In this section, Chua’s circuit [8] is used to demonstrate controller design under the proposed method. Chua’s circuit 

is a well-known nonlinear circuit that elicits a chaotic response. The continuous-time equations governing Chua’s circuit 

can be given by the state space model shown below [8]. 
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[

�̇�1

�̇�2

�̇�3

] = [
−𝛼 𝛼 0
1 −1 1
0 −𝛽 −𝜇

] [

𝑥1

𝑥2

𝑥3

] + [
1
1
1
] 𝑢 + [

−𝛼𝑓(𝑥1)
0
0

] 
 

(22) 

 

 
𝑦 = [1 0 0] [

𝑥1

𝑥2

𝑥3

] 
(23) 

 

where 

 

 α = 10.0063, β = 16.5811, μ = 0.138083 (24) 

 

 are system parameters [9], and 

 

 𝑓(𝑥1) = 𝑏𝑥1 + 0.5(𝑎 − 𝑏)(|𝑥1 + 1| − |𝑥1 − 1|) (25) 

 

is a nonlinear function in 𝑥1 with 

 

 𝑎 = −1.39386, 𝑏 = −0.75590 (26) 

 

Equivalently, the above nonlinearity can be piecewise defined as 

 

 

𝑓(𝑥1) = {
𝑏𝑥1 + (𝑏 − 𝑎),

𝑎𝑥1,

𝑏𝑥1 + (𝑎 − 𝑏),

        𝑥1 ≤ −1

  |𝑥1| < 1
     𝑥1 ≥ 1

 

 

(27) 

 

It is noted that the form of the nonlinearity used in this example is known. The decision to use a nonlinearity with a 

known form in this example was deliberate and necessary for the purposes of simulation. In general, it is not a requirement 

that the form of the nonlinearity be known. Rather, it is only required that a bound on the second moment of the nonlinearity 

can be determined. 

The continuous-time system is discretized using forward Euler discretization with a time step of 𝑇𝑠 = 0.01𝑠 to yield the 

following discrete-time equations 

 

 

[

𝑥1,𝑘+1

𝑥2,𝑘+1

𝑥3,𝑘+1

] = [
0.8999 0.1001 0
0.0100 0.9900 0.0100

0 −0.1658 0.9986
] [

𝑥1,𝑘

𝑥2,𝑘

𝑥3,𝑘

] + [
0.01
0.01
0.01

] 𝑢𝑘 + [
−0.1001𝑓(𝑥1,𝑘)

0
0

] 
 

(28) 

 

In this formulation, the nonlinear function, 𝑓(𝑥1,𝑘), is treated as a stochastic nonlinearity. Therefore, the conditional 

covariance of the nonlinearity can be expressed as  

 

 

𝐸𝑥𝑘
{[

−0.1001𝑓(𝑥1,𝑘)

0
0

] [−0.1001𝑓(𝑥1,𝑘) 0 0]} = [
0.0100𝑓2(𝑥1,𝑘) 0 0

0 0 0
0 0 0

] 

 

(29) 

 

Since |𝑎| > |𝑏|, it follows from Eqn. (27) that 
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 sup
𝑥1

𝑓2(𝑥1,𝑘) = (𝑎𝑥1,𝑘)
2
 (30) 

 

which, from Eqn. (9), implies that the covariance of the nonlinearity can be bounded above by 

 

 
∑𝑇𝑖(𝑥𝑘

T𝑀𝑖𝑥𝑘 + 𝑢𝑘
T𝑁𝑖𝑢𝑘)

𝑟

𝑖=1

≤ [
1 0 0
0 0 0
0 0 0

] 𝑥𝑘
T [

0.0100𝑎2 0 0
0 0 0
0 0 0

] 𝑥𝑘 
 

(31) 

 

Thus, it follows that Eqn. (31) can be satisfied by allowing 

 

 
∑𝑇𝑖

𝑟

𝑖=1

= [
1 0 0
0 0 0
0 0 0

] , ∑𝑀𝑖

𝑟

𝑖=1

= [
0.0100𝑎2 0 0

0 0 0
0 0 0

] , 𝑁𝑖 = 0 ∀𝑖 
 

(32) 

 

Having determined an upper bound to the second moment of the nonlinearity, the LMI defined in Eqn. (21) can 

now be solved for �̃� and 𝐾, with the restriction given in Eqn (18). A solution to the LMIs which provides a stabilizing 

control is found to be 

 

 
�̃� =  [

2.2171 0 0
0 2.2074 0
0 0 2.2074

] 
(33) 

 

 𝐾 = −30.3312 (34) 

 

Thus, the control given by 𝑢𝑘 = 𝐾𝑦 will asymptotically stabilize the system in the mean square and almost sure 

senses. A simulation of the uncontrolled system is shown in Fig. 1. Figure 1(a) shows the evolution of the states of the 

system which appear to be periodic. Figure 1(b) shows the phase portrait of the system where the chaotic nature of the 

uncontrolled circuit is evident by observing that the trajectories never overlap. It is noted that the initial conditions for 

the simulation were chosen to be 𝑥0 = [1 1 1]𝑇. 

 

 
 

(a) Evolution of system states (b) Chaotic orbit of the system states 

Fig. 1: Simulation of uncontrolled Chua’s circuit in discrete-time 

 

A simulation of the controlled system is shown in Fig. 2 where it is shown that the output gain found in Eqn. (34) 

stabilizes the system. 
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Fig. 2: Simulation of controlled Chua’s circuit in discrete-time using output gain 

 

4. Conclusion 
In this work, a method to stabilize a class of discrete-time stochastically nonlinear systems using a static output feedback 

is proposed. Since the gain is applied directly to the output of the system, there is no need to have complete knowledge of 

the states of the system, nor is it necessary to design an observer to estimate the unknown states. Rather, only knowledge of 

a bound on the covariance of the nonlinear stochastic term is sufficient to determine a stabilizing control law for the system. 

A controller was designed to stabilize Chua’s circuit under the proposed methodology and simulation results showed that the 

controller indeed stabilized the system as desired.   
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