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Abstract - Non-affine systems with variant control directions are often hard to control when no information on the system is available. 
Hence, this article proposes a data-based adaptive control for this type of system that does not require any information on the system's 
mathematical model. This article uses a model estimator and a model-free adaptive controller based on Multi-input Fuzzy Rules Emulated 
Network. The estimator helps to obtain an approximation of the unknown and varying control direction. The estimated control direction 
helps the adaptive controller to have a fast response when the system's control direction changes, with no previous information on the 
system. We provide closed-loop stability proof according to a Uniformly Ultimately Bounded function of Lyapunov. As validation, we 
provide experimental results for a switching gain circuit, where the system's control direction undergoes an abrupt change. The controller 
could obtain a mean absolute percentage tracking error of 2.59% throughout the experiment. This proves the proposed controller's 
performance for systems with varying control directions.  
 
Keywords: Adaptive control; Non-affine systems; Data-based control; Fuzzy modelling; Variant control direction. 
 
 
1. Introduction 

Unlike affine systems, the output of non-affine systems has a nonlinear relationship regarding the control effort[1]. 
Wastewater treatment applications, permanent magnet linear motors, turbine systems, chemical reactions, and flight control 
systems are some examples of non-affine systems[2, 3, 4]. The nonlinear relationship of non-affine systems' output regarding 
their input makes it very difficult to obtain the mathematical model of the system. Hence, the most common approach to 
control this type of system is adaptive controllers. However, most of these approaches assume either a known or positive 
sign of the relationship between the system's output and its input[5, 6]. The sign of this relationship is often called the control 
direction of a system.  

The first adaptive control for systems with unknown control direction was proposed by Roger D. Nussbaum[7] in 1983. 
He proposed an adaptive gain to reflect the unknown control direction of the system. This gain has a slow adaptation and 
reflects the correct control direction of a system. We find countless applications of the Nussbaum gain such as nonlinear 
systems[8, 9], industrial applications [10], and systems with time-varying control gain without changing the sign [11]. To 
our knowledge, very few papers address the problem of systems whose control direction has sign changes[12]. In these 
articles, the control approach is based on fuzzy observers and controllers with the help of the Nussbaum gain. Their problem 
formulation is for nonlinear affine systems with simulation results and stability analysis.  

The following article proposes a data-driven adaptive controller for non-affine systems with varying control directions 
when the system mathematical model and its control direction are completely unknown and are time-variant. The controller 
is based on Multiple-input Fuzzy Rules Emulated Network (MiFREN), and relies on a system estimator Affine Equivalent 
Model[13] (AEM) to enhance the controller adaptation to the system's varying control direction. We present a closed-loop 
stability proof with the conclusion of a bounded tracking error according to Lyapunov. We also present experimental results 
with an electronic system of switching control direction, where the controller maintained a mean absolute percentage tracking 
error of 2.59% throughout the experiments. 

The next section describes the class of systems that will be addressed in this article. The third section describes the 
proposed control law, alongside the stability proofs and conditions for stability. The fourth section describes the experimental 
setup and presents the validation results. Finally, the last chapter summarizes this article's results and future works. 
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2. Problem statement 
For a non-affine, nonlinear, discrete-time, single input, single output system described as 
 

y(k + 1) = F�{y(k),⋯ , y�k − ny�, u(k),⋯ , u(k − nu)}�, (1) 
where 𝑦𝑦(𝑘𝑘 + 1) is the system's output, 𝑢𝑢(𝑘𝑘) the control law, and 𝐹𝐹({}) is a non-linear function dependent on 𝑛𝑛𝑦𝑦 and 𝑛𝑛𝑢𝑢, the 
unknown orders of the system output and control law, respectively. When non-affine systems, as (1), are Lipschitz continuous 
regarding the control input, have an affine representation as 
 

𝑦𝑦(𝑘𝑘 + 1) = 𝑓𝑓(ν{𝑘𝑘}) + 𝑔𝑔(ν{𝑘𝑘})𝑢𝑢(𝑘𝑘) + εℎ(ν{𝑘𝑘}), 
ν{𝑘𝑘} = �𝑦𝑦(𝑘𝑘),⋯ ,𝑦𝑦�𝑘𝑘 − 𝑛𝑛𝑦𝑦�,𝑢𝑢(𝑘𝑘 − 1),⋯ ,𝑢𝑢(𝑘𝑘 − 𝑛𝑛𝑢𝑢)�, (2) 

where 𝑓𝑓(ν{𝑘𝑘}) and 𝑔𝑔(ν{𝑘𝑘}) are unknown nonlinear functions, and εℎ(ν{𝑘𝑘}) 𝑖𝑖s the bounded residual error. This affine 
representation is estimated with AEM, proposed in [13] as 
  

𝑦𝑦�(𝑘𝑘 + 1) = 𝑓𝑓(𝑘𝑘) + 𝑔𝑔�(𝑘𝑘)𝑢𝑢(𝑘𝑘). (3) 
The control direction of a system represents the motion direction of the system under any control law. This direction 

can be represented by the sign of the system's output, regarding the control input[14]. On the non-affine system (1), the 
control direction is represented as sign{∂𝑦𝑦(𝑘𝑘 + 1) ∂𝑢𝑢(𝑘𝑘)⁄ }. From (2)-(3), this article proposes to use the estimation of the 
control direction in (1) as 

 

sign�
∂𝑦𝑦(𝑘𝑘 + 1)
∂𝑢𝑢(𝑘𝑘) � ≈ sign �

∂𝑦𝑦�(𝑘𝑘 + 1)
∂𝑢𝑢(𝑘𝑘) � = sign{𝑔𝑔�(𝑘𝑘)} (4) 

The proposed approximation will be used in the next section to improve the controller's adaptation to unknown and varying 
control directions. 
           
3. Control law 

In this section, we propose a model-free adaptive controller with MiFREN using AEM as an estimator of the system 
control direction. This modification aims to enhance the controller's adaptation to the known and varying control 
direction of the system. We propose a MiFREN model-free data-based adaptive controller as 

 
𝑢𝑢(𝑘𝑘) = φ𝑇𝑇(𝑘𝑘)β(𝑘𝑘), (5) 

where 𝑢𝑢(𝑘𝑘) is the control law, φ𝑇𝑇(𝑘𝑘) the multidimensional membership-function vector, and β(𝑘𝑘) the weight vector. The 
weight vector's actualization, according to the gradient descent method, is calculated as 
 

β(𝑘𝑘 + 1) = β(𝑘𝑘) − η �
∂𝐸𝐸(𝑘𝑘 + 1)
∂β(𝑘𝑘) �, (6) 

where η is the controllers learning rate, and 𝐸𝐸(𝑘𝑘 + 1) the cost function. The cost function is established as 
 

𝐸𝐸(𝑘𝑘 + 1) =
1
2
𝑒𝑒2(𝑘𝑘 + 1), (7) 

where 𝑒𝑒(𝑘𝑘 + 1) is the system tracking error defined as 
 

𝑒𝑒(𝑘𝑘 + 1) = 𝑟𝑟(𝑘𝑘 + 1) − 𝑦𝑦(𝑘𝑘 + 1), (8) 
with 𝑟𝑟(𝑘𝑘 + 1) as the desired trajectory. The partial derivative needed in (6) is obtained through the gradient descent method 

∂𝐸𝐸(𝑘𝑘 + 1)
∂β(𝑘𝑘) = �

∂𝐸𝐸(𝑘𝑘 + 1)
∂𝑒𝑒(𝑘𝑘 + 1)� �

∂𝑒𝑒(𝑘𝑘 + 1)
∂𝑦𝑦(𝑘𝑘 + 1)� �

∂𝑦𝑦(𝑘𝑘 + 1)
∂𝑢𝑢(𝑘𝑘) � �

∂𝑢𝑢(𝑘𝑘)
∂β(𝑘𝑘)�,  
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∂𝐸𝐸(𝑘𝑘 + 1)
∂β(𝑘𝑘) = [𝑒𝑒(𝑘𝑘 + 1)][−1] �

∂𝑦𝑦(𝑘𝑘 + 1)
∂𝑢𝑢(𝑘𝑘) � [φ𝑇𝑇(𝑘𝑘)], 

(9) 

 The term ∂𝐸𝐸(𝑘𝑘+1)
∂β(𝑘𝑘) , according to AEM[13] with the assumptions of section 2, is estimated as 

  
∂𝑦𝑦(𝑘𝑘 + 1)
∂𝑢𝑢(𝑘𝑘) ≈

∂�𝑓𝑓(𝑘𝑘) + 𝑔𝑔(𝑘𝑘)𝑢𝑢(𝑘𝑘) + εℎ(𝑘𝑘)�
∂𝑢𝑢(𝑘𝑘) ≈ 𝑔𝑔�(𝑘𝑘), (10) 

hence, the weight vector is actualized as 
β(𝑘𝑘 + 1) = β(𝑘𝑘) + η𝑒𝑒(𝑘𝑘 + 1)𝑔𝑔�(𝑘𝑘)φ(𝑘𝑘). (11) 

 
Theorem 1. A class of non-affine, discrete-time, unknown systems described in (1), with an affine representation (2), and 
estimated as (3) according to AEM, are controllable with the law (5), and its weight vector adapted as (11). The tracking 
error and weight vector are bounded according to Lyapunov UUB when the controller parameter meets the following 
condition: 

0 < 𝜂𝜂 <
1

𝑔𝑔�𝑚𝑚𝑚𝑚𝑚𝑚
2 𝜑𝜑2𝑚𝑚𝑚𝑚𝑚𝑚

≤
1

𝑔𝑔�2(𝑘𝑘)𝜑𝜑2(𝑘𝑘)− 𝛿𝛿𝑔𝑔 .  

Proof: To analyse the closed-loop tracking error convergence, a Lyapunov semi-definite positive function is proposed as 
 

𝐿𝐿(𝑘𝑘 + 1) = 𝜅𝜅𝑒𝑒𝑒𝑒2(𝑘𝑘 + 1) + 𝜅𝜅𝛽𝛽𝛽𝛽�𝑇𝑇(𝑘𝑘 + 1)𝛽𝛽�(𝑘𝑘 + 1), (12) 
where 𝜅𝜅𝑒𝑒and 𝜅𝜅𝛽𝛽 are definite positive constants. The differentiation of (12) is obtained as 
 

Δ𝐿𝐿(𝑘𝑘 + 1) = Δ𝐿𝐿𝑒𝑒(𝑘𝑘 + 1) + Δ𝐿𝐿𝛽𝛽(𝑘𝑘 + 1), (13) 
where 

Δ𝐿𝐿𝑒𝑒(𝑘𝑘 + 1) ≜ 𝜅𝜅𝑒𝑒𝑒𝑒2(𝑘𝑘 + 1) − 𝜅𝜅𝑒𝑒𝑒𝑒2(𝑘𝑘), (14) 
and 

Δ𝐿𝐿𝛽𝛽(𝑘𝑘 + 1) ≜ 𝜅𝜅𝛽𝛽𝛽𝛽�𝑇𝑇(𝑘𝑘 + 1)𝛽𝛽�(𝑘𝑘 + 1) − 𝜅𝜅𝛽𝛽𝛽𝛽�𝑇𝑇(𝑘𝑘)𝛽𝛽�(𝑘𝑘). (15) 
 If we begin the analysis of (14), we first require the closed-loop tracking error. To obtain the closed-loop tracking 
error, we use the affine representation (2) of the non-affine system (1), and substitute it into the tracking error (8) as 
 

𝑒𝑒(𝑘𝑘 + 1) = 𝑟𝑟(𝑘𝑘 + 1) − �𝑓𝑓(𝑘𝑘) + 𝑔𝑔(𝑘𝑘)𝑢𝑢(𝑘𝑘) + 𝜀𝜀ℎ(𝑘𝑘)�. (16) 
Assuming the existence of an ideal weight vector 𝛽𝛽∗, the vector actualization error is defined as 
 

𝜑𝜑(𝑘𝑘)𝛽𝛽�(𝑘𝑘) = 𝜑𝜑𝑇𝑇(𝑘𝑘)𝛽𝛽∗ − 𝜑𝜑𝑇𝑇(𝑘𝑘)𝛽𝛽(𝑘𝑘), (17) 
hence, the difference between the ideal control law and the 𝑘𝑘𝑡𝑡ℎ iteration is 
 

𝑢𝑢�(𝑘𝑘) = 𝜑𝜑(𝑘𝑘)𝛽𝛽�(𝑘𝑘) = 𝑢𝑢∗(𝑘𝑘) − 𝑢𝑢(𝑘𝑘). (18) 
In a similar sense, an ideal controller is expected to produce a zero error in the system as 𝑒𝑒∗(𝑘𝑘 + 1) = 0, hence 
 

𝑟𝑟(𝑘𝑘 + 1) = 𝑓𝑓(𝑘𝑘) + 𝑔𝑔(𝑘𝑘)𝑢𝑢∗(𝑘𝑘). (19) 
Therefore the closed-loop tracking error is rewritten as 
 

𝑒𝑒(𝑘𝑘 + 1) = 𝑔𝑔(𝑘𝑘)𝑢𝑢�(𝑘𝑘)− εℎ(𝑘𝑘). (20) 
 Substituting (20) in (14) 
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ΔLe(k + 1) = κe�g(k)u�(k) − εh(k)�2 − κee2(k), (21) 
where, considering that (𝑎𝑎 − 𝑏𝑏)2 < 2𝑎𝑎2 + 2𝑏𝑏2 and (18), (21) is rewritten as 
 

ΔLe(k + 1) < 2κe �g(k)𝛽𝛽�𝑇𝑇(k)φ(k)�
2

+ 2κeεh2(k) − κee2(k). (22) 

 On the other hand, the term (15) depends of the weight vector error β�(𝑘𝑘 + 1) = β∗ − β(𝑘𝑘 + 1) with the substitution 
of (11) becomes 
 

β�(k + 1) = β�(k) − ηe(k + 1)g�(k)φ(k). (23) 
With (23), (15) becomes 
 

Δ𝐿𝐿β(𝑘𝑘 + 1) = κβ �β�(𝑘𝑘)− η𝑒𝑒(𝑘𝑘 + 1)𝑔𝑔�(𝑘𝑘)φ(𝑘𝑘)�
2
− κβ𝛽𝛽�𝑇𝑇(𝑘𝑘)β�(𝑘𝑘), (24) 

is rearranged as 
 

ΔLβ(k + 1) = −κβη��g(k)𝛽𝛽�𝑇𝑇(k)φ(k)� − εh(k)�
2
�2

g�(k)
g(k) − η𝑔𝑔�2(k)φT(k)φ(k)� + 2κβη

g�(k)
g(k) εh

2(k). (25) 

Considering that (𝑎𝑎 − 𝑏𝑏)2 < 2𝑎𝑎2 + 2𝑏𝑏2, (25) is rearranged as 
 

ΔLβ(k + 1) < −2κβη �g(k)𝛽𝛽�𝑇𝑇(k)φ(k)�
2
�2

g�(k)
g(k) − ηg�2(k)φT(k)φ(k)�

+ 2κβη�4
g�(k)
g(k) − ηg�2(k)φT(k)φ(k)� εh2(k). 

(26) 

According to terms (22) and (26), the differentiation of the proposed Lyapunov function (13) is rewritten as 
 

ΔL(k + 1) < −2 �g(k)β�T(k)φ(k)�
2
�2κβ

g�(k)
g(k) η − κβη2𝑔𝑔�2(k)φT(k)φ(k)− κe�

+ 2κβη�4
g�(k)
g(k) − η𝑔𝑔�2(k)φT(k)φ(k)�εh2(k)− κee2(k) + 2κeεh2(k). 

(27) 

The term 2κβ
𝑔𝑔�(𝑘𝑘)
𝑔𝑔(𝑘𝑘)η − κβη2𝑔𝑔�2(𝑘𝑘)φ𝑇𝑇(𝑘𝑘)φ(𝑘𝑘)− κ𝑒𝑒 needs to be definite positive, hence separating some terms 

in the inequality 

2κβ
g�(k)
g(k) η − κβη2g�2(k)φT(k)φ(k) − κe > 0, (28) 

we obtain 
1

g2(k)φ2(k) −
κe
κβ

> �ηg�(k)|φ(k)|−
1

g(k)|φ(k)|�
2

. (29) 

If we set 1
𝑔𝑔2(𝑘𝑘)φ2(𝑘𝑘) −

κ𝑒𝑒
κβ

= δ2 where 0 < δ ≪ 1 it is observed that 

δ > η𝑔𝑔�(𝑘𝑘)|φ(𝑘𝑘)| −
1

𝑔𝑔(𝑘𝑘)|φ(𝑘𝑘)|, (30) 

and the learning rate boundaries for stability purposes are set as 
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0 < η <
1

𝑔𝑔�𝑚𝑚𝑚𝑚𝑚𝑚
2 φ𝑚𝑚𝑚𝑚𝑚𝑚

2 ≤
1

𝑔𝑔�2(𝑘𝑘)φ2(𝑘𝑘) −
δ

𝑔𝑔�(𝑘𝑘)φ2(𝑘𝑘), (31) 

where |𝑔𝑔�(𝑘𝑘)| ≤ 𝑔𝑔�𝑚𝑚𝑚𝑚𝑚𝑚 y |φ(𝑘𝑘)| ≤ |φ𝑚𝑚𝑚𝑚𝑚𝑚|, therefore the inequality in (28) is met. 
 With those assumptions, we analyse the differentiation of the Lyapunov function in (27) as a definite negative function 
according to the tracking error boundary 
 

−κ𝑒𝑒𝑒𝑒2(𝑘𝑘) + 2κβη�4
𝑔𝑔�(𝑘𝑘)
𝑔𝑔(𝑘𝑘) − η𝑔𝑔�2(𝑘𝑘)φ𝑇𝑇(𝑘𝑘)φ(𝑘𝑘)�εℎ2(𝑘𝑘) + 2κ𝑒𝑒εℎ2(𝑘𝑘) < 0, (32) 

with 
 

𝑒𝑒2(𝑘𝑘) > Ω𝑒𝑒 , (33) 

where Ω𝑒𝑒 ≜
2κβη�4

𝑔𝑔�(𝑘𝑘)
𝑔𝑔(𝑘𝑘)−η𝑔𝑔�

2(𝑘𝑘)φ𝑇𝑇(𝑘𝑘)φ(𝑘𝑘)�εℎ
2(𝑘𝑘)+2κ𝑒𝑒εℎ

2(𝑘𝑘)

κ𝑒𝑒
. 

If we analyse the differentiation of the Lyapunov function in (27) as definite negative according to the weight vector error 
 

2κ𝑒𝑒εℎ2(𝑘𝑘)− 2 �𝑔𝑔(𝑘𝑘)β�𝑇𝑇(𝑘𝑘)φ(𝑘𝑘)�
2
�2κβ

𝑔𝑔�(𝑘𝑘)
𝑔𝑔(𝑘𝑘)η − κβη2𝑔𝑔�2(k)φ𝑇𝑇(𝑘𝑘)φ(𝑘𝑘) − κ𝑒𝑒�

+ 2κβη�4
𝑔𝑔�(𝑘𝑘)
𝑔𝑔(𝑘𝑘)− η𝑔𝑔�2(𝑘𝑘)φ𝑇𝑇(𝑘𝑘)φ(𝑘𝑘)� εℎ2(𝑘𝑘) < 0,  

(34) 

with 
 

�β�(𝑘𝑘)�
2 > Ωβ, (35) 

as Ωβ ≜
κβη�4

𝑔𝑔�(𝑘𝑘)
𝑔𝑔(𝑘𝑘)−η𝑔𝑔�

2(𝑘𝑘)φ𝑇𝑇(𝑘𝑘)φ(𝑘𝑘)�εℎ
2(𝑘𝑘)+κ𝑒𝑒εℎ

2(𝑘𝑘)

𝑔𝑔2(𝑘𝑘)|φ(𝑘𝑘)|2 . 
 This concludes the stability proof with the limits (35) and (33), where the estimation error and weight vector of the 
estimator are defined as uniformly ultimately bounded (UUB) according to the proposed Lyapunov function (12). For more 
information on UUB functions according to Lyapunov, please refer to Lyapunov Extension Theorem 2.5.7, [15].          □ 
 
4. Results 

Experimental results are shown as validation of the proposed adaptive controller (5), the experiments are conducted on 
an electronic amplifier circuit with positive and negative switched gains. The circuit is further explained in figure 1 with the 
electronics diagram, and a picture of the experiment assembly is in figure 2. This electronic circuit was selected to show the 
controller adaptation to fast changes in the control direction, along with the estimation of the control direction. From figure 
1, the red square shows the amplifier with a positive gain around R1 𝑅𝑅0⁄  and the blue square shows a negative amplifier with 
a gain of around −1. The yellow square shows the control direction switch. The 𝑆𝑆𝑖𝑖(𝑘𝑘) signal changes the system output from 
the positive gain amplifier to the positive gain amplifier with a signal change (thanks to the negative amplifier). All circuit 
components were selected according to table 1 with a dual power supply ±12 [V] with the four-channel LM324N operational 
amplifiers. The switching device is a RAS-1210 relay. It is worth noticing that all components have a tolerance of ±15 \%. 

 
Table 1: Electrical diagram components value. 

 
Parameter 𝑅𝑅0 𝑅𝑅1 𝑅𝑅2 𝐶𝐶0 𝐿𝐿0 

Value 10 𝑘𝑘 𝛺𝛺 5.6 𝑘𝑘 𝛺𝛺 15 𝑘𝑘 𝛺𝛺 330 𝜇𝜇𝜇𝜇 330 𝑛𝑛𝑛𝑛 
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Fig. 1: Electrical diagram for experimentation.    Fig. 2: Experiment assembly. 

 
The switching signal 𝑆𝑆𝑖𝑖(𝑘𝑘) and control input 𝑉𝑉𝑖𝑖(𝑘𝑘) are generated via ports 𝐴𝐴𝑂𝑂1 and 𝐴𝐴𝑂𝑂2 of the NI-9263 analog 

output device. System output 𝑉𝑉𝑜𝑜(𝑘𝑘) is detected by the data input channel 𝐴𝐴𝐼𝐼1 of the NI-9221. The algorithm was designed 
in MATLAB 2021b, which generates communication with NI-9263 and NI-9221 devices. The computer running the 
algorithm has a 7 AMD Ryzen processor with 8 GB RAM. The average sampling time for the experiments is about 41 
milliseconds. 

 

   
Fig. 3: System response, —𝑟𝑟(𝑘𝑘), - -𝑦𝑦(𝑘𝑘), —𝑒𝑒(𝑘𝑘).    Figure 4: Estimator response, —𝑦𝑦(𝑘𝑘), - -𝑦𝑦�(𝑘𝑘), —𝑒̂𝑒(𝑘𝑘). 

 
The desired trajectory was chosen as 𝑟𝑟(𝑘𝑘) = 2 sin(2π𝑡𝑡(𝑘𝑘) 10⁄ ) + 6, and the control direction switching signal as 

𝑆𝑆𝑖𝑖(𝑘𝑘) = sqrt(2π𝑡𝑡(𝑘𝑘) 60⁄ ). The AEM estimation neural network has three inputs: the output of the system 𝑦𝑦(𝑘𝑘), the 
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control input of the system 𝑢𝑢(𝑘𝑘 − 1), and the estimation of the parameter associated with the control address 𝑔𝑔�(𝑘𝑘 − 1). Each 
entry has three membership functions, creating the multidimensional membership vector with twenty-seven neurons. The 
inputs for the controller's neural network are the tracking error 𝑒𝑒(𝑘𝑘), the desired path 𝑟𝑟(𝑘𝑘 + 1), and the estimation of the 
parameter associated with the control address 𝑔𝑔�(𝑘𝑘 − 1). The first two entries (𝑒𝑒(𝑘𝑘) and 𝑟𝑟(𝑘𝑘 + 1)) have seven membership 
functions each, and the third entry 𝑔𝑔�(𝑘𝑘 − 1) has three membership functions, creating a multidimensional membership vector 
with one hundred and forty-seven neurons. 

 

   
Fig. 5: Functions estimation (control direction),    Figure 6: Control law and weight vectors norm, 

—𝑓𝑓(𝑘𝑘), —𝑔𝑔�(𝑘𝑘), - -𝑆𝑆𝚤𝚤�(𝑘𝑘).     —𝑢𝑢(𝑘𝑘), —‖𝛽𝛽𝑐𝑐(𝑘𝑘)‖, - -�𝛽𝛽𝑓𝑓(𝑘𝑘)�,−  − �𝛽𝛽𝑔𝑔(𝑘𝑘)�. 
The experimental results are shown in figures 3-6. The tracking error is bounded at 0.5 V (Fig. 3), while the estimation error 
is bounded at [-0.4,0.3) V (Fig. 4). On the other hand, the mean absolute percentage tracking error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1 𝑛𝑛⁄ ∑ |𝑟𝑟(𝑘𝑘) − 𝑦𝑦(𝑘𝑘)| |𝑟𝑟(𝑘𝑘)|⁄𝑛𝑛

𝑘𝑘=1 ) is 2.59 % for the entire simulation, whereas the mean absolute percentage estimation error 
(𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸� = 1 𝑛𝑛⁄ ∑ |𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘)| |𝑦𝑦(𝑘𝑘)|⁄𝑛𝑛

𝑘𝑘=1 ) is of 3.58%. It is observed that the change of control direction produces a spike 
in the estimation and tracking error, this is to be expected since the controller is model-free and does not know the control 
direction of the system and the change times of the control direction. It is also observed that both errors (estimation and 
tracking) have a prompt recovery after the change of control direction. This adaptation to the change of control direction is 
also observed in the estimated functions (Fig. 5) where it is observed that the control direction of the system is correctly 
estimated by AEM (the sign of the function 𝑔𝑔�(𝑘𝑘)). It is also observed the adaptation in the control law (Fig. 6), rapidly 
changes the signal sent to the system according to its control direction. In figure 6, the adaptation of the estimator and 
controller weight vectors is also observed. 

 
5. Conclusion 

The proposed controller (5), with the estimation of the control direction based on AEM, addresses non-affine discrete-
time systems with varying control direction (1) when these systems are Lipschitz continuous regarding the control input. 
These types of systems have an affine representation (2) whose estimation (3) is used as an approximation of the system 
control direction. Hence, the data-based controller with no previous information of the mathematical model of the system or 
its control direction, is capable of a fast adaptation. The closed-loop system tracking error was probed bounded in the theorem 
1, according to a uniformly ultimately bounded function of Lyapunov, when the parameter η follows the theorem design. 
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The experimental results show a mean absolute percentage tracking error of 2.59 % for the entire simulation. The 
estimation of the control direction, represented by the sign on the estimated function 𝑔𝑔�(𝑘𝑘), is correct throughout the 
simulation and reflects fast adaptation when the amplifier gain is switched. The estimator adaptation is also reflected in 
the controller's fast recovery to the control direction switch. 
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