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Abstract – A state feedback PID controller is introduced where the gains are determined through the LMI methodology, which allows 

satisfaction of multiple performance criteria. Regional eigenvalue assignment with multiple regions is accomplished through time-domain 

design criteria such as rise time, percent overshoot, and settling time. The H2 criterion is also satisfied which adds optimality to the 

solution. Feedback gains are calculated off-line and all tuning is eliminated The theoretical results are verified through MATLAB 

simulations to confirm that the required criteria are met. 
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1. Introduction 
PID control is the most widely used technique in industrial applications [1], which is attributed to its robust performance 

and functional simplicity in many different systems. The control of systems within the large set of multiple input multiple 

output (MIMO) PID problems has been documented thoroughly with some methods developed that not only accomplish 

control of the system but do so robustly [2]. There are also methods that automate the tuning of PID controllers via solving 

iterative LMI [3]. While a MIMO PID controller with fully automated tuning via LMI has already been designed, the iterative 

nature adds significant computational complexity. In this paper a new LMI design method for MIMO PID controllers that is 

easier to implement in industrial situations is developed.  

Regional Eigenvalue Assignment (REA) allows for the combination of different time-domain criteria that relate to the 

regional location of a systems poles. REA has been used in many different applications from state and output feedback [4] 

and in combination with optimization conditions such as H2 [5] and H∞ [6]. Combining REA and H2 to find PID gains that 

hold the regional information while also meeting robust criteria metrics is the core idea of this work. Because of the problems 

that arise from using derivatives in a control system, a reduced order observer is constructed in order to estimate the derivative 

states needed for full state feedback. 

The solution provided in this work is a state estimate feedback PID controller with control gains found through the 

solutions of LMIs that could control system robustly while remaining practical for industrial solutions with PID controllers. 

The method can be applied for multivariable systems or even a linearized non-linear system defined at a set point. To estimate 

any unknown states, a reduced order observer is also designed. A reduced order observer is used as it often performs better 

than a full-order observer in a closed-loop control system as it does not redundantly estimate known state variables and 

requires less computations [7]. 

 

2. Problem Formulation 
For the following 2nd order continuous linear time invariant system 

 

𝑀𝑥̈ + 𝐷𝑥̇ + 𝑅𝑥 = 𝑢 (1) 

 

where x ∈ Rn is the state of the system and u ∈ Rm is the input to the system, a PID controller with proportional, integral, and 

derivative gains used as the control input. For PID control, an additional state variable, z, is introduced to account for the 

integral portion of the control. 
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𝑧 = ∫ 𝑥
𝑡

0

𝑑τ (2) 

The integral of the state, z, can be constructed easily from 𝑥 or 𝑥; 𝑥̇ is estimated through a reduced order observer. With the 

added integral term, the PID control input of the system is defined as, 

 

𝑢 = 𝐾𝑥 = 𝐾𝑝𝑥 + 𝐾𝑑𝑥̇ + 𝐾𝑖𝑧. (3) 

 

The system described by (1) is put into its state space equivalent. 

 

𝑥̈ = (−𝑀−1𝑅)𝑥 + (−𝑀−1𝐷)𝑥̇ + 𝑀−1𝑢 (4) 

 

By substituting the input from (3) into (4) the final expression is 

 

𝑥̈ = −𝑀−1(𝑅 + 𝐾𝑝)𝑥 − 𝑀−1(𝐷 + 𝐾𝑑)𝑥̇ + 𝑀−1𝐾𝑖𝑧. (5) 

 

The equation is represented in state space with the standard 𝑥̇ = Ax + Bu form. 

 

[
ż
ẋ
ẍ
] = [

0 I 0
0 0 I
0 −M−1R −M−1D

] [
z
x
ẋ
] + [

0
0

−M−1
] [−Ki Kp Kd] [

z
x
ẋ
] (6) 

 
2.1. Regional Eigenvalue Assignment for Performance 

To control the system to meet certain time domain specifications Regional Eigenvalue Assignment is used. To 

reduce the amount of tuning required for a PID controller the time domain specifications are related to their 2nd order 

transfer function equivalent to find the corresponding region in the complex plane [8]. The three regions used are each 

bounded; with one being a shifted stable region bounded by 𝛼 to bound the settling time; semicircle region bounded 

by 𝜔𝑛 to bound the natural frequency, and lastly a sector region bounded by 𝜃 to bound the damping ratio. The state 

matrix 𝐴 is stabilizable within the region bounded by 𝛼,𝜔𝑛 , and 𝜃, which corresponds to decay rate, natural frequency, 

and damping ratio respectively if there is a solution to three LMI simultaneously which are found in [9]. To stabilize the 

system, the three LMIs are solved for LMI variables P and W to find the gain matrix K.  

To add the additional constraints like H2, the LMI variable 𝑃 must be changed to 𝑄 where 𝑄 =  𝑃−1 as the LMI for 

H2 is in terms of Q. To solve multiple LMI simultaneously they must be written with the same LMI variable. Rederiving 

each individual LMI in terms of Q would be arduous especially for more complex regions and so a new subregion is 

more appropriate. The new inscribed subregion will carry over all the time domain characteristics of the larger region 

while remaining easier to modify.  

Fig. 1: Sub Region 𝑆𝑞.𝑟 

 

The region, shown in Fig 1 as the shaded circle, is the largest circle inscribed within the three regions defined whose 

radius is bounded by the natural frequency with the either decay rate or with the damping ratio; whichever bound is 
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smaller. The first value possible for the radius of the new circle region uses the damping ratio and is called r𝜁. This radius is 

defined by turning angle 𝜃 into 𝜁 where 𝜃 =  𝑐𝑜𝑠−1(𝜁). The radius of the largest circle would then be 

 

𝑟𝜁 = 
ω𝑛𝑠𝑖𝑛(𝜃)

1 + 𝑠𝑖𝑛(𝜃)
. (7) 

 

The other radius, 𝑟𝛼 is, bounded by the decay rate as is given by the following equation. 

 

𝑟𝛼 = 
ω𝑛  −  𝛼

2
 (8) 

 

Once both possible radius values are found the value of 𝑟 is chosen to be the smaller of the two radius values. 

 

𝑟 =  {
𝑟𝛼 ,      𝑖𝑓 𝑟𝜁  ≥  𝑟𝛼  

𝑟𝜁 ,      𝑖𝑓 𝑟𝛼  >  𝑟𝜁   
} (9) 

 

From here the center of the circle region 𝑞 is determined where 𝑞 =  ω𝑛 −  𝑟. To place the eigenvalues of the system within 

this region, a single LMI is solved for matrices 𝑃 and 𝑊 to determine the control gain 𝐾 where 𝐾 = 𝑊𝑃−1. The state 

feedback LMI for this region is derived in (10) and is very similar to the disk region LMI found in [9]. 

 

[
−𝑟𝑃 𝑞𝑃 + 𝐴𝑃 + 𝐵𝑊

𝑞𝑃 + 𝑃𝐴𝑇 + 𝑊𝑇𝐵𝑇 −𝑟𝑃
] < 0 (10) 

 
2.2. H2 Control with Regional Eigenvalue Assignment 

The control of a system to achieve desired transient performance is only one step to obtain required behavior. Robustness 

criteria are a way to further improve the system performance. The performance criteria implemented in this work is H2 

control, as it would add optimality to the control with regards to a performance output. To meet this criterion a system must 

satisfy the following inequality [10], 

 

∫ ||𝑍||
2

𝑡

0

𝑑τ ≤
1

𝛿
𝜆𝑚𝑎𝑥(𝑃)||𝑥(0)||

2
 (11) 

 

where the H2 gain, 𝛿, is a positive scalar and 𝑍 is the performance output. 

 

Z =  𝐶𝑍𝑥 + 𝐷𝑍𝑢 (12) 

 

By using the Lyapunov energy function, 

 

V =  𝑥𝑇𝑃𝑥 (13) 

 

the H2 criteria found in [11], is given as 

−V̇ − 𝛿𝑍𝑇𝑍 > 0. (14) 

 

Next, the definition for the performance output is included in (14), 

 

−(A + BK)𝑇𝑃 −  𝑃(𝐴 + 𝐵𝐾)  − 𝛿(𝐶𝑍 + 𝐷𝑍𝐾)𝑇(𝐶𝑍 + 𝐷𝑍𝐾)  >  0. (15) 

 

Then by pre and post multiplying by 𝑄, where 𝑄 = 𝑃−1, and simplifying (15) the following LMI results, 
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−QA𝑇  −  QK𝑇B𝑇  −  AP−1  −  BKQ − 𝛿Q(𝐶𝑍 + 𝐷𝑍𝐾)𝑇(𝐶𝑍 + 𝐷𝑍𝐾)Q > 0. (16) 

 

The Schur’s compliment lemma is used to separate the last term. 

 

[
 
 
 
 −𝑄A𝑇  −  QK𝑇B𝑇  −  AQ −  BKQ 

𝛿

2
(𝐶𝑍 + 𝐷𝑍𝐾)𝑄

𝛿

2
(𝐶𝑍 + 𝐷𝑍𝐾)𝑇𝑄 𝐼 ]

 
 
 
 

> 0 (17) 

 

From here an auxiliary variable 𝑊𝑞 = 𝐾𝑄 is used to make the inequality linear  

 

[
 
 
 
 −QA𝑇  −  𝑊𝑞

𝑇B𝑇  −  AQ −  BW𝑞

𝛿

2
(QC𝑍

𝑇 + W𝑞
𝑇D𝑍

𝑇)

𝛿

2
(𝐶𝑍𝑄 + 𝐷𝑍𝑊𝑞)

𝑇

𝐼 ]
 
 
 
 

> 0. (18) 

 

To combine H2 control with the previous regional eigenvalue assignment we need to combine the two LMIs of 

(10) and (18) into one LMI with the same variables P and W. The LMI to place eigenvalues within a circle is linear in 

terms of 𝑃 while the H2 LMI is in terms of 𝑄. To combine them we convert the circular region LMI variable to be 

solved for 𝑄. To do this we first take the inequality that assures stability within a disk [12]. 

 

(A + BK + qI)𝑇𝑃(A + BK + qI) − 𝑟2𝑃 > 0 (19) 

  

Next, pre and post multiply by 𝑄. 
 

Q(A + BK + qI)𝑇𝑃(A + BK + qI)Q − 𝑟2𝑄𝑃𝑄 > 0 (20) 

 

Then using Schur’s complement and substituting 𝑊𝑞 = 𝐾𝑄 results in 

 

[
−𝑟𝑄 𝑞𝑄 + 𝑄𝐴𝑇 + 𝑄𝑊𝑞

𝑇

qQ + AQ + BW𝑞 −𝑟𝑄
] > 0. (21) 

 

Lastly, combining both LMIs and solving for 𝑄 and 𝑊𝑞 through the LMI solver in MATLAB the control gain 𝐾 is solved 

where 𝐾 = 𝑊𝑞𝑄
−1. 

 

[
 
 
 
 
 
 

−𝑟𝑄 𝑞𝑄 + 𝑄𝐴𝑇 + 𝑄𝑊𝑞
𝑇

qQ + AQ + BW𝑞 −𝑟𝑄
0 0
0 0

0 0

0 0

−QA𝑇  −  W𝑞B −  AQ −  BW𝑞

𝛿

2
(𝑄𝐶𝑍 + 𝑊𝑞𝐷𝑍)

𝛿

2
(𝐶𝑍𝑄 + 𝐷𝑍𝑊𝑞)

𝑇

𝐼 ]
 
 
 
 
 
 

> 0 (22) 

 
 The final LMI found in (22) allows for multiple criteria to be met. The first set of criteria to be met are the regional 

eigenvalue assignment criteria in the upper left hand two by two submatrix. Using the gain will assign the eigenvalues within 
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the circle region defined by radius r and center q. The lower right hand two by two submatrix in (22) will assure H2 

performance is met with regards to a performance output. By solving the LMI and finding a positive definite matrix Q will 

assure that all criteria are met. This control method can be done offline because the state matrices, performance criteria, and 

performance output parameters are known. 

   
2.3. Reduced Order Observer 

State feedback requires that values for all state variables be available to use to control the system. In situations where some 

of the state variables are not available, observers are used to estimate the whole or part of the state. A full order observer 

estimates all state variables while a reduced order observer (ROO) estimates only the unmeasured state variables. The 

reduced order observer often performs better than a full-order observer in a closed-loop control system as it does not 

redundantly estimate known state variables and requires fewer computations. The equation for a Luenburger observer of a 

closed loop system is shown next. 

 

ẋ̂  =  Ax̂ + Bu + L(y − Cx) (23) 

 

To design a ROO, the known and unknown state variables are partitioned in the following way, 

 

[
𝑥̇1

𝑥̇2
] = [

𝐴11 𝐴12

𝐴21 𝐴22
] [

𝑥1

𝑥2
] + [

𝐵1

𝐵2
] u (24) 

 

where 𝑥1  ∈  𝑅𝑛1 is measurable, 𝑥2  ∈  𝑅𝑛2 is estimated, and 𝑛1 + 𝑛2 is the order of the system. If the system is not originally 

in this form, then a state transformation can be used to separate the measured and immeasurable states. Next the measured 

state equation is written, and it’s assumed that 𝑥̇1 is available. This assumption is not necessary and will be lifted later. 

 

ẋ1  =  A11x1 + A12x2  + B1u (25) 

 
Equation (25) allows for the construction of an observer that estimates 𝑥2 using (16) and after the equation is factored and 

like terms are collected the equation becomes 

 

ẋ̂2  =  (A22 − 𝐿A22)x̂2 + (A21 − LA11)x1  + (𝐵2 − L𝐵1)u +  L𝑥̇1 . (26) 

 

To eliminate 𝑥̇1an auxiliary variable is defined,  

 

w ≜  x2 − Lx1  (27) 

 

and substituting the auxiliary variables estimate ŵ  =  x̂2 − Lx1  into (26) results in 

 

𝑤̇̂ =  ẋ̂2 − Lẋ1  =  (A22 − 𝐿A12)ŵ + (A22L − LA12𝐿 + A21 − LA11)x1  + (𝐵2 − L𝐵1)u. (28) 

 
Finally, the convergence of the observer is determined by the eigenvalues of 𝐴22  −  𝐿𝐴12 where 𝐿 is the observer gain. To 

use the estimated state variables, the observer must converge much quicker than the system converges. Because the designer 

picks the ideal eigenvalues of the observer, the observer gain L is found to meet the ideal case through eigenvalue placement. 

The conversion of the estimation of 𝑤̂ into 𝑥̂2 is trivial. In our application, 𝑥 is assumed to be available and 𝑥̇ is estimated 

to avoid differentiation. So, the ROO is set up with the following variables. 

 

𝑥̂2 = 𝑤̂ + 𝐿𝑥1 (29) 

 

𝐴11 = [
0 𝐼
0 0

] ,      𝐴12 = [
0
𝐼
] ,      𝐴21 = [0 −M−1𝑅],      𝐴22 = −M−1𝐷,      𝐵1 = [

0
0
] ,      𝐵1 = [

0
0
] (30) 
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3. Simulations and Results 
A mass connected to a rigid body by a spring and damper is commonly used as a standard test system for control designs. 

The differential equations of motion come from Newton's second law of motion. To test the proposed design method a 

commonly used standard test system, shown in Fig. 2, is used for simulation studies. 

Fig. 2: Double Mass Spring Damper System 
 

The mechanical system has two degrees of freedom. The two masses, 𝑚1 and 𝑚2, are connected by one spring and 

damper 𝑟2 and 𝑑2 respectivly while mass 𝑚1 is connected to a rigid frame by one spring and damper 𝑟1 and 𝑑1. The 

external forces applied to the system are 𝐹1(𝑡) and 𝐹2(𝑡). For this system, the state space equations take the following 

form: 

 

ẋ(t) = AX(t) + Bu(t) (31) 

 

y(t) = CX(t) + Du(t) (32) 

 

where 𝑥(𝑡) are the states and 𝑢(𝑡) is the input to the system. The state matrix is defined as follows where 𝑥 is the relative 

position of the two masses and 𝑥̇ is the velocity of each mass. 

 

X =  

[
 
 
 
 
 
𝑧1

𝑧2
𝑥1
𝑥2

𝑥̇1

𝑥̇2]
 
 
 
 
 

, A =  

[
 
 
 
 
 
 
 
0 0
0 0
0 0
0 0

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

0 0

0 0

−
𝑟1 + 𝑟2

𝑚1

𝑟1
𝑚1

−
𝑑1 + 𝑑2

𝑚1

𝑑2

𝑚1

𝑟2
𝑚2

−
𝑟2
𝑚2

𝑑2

𝑚2
−

𝑑2

𝑚2 ]
 
 
 
 
 
 
 

 (33) 

 

B =  

[
 
 
 
 
 
 

0 0
0 0
0
0
1

𝑚1

0

0
0
0
1

𝑚2]
 
 
 
 
 
 

, C =  [
0 0 1 0 0 0
0 0 0 1 0 0

] , D =  [
0 0
0 0

] (34) 

 

System parameters used for simulation are given in Table 1.  
 

Table 1: Parameters for double mass spring damper system simulations 

 
  
 
 
 
 

Parameter List 

Mass Spring Damper 

(kg) (N/m) (N*s/m) 

m1 m2 r1 r2 d1 d2 

70 140 500 250 10 50 
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3.1. PID Control with Regional Eigenvalue Assignment 

 For this system the performance criteria goals of the systems closed loop response are defined to have a 1-meter steady 

state value of displacement, settling time under 1 second, rise time under 0.5 second, and a percent overshoot of under 10%. 

The following parameters are used. Damping ratio 𝜁 = 0.59, natural frequency 𝜔n= 6.8, and decay rate 𝛼 = 4.2 which are 

used as bounds to define the region used in the LMI. The largest circle that is inscribed within the region is found through 

Eq. (7-9). The radius found using natural frequency and damping ratio results in 𝑟𝜁 = 3.0. The other radius bounded by the 

natural frequency and decay rate results in a radius of r𝛼 = 1.5. The new region is the circle with the smaller of the two radii 

and the center of the circle is defined as 𝑞 where 𝑞 =  𝜔n –  𝑟 = −5.3; which results in a new circular region that has a center 

at 𝑞 and a radius of r𝛼.  

 Next, the LMI found in (10) is solved to find a control gain matrix K which is used as PID gains in feedback with the 

system to obtain the step response of the system. To ensure the reduced order observer is estimating efficiently the derivative 

state is plotted alongside the estimate, where the estimate should converge quickly to the actual value. The plots of each are 

shown in Fig. 3 alongside the Simulink diagram showing the implementation of the controller. 

Fig. 3: Simulink implementation with simulated and estimated derivative states 

 

By using these gains the rise time and settling time are met, however, percent overshoot is over the acceptable range. 

By increasing the magnitude of the derivative gains by 10% the final PID gains are given in (35). The step response is shown 

in Fig 4 together with the open loop step response. For the controlled system, the steady state error, response time, and the 

percent overshoot met specification.  
 

K𝑃  =  − [
8618 0

0 17235
] , 𝐾𝑖  =  − [

4452 250
250 10153

] , 𝐾𝑑  =  − [
786 50
50 2014

] (35) 

Fig 4: Step response of open loop and controlled system 
 

The time domain performance criteria of the controlled system are found in Table 2. 
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Table 2: Step Response Performance Criteria of Controller System 

𝑥1 𝑥2 

𝑇𝑠 𝑇𝑟 𝑃𝑂 𝑇𝑠 𝑇𝑟 𝑃𝑂 

0.19 s 0.11 s  0%  0.75 s 0.07 s 9% 

 
3.2. H2 Control with Regional Eigenvalue Assignment 

To add optimality to the regional eigenvalue assignment control, another constraint, the H2 control criterion, is 

added. The LMI in (22) is solved to find control gains that when applied to the system will satisfy both H2 and REA 

requirements. This control technique will use the same feedback input and the performance output variables 𝐶𝑍 and 𝐷𝑍 

are defined as the following. 

C𝑧  =  0.1 ∗ 𝐼6, D𝑧  =  

[
 
 
 
 
 
0.1 0.1
0.1 0.1
0.1
0.1
0.1
01

0.1
0.1
0.1
0.1]

 
 
 
 
 

 (36) 

 
Using the LMI solver in MATLAB, the unknown matrices 𝑄 and 𝑊𝑞 are found which lead to the following PID gains. 

  

K𝑃  =  [
10494 50804

−12558 −50177
] , 𝐾𝑖  =  [

7067 31302
−7952 −31091

] , 𝐾𝑑  =  [
852 4516

−1165 −5136
] (37) 

 

To meet H2 control the optimal gain 1/𝛿 is minimized until there are no feasible solutions. For this system the 

optimal gain is 1/𝛿 = 0.00045. The eigenvalues of the control system are found to lie within the region and the 

performance output is found to satisfy the H2 inequality found in (11). Simulation of the resulting step response of the 

system is shown in Fig. 6. The controlled system holds the H2 performance criteria and still meets most of the time 

domain criteria defined. The new control method meets rise and settling times however it does not meet the percent 

overshoot only with regards to the second mass. The addition of the H2 control criteria has added optimality to the 

control while keeping most of the time domain criteria designed for using REA. 

Fig. 5: Step response of the combination H2 REA controller 

4. Conclusion 
The methodology developed in this work provides the ability to satisfy multiple criteria simultaneously using REA 

through LMIs. Solution of the LMIs is all done offline and provides a set of static PID gains to be used which requires 

a limited amount of additional tuning. The system simulated had two inputs and two outputs resulting in 12 gains to be 

tuned. The PID state feedback control resulted in eliminating the tuning. The controller gains used notably affected the 

performance criteria in different ways. Settling time and rise time were easier to satisfy when compared to percent 

overshoot. For the H2 case similar results were observed however choosing the performance output differently or 

selecting tighter constraints could result in better performance. Differentiation of the state is also avoided using an ROO. 
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Further work in this area should include additional multivariable systems. This method can be easily applied to a 

linearized nonlinear electromechanical systems such as robot manipulators to show the usefulness technique. Taking this 

result into discrete time could also be useful and would require differences in the regions that correspond to the performance 

criteria. Lastly, the addition of even more performance criteria such as H∞ and passivity conditions could accommodate 

system or measurement noise.  
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