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Abstract - In this paper the mathematical model of an electric vehicle load area is provided, where a networked set of charging stations 

collaborate to converge in real time to a fair solution of the underlying problem of power load control, relying on a distributed algorithm 

which is proved to converge to a Wardrop equilibrium. Numerical simulations of a realistic network scenarios based on the Open Charge 

Point Protocol architecture are reported to show the effectiveness of the proposed approach.  
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1. Introduction 
The ongoing climate crisis, driven primarily by anthropogenic greenhouse gas (GHG) emissions, has necessitated an 

urgent and systemic transition toward sustainable energy and transportation systems. Among the primary sources of GHG 

emissions, the transport sector represents approximately 25% of total CO₂ emissions in the European Union (EU) [1]. In 
response to these challenges, the EU has established ambitious policies to mitigate emissions and promote the 

decarbonization of road transportation: one of the most pivotal measures introduced by the EU is the ban on the sale of new 

non-electric vehicles by 2035 [2]. This challenging objective requires the widespread deployment of Electric Vehicle Supply 

Equipment (EVSE) and the development of smart grid systems to accommodate the increasing demand for electric power. 
The use of standardized, international, technological solutions involving ICT is a mandatory step of this transition [3]. The 

Open Charge Point Protocol (OCPP) is an open-source communication standard widely adopted in the electric vehicle (EV) 

charging infrastructure. It facilitates interoperability between EVSE and Charging Station Management Systems (CSMS), 
promoting vendor-agnostic integration and scalability [4]. Developed and maintained by the Open Charge Alliance, the 

protocol is crucial for ensuring seamless communication in modern EV charging ecosystems. The latest versions of OCPP 

(v2.0.1 released in 2020 and v2.1 that will be released in Q1 2025) introduces significant advancements in security features, 
addressing critical vulnerabilities that have been identified in earlier versions [5]. Research highlights the necessity of 

implementing robust security measures within OCPP to protect against potential threats that could destabilize both the 

charging infrastructure and the electric grid [6]. In addition to its technical advantages, OCPP plays a vital role in the broader 

context of EV roaming, which allows users to access charging stations across different networks with minimal hassle [7]. 
The protocol's adaptability to various operational contexts, including off-grid charging solutions, further highlights its 

versatility and importance in the evolving landscape of electric mobility [8]. As a matter of facts, the OCPP ability to 

standardize communication, enhance security, and facilitate interoperability among various stakeholders makes it a 
foundational element in the development of a robust and efficient EV charging infrastructures. 

In the last decade a solid literature has been produced dealing with the problem of EV Power Load Control focusing 

mainly on solutions applying for peak load shifting, demand response, vehicle-to-grid (V2G), energy storage and smart 

charging ([9],[13]), while optimizing grid operations and guaranteeing grid stability [10] and economic benefits to EV owners 
[11]. These approaches rely on a centralized problem formulation an provide solutions based on machine learning 

(Reinforcement Learning [12]) or on optimization (mixed-integer linear programming [14], [15], [16]). In this paper, a 

distributed, dynamic, non-cooperative EV load control algorithm is formulated and developed relying on mean-field game 
theory. Specifically, the presented algorithm exploits the architectural topology offered by the OCPP v2.0.1 with the 

introduction of a networked element: the Local Controller (LC) [17] that allows to control locally multiple EVSEs, each 

hosted in a Charging Station, belonging to the same load area. Indeed, while in OCPP v1.6 (and previous versions) each 
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Charge Point (CP) was supposed to be centrally controlled by a unique Central System (applying for a centralized power 

load control), with the new versions of the protocol (v2.0.1 and v2.1) the LC can be still controlled centrally by the same 
Charging Station Management System, but can also autonomously interoperate with other LCs to coordinate the Charging 

Stations and related EVSEs under their control within the same load area. Thus, each EVSE acts as an agent of a distributed 

control system aiming at fairly share the electric energy source of the load area (e.g. a mix of grid, batteries, photovoltaic 
systems, etc.).  

 

Fig. 1: (a) in OCPP v1.6, each Charge Point (CP) of a load area is directly connected to a Central System; (b) OCPP v.20.1 

introduces new architectural elements: the Local Controller (LC) and the Electric Vehicle Supply Equipment (EVSE) extending the 

networking capabilities of load area; (c) in OCPP v2.0.1, the EVSEs are hosted in the Charging Stations of a load area and can be 

networked through the Local Controllers 

Having in mind the architectural paradigm introduced and standardized by OCPP v2.0.1, it is possible to formulate the 

distributed EV power load control problem where each EVSE acts as an agent whose decision is to define, time by time, how 
much power to deliver to the connected charging EV while not overcoming the total power capacity offered by the load area. 

Considering that the total available power is a scarce and precious resource, the more power an EVSE requires the more it 

worths.  So, the algorithm should be such that the agents’ decisions must converge to an equilibrium value (known in mean-
field game theory as Wardrop equilibrium [18],[22]), where the values of the cost functions of an EVSE are equalized. 

The paper is organized as follows. Section 2 presents the distributed EV power load control problem formulation as a 

networked dynamical system, outlines the properties of the EVSEs’ cost functions and defines the system dynamics. Section 

3 demonstrates the system dynamics stability reporting the proof that the system converges to a Wardrop equilibrium. Section 
4 presents an analysis of the numerical results, highlighting the performance of the proposed solution across several realistic 

scenarios and the convergence speed of the algorithm. Section 5 reports concluding remarks and future works. 
 
2. Problem formulation 

Consider a load area that serves a set 𝐸 of networked EVSEs with a total maximum power of Π ∈ ℝ+ kilowatts (kW).  

At a given time, 𝑡 ∈ ℝ≥0, each networked EVSE 𝑒 ∈ 𝐸 requires a power load 𝑝𝑒(𝑡) ∈ ℝ≥0. The flow vector 𝒑(𝑡) =
[𝑝𝑒(𝑡)]𝑒∈𝐸

𝑇  represents the power load required by each networked EVSE, at a given time 𝑡 ∈ ℝ≥0. 𝒑𝟎 = 𝒑(0) is the initial 

flow vector. From this moment on, we will always assume that the EVSE are requesting more power than the load area can 

provide, so that the role of each EVSE is to manage the requested power to not overcome the total maximum power Π offered 

by the load area. At a given time 𝑡 ∈ ℝ≥0, a flow vector is feasible if the sum of the power loads required by all the EVSEs 

is equal to the total available power, Π: 

∑𝑝𝑒(𝑡)

𝑒∈𝐸

= Π,∀𝑡 ≥ 0. 1) 

Therefore: 
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∑𝑝𝑒(𝑡)

𝑒∈𝐸

= ∑𝑝𝑒(0)

𝑒∈𝐸

= Π, ∀𝑡 ∈ ℝ≥0. 2) 

 

Since each EVSE is using a scarce resource (the load area power) the requested power 𝑝𝑒(𝑡) is weighted with a non-

negative cost function 𝑐𝑒. Hence, each EVSE 𝑒 ∈ 𝐸 has a cost function 𝑐𝑒(𝑝):ℝ≥0 → ℝ≥0 that maps the power load 𝑝𝑒(𝑡) 

to the cost that the EVSE incurs by requesting to the load area an amount of power load equal to 𝑝𝑒(𝑡). 
 

Assumption∆.  Let assume a cost function 𝑐𝑒(𝑝) to be characterized by the following properties ∀𝑒 ∈ 𝐸: 

1. 𝑐𝑒(0) = 0; 
2. 𝑐𝑒(𝑝) is non-decreasing. 

The above properties are intuitive and reasonable, since the first assumption states that a non-charging EVSE (𝑝𝑒(𝑡) =
0) does not have any cost. The second assumption states that the more an EVSE request for power, the more it should cost. 
In this paper, without loss of generality, a cost function exhibiting a twofold structure (piecewise-linear and divergent-

exponential) has been chosen: 

𝑐𝑒(𝑝) = ∑𝜆𝑒,𝑖(𝑝)

𝑇

𝑖=1

+ 𝜀𝑒(𝑝) 3) 

Where: 

0 = 𝜏𝑒,0 < 𝜏𝑒,1 < ⋯ < 𝜏𝑒,𝑇 = 𝜏𝑒
𝑀𝑎𝑥 4) 

𝜆𝑒,𝑖(𝑝) = {
𝛾𝑒,𝑖 + 𝑠𝑒,𝑖(𝑝 − 𝜏𝑒,𝑖−1), 𝑖𝑓 𝜏𝑒,𝑖−1 < 𝑝 ≤ 𝜏𝑒,𝑖

0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 5) 

𝛾𝑒,𝑖 = {
0,                                                            𝑖𝑓 𝑖 = 0

𝛾𝑒,𝑖−1 + (𝜏𝑒,𝑖 − 𝜏𝑒,𝑖−1) ⋅ 𝑠𝑒,𝑖,    𝑖𝑓 0 < 𝑖 ≤ 𝑇
 6) 

𝜀𝑒(𝑝) = {
0,                                     𝑖𝑓 0 ≤ 𝑝 ≤ 𝜏𝑒

𝑀𝑎𝑥

𝛾𝑒,𝑇 + 𝑒(𝑝−𝜏𝑒
𝑀𝑎𝑥) − 1, 𝑖𝑓 𝑝 > 𝜏𝑒

𝑀𝑎𝑥
 7) 

Each EVSE 𝑒 ∈ 𝐸 is characterized by a maximum value of transferrable power to an EV (𝜏𝑒
𝑀𝑎𝑥) so, ranging from 0 to 

𝜏𝑒
𝑀𝑎𝑥, it is reasonable that the cost increases linearly (𝜆𝑒,𝑖(𝑝)) with a slope (𝑠𝑒,𝑖) that increases when power achieves a given 

threshold (𝜏𝑒,𝑖). If the power is higher than 𝜏𝑒
𝑀𝑎𝑥 the cost function increases exponentially (𝜀𝑒(𝑝)) since the EVSE is 

overcoming its normal operating conditions. The slopes 𝑠𝑒,𝑖 can be the energy prices (per kWh) and the power values of  𝜏𝑒,𝑖 

can be the thresholds to have a price that progressively increases (the more power you require, the more you pay the energy). 

It is worth to note that the cost functions in (3) satisfy Assumption ∆. 
Since the EVSE are networked, they can exchange the required power with each other to jointly minimize their cost 

functions. As not all the EVSEs are neighbours, then, due to network constraints, there obviously could not exist a direct 

transmission link 〈𝑒, 𝑔〉 between a couple of EVSEs 𝑒, 𝑔 ∈ 𝐸. However, in our scenario, it is reasonable to assume that each 

couple of networked EVSEs 𝑒, 𝑔 ∈ 𝐸 is connected: e.g., even though they are not neighbours, there exist 𝑘 ≥ 1 EVSEs 𝑓𝑗 ∈

𝐸, 𝑗 ∈ {1,2, … , 𝑘} such that the k+1 couples of EVSEs ⟨𝑒, 𝑓1⟩, ⟨𝑓1, 𝑓2⟩, …, ⟨𝑓𝑘 , 𝑔⟩ are all neighbours. The EVSEs sequence 
⟨𝑒, 𝑓1, … , 𝑓𝑘 , 𝑔⟩ is a path connecting the EVSE 𝑒 to the EVSE 𝑔. We can thus introduce a graph adjacency matrix 𝐴 =
{𝛼𝑒,𝑓}𝑒,𝑓∈𝐸

 where the generic element 𝛼𝑒,𝑓  represents the maximum rate at which EVSE 𝑓 can exchange a unitary amount 

of power with EVSE 𝑒. In the context of the mathematical framework introduced so far, the networked EVESs’ primary 

objective is to cooperate with the aim of minimizing the cost associated with the EV charging. It implies that dynamically 

each EVSE 𝑒 ∈ 𝐸 transfers an amount of power to another EVSE 𝑓 ∈ 𝐸 in the load area if 𝑐𝑒(𝑝𝑒(𝑡)) > 𝑐𝑓(𝑝𝑓(𝑡)). As a 

result, the differential equation describing the evolution of the power required by an EVSE 𝑒 ∈ 𝐸 is: 
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�̇�𝑒(𝑡) = ∑ (𝛼𝑓,𝑒𝜌𝑓,𝑒(𝑡) − 𝛼𝑒,𝑓𝜌𝑒,𝑓(𝑡)) , ∀𝑒 ∈ 𝐸,

𝑓∈𝐸

 8) 

where 𝜌𝑒,𝑓(𝑡) is the migration ratio between two networked EVSEs 𝑒, 𝑓 ∈ 𝐸 and is defined as: 

𝜌𝑒,𝑓(𝑡) = 𝑝𝑒(𝑡) ⋅ 𝜇𝑒,𝑓(𝒙) = 𝑝𝑒(𝑡) ⋅ 𝜇 (𝑐𝑒(𝑝𝑒), 𝑐𝑓(𝑝𝑓)), 9) 

being 𝜇(𝑐𝑒 , 𝑐𝑓): ℝ≥0 × ℝ≥0  →  [0,1] the migration policy function, needed to determine the amount of power assigned to 

the EVSE 𝑒 that is migrated to the EVSE 𝑓. A reasonable migration policy is the linear migration policy, where the amount 

of power to be exchanged is proportional to the difference of the costs of the given couple of EVSESs and weighted by the 

maximum difference in the load area: 

𝜇(𝑐𝑒, 𝑐𝑓) = max {0,
𝑐𝑒 − 𝑐𝑓
∆𝑐𝑚𝑎𝑥

} , 10) 

where ∆𝑐𝑚𝑎𝑥 = max
𝑒∈𝑉

𝑐𝑒 − min
𝑓∈𝑉

𝑐𝑓 . The set of migration policy functions, denoted with M, contains all the migration 

policy functions associated to each couple of EVSEs 𝑒, 𝑓 ∈ 𝐸. It is easy to demonstrate that if the system starts 

from a feasible flow vector 𝒑𝟎, then it evolves always in feasible flow vectors. Indeed, the system dynamics defined 

in (8) has the following property: 

∑�̇�𝑒(𝑡)

𝑒∈𝐸

= ∑∑(𝛼𝑓,𝑒𝜌𝑓,𝑒 − 𝛼𝑒,𝑓𝜌𝑒,𝑓)

𝑓∈𝐸𝑒∈𝐸

= 

∑ ∑ 𝛼𝑓,𝑒𝜌𝑓,𝑒

𝑓∈𝐸𝑒∈𝐸

− ∑ ∑𝛼𝑒,𝑓𝜌𝑒,𝑓

𝑓∈𝐸𝑒∈𝐸

= 0, 

11) 

therefore, 

∑𝑝𝑒(𝑡)

𝑒∈𝐸

= ∑𝑝𝑒(0)

𝑒∈𝐸

= Π,∀𝑡 ≥ 0 

 

12) 

Assuming to starting from a feasible flow vector, it is important to demonstrate the stability of the system dynamics 

defined in (8), indeed if the system convergences towards a stable flow vector, it means that no fraction of the EVEs’ power 

can decrease the overall cost by moving unilaterally from one EVSE to another. It is intuitive that being in a stable flow 
vector state implies that all EVSEs are in the minimal cost condition: this condition can be defined as Wardrop equilibrium.  

 

Definition 1 (Wardrop Equilibrium). A feasible flow vector 𝒑 = [𝑝𝑒(𝑡)]𝑒∈𝐸
𝑇  is at a Wardrop equilibrium if, for every 

couple of networked EVSEs 𝑒, 𝑓 ∈ 𝐸, with 𝑝𝑒 > 0, 𝑐𝑒(𝑝𝑒) ≤ 𝑐𝑓(𝑝𝑓)  holds.  

 

From an engineering point of view, it is not necessary to mathematically achieve a Wardrop equilibrium to stop the 

system dynamics: the evolution of the system dynamics can terminate as soon as the maximum variation ∆𝑐𝑚𝑎𝑥(𝑡) between 

the costs associated with any couple of networked EVESs goes below an acceptable tolerance ∆𝐶𝑀𝐴𝑋 . In particular, the 

convergence time, denoted with 𝑡∗, is the first time instant when the following inequality is met: 

 

∆𝑐𝑚𝑎𝑥(𝑡) = max
𝑒∈𝐸

𝑐𝑒(𝑝𝑒(𝑡)) − min
𝑓∈𝐸

𝑐𝑓 (𝑝𝑓(𝑡)) ≤ ∆𝐶𝑀𝐴𝑋 13) 

 

Definition 2 (Distributed Electric Vehicle Power Load Control). Given a set 𝐸 of networked EVSEs, a total power Π 

provided by the load area, a set 𝐶 of cost functions associated to each EVE, an initial flow vector 𝒑𝟎 = [𝑝𝑒(0)]𝑒∈𝐸
𝑇 , a strongly 
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connected adjacency matrix 𝐴 = {𝛼𝑒,𝑓}𝑒,𝑓∈𝐸
, a set M = {𝜇(𝑐𝑒 , 𝑐𝑓)}𝑒,𝑓∈𝐸

 of migration policy functions and a tolerance 

∆𝐶𝑀𝐴𝑋 > 0, the distributed electric vehicle power load control problem Π is the tuple P = 〈𝐸, Π, 𝐶, 𝒑𝟎, 𝐴,M, ∆𝐶𝑀𝐴𝑋〉 
characterized by the system dynamics defined in (8). 

 

3. Stability proof 
Theorem 1. Given a distributed electric vehicle power load control problem P = 〈𝐸, Π, 𝐶, 𝒑𝟎, 𝐴,M, ∆𝐶𝑀𝐴𝑋〉  controlled 

by the system dynamics defined in (8), where: 
a. 𝐸 is the set of EVSEs with |𝐸| = 𝑛 > 1; 
b. Π ∈ ℝ+; 
c. 𝑀 is the set of EVSEs cost functions defined in (3); 
d. 𝒑𝟎 is the initial feasible flow vector; 
e. 𝐴 is a strongly connected adjacency matrix; 
f. M is a set of linear migration policy functions; 
g. ∆𝐶𝑀𝐴𝑋 ∈ ℝ+. 

The system dynamics defined in (8) that controls the problem 𝑃 evolution admits a solution. More specifically, the 

electric vehicle power load control problem P converges towards a unique feasible flow vector 𝒑∗ that is at a Wardrop 

equilibrium, and at the Wardrop equilibrium all the utilization factors are equal and minimal: 𝑐(𝑝𝑒
∗) ∶= 𝑐𝑤𝑎𝑟𝑑𝑟𝑜𝑝 ∈

ℝ+, ∀𝑒 ∈ 𝐸 and, consequently, the tolerance ∆𝑐𝑚𝑎𝑥(𝑡∗) = 0. This means that there exists a time 𝑡̅ ∈ ℝ≥0 such that 

∆𝑐𝑚𝑎𝑥(𝑡̅) ≤ ∆𝐶𝑀𝐴𝑋 . 
 

Proof of Theorem 1. Given the system dynamics defined in (8) and the migration ratio defined in (9), by enumerating 

the EVSEs in 𝐸 from 1 to 𝑛, given any 𝑖 ∈ {1,… , 𝑛}, we have: 

 

�̇�𝑖(𝑡) = ∑(𝛼𝑗,𝑖𝑝𝑗(𝑡)𝜇𝑗,𝑖(𝒑(𝑡)) − 𝑎𝑖,𝑗𝑝𝑖(𝑡)𝜇𝑖,𝑗(𝒑(𝑡))) .

𝑛

𝑗=1

 

 

14) 

By defining: 

 

𝛾𝑖,𝑗(𝒑(𝑡)) = 𝛼𝑖,𝑗𝜇𝑖,𝑗(𝒑(𝑡)), 15) 

 
it follows that: 

�̇�𝑖(𝑡) = ∑𝑝𝑗(𝑡)𝛾𝑗,𝑖(𝒑(𝑡))

𝑛

𝑗=1

− 𝑝𝑖(𝑡)∑𝛾𝑖,𝑗

𝑛

𝑗=1

(𝒑(𝑡)). 16) 

 
The system can be rewritten in compact form as: 

 

�̇�(𝑡) = 𝐺(𝒑(𝑡))𝒑(𝑡) ≔ 𝐹(𝒑(𝑡)),    𝒑(0) = 𝒑0. 17) 

 

Where the 𝐺(𝒑(𝑡)) matrix is: 
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𝐺(𝒑(𝑡)) =

[
 
 
 
 
 
 
 
 
 −∑𝛾1,𝑗(𝒑(𝑡))

𝑛

𝑗=2

𝛾1,2(𝒑(𝑡)) … 𝛾1,𝑛(𝒑(𝑡))

𝛾2,1(𝒑(𝑡)) ∑ 𝛾2,𝑗(𝒑(𝑡))

𝑛

𝑗=1,𝑗≠2

… 𝛾2,𝑛(𝒑(𝑡))

⋮ ⋮ ⋱ ⋮

𝛾𝑛,1(𝒑(𝑡)) 𝛾𝑛,2(𝒑(𝑡)) … − ∑ 𝛾𝑛,𝑗(𝒑(𝑡))

𝑛−1

𝑗=1 ]
 
 
 
 
 
 
 
 
 

 18) 

 

We therefore obtain a nonlinear dynamical system. As proven in [19], since 𝐹(𝒑(𝑡)) is Lipschitz-continuous with 

respect to 𝒑(𝑡) and 𝑡, it satisfies the standard conditions for the global existence and uniqueness of a solution. Moreover, 

from assumption c., the cost functions 𝑐𝑒(𝑝),∀𝑒 ∈ 𝐸 satisfy the Assumption ∆. The proof then follows immediately from the 
proof of Theorem 1 reported in [20], which demonstrates the convergence to Wardrop equilibria in the more general case of 

time-varying graphs. As in this paper the considered cost functions are strictly increasing, from [21] it follows that the 

Wardrop equilibrium is unique. 

 

4. Numerical results 

Thanks to the proof of Theorem 1, we know that the system dynamics defined in (8) makes the distributed electric 
vehicle power load control problem converge to a unique Wardrop equilibrium. Several simulations for different power load 

control problems P = 〈𝐸, Π, 𝐶, 𝒑𝟎, 𝐴,M, ∆𝐶𝑀𝐴𝑋〉 controlled by the system dynamics defined in (8) have been carried out to 

assess the performances of the proposed solution. Three typical load area topologies have been considered: Undirected Full-

Mesh (UFM); Undirected Half-Mesh (UHM) and Undirected Balanced Binary Tree (UBT). The UFM topology accounts for 
a typical (ethernet or WiFi) local area network (LAN) where all the EVSEs can communicate directly with each other. The 

UHM topology accounts for a typical scenario of federated LANs connected thorough virtual private network (VPN). The 

UBT accounts for a typical hierarchical network, where EVSEs can communicate only by means of higher layer OCPP 

elements (e.g., CS, LC and CSMS). To account for the different networked EVSEs topologies, the adjacency matrix 𝐴 has 

been chosen to be a binary matrix. The overall load area power Π counts 7.36 ∙ 𝑛 kW to be distributed among the 𝑛  EVSEs. 

The set M uses the linear migration policy function specified in equation (10). The initial feasible jobs vector 𝒑𝟎 is randomly 

generated for each simulation. To have a set of comparable results Alternate Current (AC) EVES have been divided into 
three types: 1) mono phase, charging at max 7.36 kW, 2) two phases, charging at max 14.72 kW and 3) three phases charging 

at max 22.08 kW. To each EVSE’s type, a piecewise-linear + divergent-exponential cost function specified in (3) has been 

associated characterized by the parameters reported in Table 1. To show how the proposed system dynamics converges to a 

stable state, we considered a UFM topology of 𝑛 = 25 networked EVSEs, with a tolerance ∆𝐶𝑀𝐴𝑋 = 10−4. The set of cost 

functions 𝐶 contains 25 piecewise-linear + divergent-exponential cost functions: 17 of type 1; 2 of type 2; and 6 of type 3. 

As expected, the simulations reported in Fig. 2 shows that (graph a) in Fig. 2) the EVSEs’ cost functions converge all to the 
same value (indeed, achieving the Wardrop equilibrium), while the EVSEs’ required charging powers converge to three 

different steady-state values (approximately 6.3 kW, 8 kW and 10 kW for type 1, 2 and 3, respectively; see graph b) in Fig. 

2. To show how the topology impacts on the convergence time, another set of simulations have been carried out: for each 

topology an increasing number of  AC EVSEs |𝐸| = 𝑛 ∈ [5,10,15,20,25] and a tolerance value ∆𝐶𝑀𝐴𝑋 = 10−3 (one 
thousandth of the cost unit, e.g. 0,1€/cent) have been considered. The AC EVSEs have been grouped following this 

distribution: 20% of Type 1, 10% of Type 2 and 70% of Type 3. The simulation results show that the EVSEs’ topology 

impacts on the convergence time. In a UFM topology, the number 𝑚 of EVSEs interconnections (edges) is 𝑛(𝑛 − 1)/2, 

while the diameter (𝐷) is 1; in a UHM topology, 𝑚 = 𝑛(𝑛 − 1)/4, and 𝐷 = 2; while in a UBT 𝑚 = 2(𝑛 − 1) and 𝐷 =
2(𝑙𝑜𝑔2(𝑛 + 1) − 1). As shown in Fig. 3, when the number of EVSEs’ interconnectios 𝑛 increases: a) in a UFM topology 
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the convergence time decreases exponentually; b) in a UHM topology, the convergence time decreases in more-than-linear 

fashion, yet slower than in UFM topology; and c) in a UBT topology the convergence time increases in a linear fashion. 
 

Table 1: Cost functions’ parameters by EVSE type 

 

Parameter EVSE Type 1 EVSE Type 2 EVSE Type 3 

Max power [kW] 7.36 14.72 22.08 

Slopes 𝑠𝑒,1 = 0.3, 𝑠𝑒,2 = 0.4  𝑠𝑒,1 = 0.2, 𝑠𝑒,2 = 0.3, 𝑠𝑒,3 = 0.5 𝑠𝑒,1 = 0.1, 𝑠𝑒,2 = 0.2, 
𝑠𝑒,3 = 0.4, 𝑠𝑒,4 = 0.6  

Thresholds [kW] 𝜏𝑒,1 = 4.9, 𝜏𝑒,2 = 7.36  𝜏𝑒,1 = 4.9, 𝜏𝑒,2 = 7.36, 𝜏𝑒,3 = 14.72 𝜏𝑒,1 = 4.9, 𝜏𝑒,2 = 7.36, 
𝜏𝑒,3 = 14.72, 𝜏𝑒,4 = 22.08 

 

  
Fig. 2: a) EVSEs’ cost function convergence to the Wardrop equilibrium; b) EVSEs’ charging power convergence to a stable state 
 

   
Fig. 3: a) UFM converge time decreases exponentially when the number of edges (𝑛) increases; b) UHM converge time decreases 

when 𝑛 increases; c) UBT converge time increases linearly when 𝑛 increases. 
 

5. Conclusion 
The presented work defines a mathematical model of an electric vehicle load area where a networked set of EVSEs 

interacting using the OCPP protocol, collaborate to share the available load, acting has agents of an autonomous distributed 
system aiming at minimizing the overall energy costs experienced by each EVSE. The problem has been formulated adopting 

a game theory approach where the system dynamics evolves over time and, under proper assumptions, it has been 

demonstrated to converge exponentially to a Wardrop equilibrium. The main advantage of relying on a Wardrop equilibrium 

rather than on a supervised learning approach is to avoid the long training and exploration phases. The simulation results 
show that the convergence to the solution depends on the number of interactions between the EVESs and the maximum 

distance between them. The interesting results obtained in the experimentation phase pave the way for undertaking future 

works and further studies on the properties of the proposed solutions (e.g., conjecture a mathematical dependency between 
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the convergence speed to the Wardrop equilibrium and the EVEs topology characteristics) as well as to develop an OCPP-

compliant software implementation of the proposed solution (as an open-source) to be tested on field.  
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