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Abstract – This paper considers static output feedback control for a general class of discrete-time stochastic nonlinear systems. A linear 

matrix inequality is presented which is used to determine a constant feedback gain matrix. If a solution to the linear matrix inequality 

exists, then the closed-loop response of the system is guaranteed to satisfy ℋ2 optimality in addition to achieving asymptotic stability in 

the mean square, and almost sure senses. Output feedback is used to eliminate the need to measure and/or estimate all of the states of the 

system. In this formulation, precise knowledge of the stochastic nonlinearity, or its statistics, are not needed. Rather, it is only required 

that an upper bound to the second moment of the stochastic nonlinearity can be determined.  
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1. Introduction 
Most systems are nonlinear, to some degree, and are subject to stochastic disturbances, such as noise. Designing a 

stabilizing, or optimal, controller for such systems continues to be a challenging problem. Several well-known methods 

addressing this challenge, including feedback linearization and passivity-based methods, have been proposed over the years; 

however, these methods typically require the designer to have an accurate model of the system [1]. In practice, it may be 

difficult, or even impossible, to obtain a suitably accurate model of the system. Additionally, these methods typically require 

that the states of the system can be measured or estimated. Since it is common to have incomplete knowledge of the states 

of the system, it is often necessary to design an estimator which may add complexity to the design of a control system for a 

nonlinear stochastic system. 

The work presented in [2] considered the stabilization of a general class of discrete-time nonlinear stochastic systems in 

which precise knowledge of the form of the nonlinearity was not needed. Rather, this formulation required only that the 

second moment of the stochastic nonlinearity be known. The need to have an accurate system model is somewhat relaxed 

since an optimal stabilizing control law is derived without needing to know the exact form of the nonlinearity. However, it 

is necessary that an exact expression describing the second moment of the nonlinearity can be determined which is a 

limitation of this work. Another limitation is that this method relies on the solution to a backwards running generalized 

Riccati equation which must be obtained off-line. This method also requires the availability of all states for measurement. 

A suboptimal version of the previous work was presented in [3] where a static finite horizon state variable feedback 

control law was proposed. The benefit of this approach is that the need to obtain an off-line solution to a backwards running 

generalized Riccati equation is eliminated; however, an exact expression describing the second moment of the stochastic 

nonlinearity is required, and full availability of the states for measurement is again needed.  

The infinite horizon case was considered in [4], and an observer was proposed in [5] to overcome the requirement that 

all states be measurable. A reduced order observer was given in [6]. Similar to previously cited works, an exact expression 

describing the second moment of the stochastic nonlinearity was required. 

A General Performance Criteria (GPC) was considered in [7] which allowed for several control objectives (including 

ℋ2, ℋ∞, and several passivity results) to be achieved. This work relaxed the requirement that an exact expression describing 

the second moment of the stochastic nonlinearity be known. Instead, with this formulation, it was only necessary that an 

upper bound to the second moment of the stochastic nonlinearity can be determined. Again, perfect knowledge of the states 

of the system was required. 
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The work in [8] considered a similar GPC which allowed for ℋ2, ℋ∞, and several passivity design criteria to be met 

under a unified framework. In this formulation, a class of discrete-time nonlinear systems in which the nonlinearity is 

conically bounded was considered. This work was limited in the sense that perfect state knowledge was required. Further, 

the results presented are valid only for systems with nonlinearities containing finite energy, ℓ2, disturbances. 

A static output feedback controller was proposed in [9] to stabilize a general class of discrete-time nonlinear 

stochastic systems first presented in [2]. In this formulation, the use of output feedback eliminated the need to have 

perfect knowledge of the states, or to estimate any unknown system states. Additionally, this work did not require precise 

knowledge of the form of the stochastic nonlinearity or its second moment. Rather, it is only required that an upper 

bound to the second moment of the stochastic nonlinearity can be determined. Further, the nonlinearity was not restricted 

to include only finite energy, ℓ2, disturbances. A linear matrix inequality (LMI) was presented which, when solved, 

provided a static feedback gain which guaranteed that the closed-loop response was asymptotically stable in the mean 

square (M.S.) and almost sure (A.S.) senses.  

The work presented in this paper can be viewed as both an extension [8] to stochastic systems, and an extension of 

[9] from stabilizing to optimal control. In particular, the GPC in [8] is specified for the purposes of designing a static 

output feedback control law such that the closed-loop response satisfies the ℋ2 property. An LMI is presented which is 

used to determine an unknown static control gain that will accomplish this objective. Since output feedback is used, it 

follows that all the states of the system do not need to be measured or estimated. Rather, it is only necessary that the 

output can be measured. Additionally, this formulation does not require precise knowledge of the form of the stochastic 

nonlinearity. It is only required that an upper bound to the second moment of the stochastic nonlinearity can be 

determined. Further, it will be shown through the results in [9] that in addition to satisfying the ℋ2 property, the proposed 

control method will also be asymptotically stable in the M.S. and A.S. senses. 

The remainder of this paper is organized as follows. First, we provide mathematical preliminaries which will be 

useful for understanding the results of this work. Next, we define the system of and derive an LMI which will be used 

to determine a static output feedback gain matrix. It will be shown that if a solution to the LMI exists, then the closed-

loop response of the system will satisfy the ℋ2 property and be asymptotically stable in the M.S. and A.S. senses. A 

simulation study is then presented which demonstrates controller design under the proposed framework. Lastly, we 

conclude the paper by summarizing our results. 

 
1.1. Mathematical Preliminaries 

The following notation is used in this paper: 𝑥 ∈ ℝ𝑛 denotes an 𝑛-dimensional vector of real elements and E𝑥𝑘
{∙} 

is the expectation of the argument conditioned on 𝑥𝑘. The 2-norm of the vector 𝑥𝑘 is denoted as ‖𝑥𝑘‖ =(𝑥𝑘
T𝑥𝑘)1/2. 

Positive (negative) definite and positive (negative) semidefinite matrix, 𝑃, is represented as 𝑃 > 0 (𝑃 < 0) and 𝑃 ≥ 0 

(𝑃 ≤ 0) respectively. The trace of matrix 𝑇 is given by Tr[𝑇]. An 𝑛-dimensional identity matrix, and an 𝑛 × 𝑚 null 

matrix, are represented by 𝐼𝑛 and [0]𝑛×𝑚 respectively. The symbol ∗ is used to represent an element, or block, in a 

matrix needed to render the matrix symmetric. The square root of matrix 𝑁 is denoted as 𝑁1/2, and 𝜆𝑚𝑎𝑥(𝑃) is used to 

denote the largest eigenvalue in the symmetric matrix 𝑃. A diagonal matrix, denoted 𝐷𝑖𝑎𝑔(𝑥, 𝑦, 𝑧), is a matrix with 

diagonal elements equal to 𝑥, 𝑦, and 𝑧 and off-diagonal elements equal to 0.  

This paper also makes frequent use of Schur's lemma which is stated as follows; given appropriately sized matrices 

𝐴, 𝐵, and 𝐶, the following statements are equivalent: 

 

𝑖) [
𝐴 𝐵
𝐵T 𝐶

] > 0, 𝑖𝑖)  𝐴 − 𝐵𝐶−1𝐵T > 0, 𝑖𝑖𝑖)  𝐶 − 𝐵𝑇𝐴−1𝐵 > 0 

 

The following definitions related to stochastic stability will be useful: 

Definition 1: A system is M.S.) stable if for any initial state, 𝑥0,  sup𝑘 E{‖𝑥𝑘‖
2} < ∞ holds for all 𝑘. 

Definition 2: A system is M.S. asymptotically stable if in addition to being M.S. stable, 𝐸{‖𝑥𝑘‖
2} → 0 as 𝑘 → ∞. 

Definition 3: A system is A.S. stable if for any initial state, ‖𝑥𝑘‖
2 < 0 holds for all 𝑘 with probability equal to 1. 
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Definition 4:  system is A.S. asymptotically stable if it is A.S. stable, and ‖𝑥𝑘‖2 → 0 as 𝑘 → ∞ with a probability of 1. 

 

3. Main Result 
Consider the discrete-time nonlinear stochastic system given by: 

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑓𝑘 (1) 

𝑦𝑘 = 𝐶𝑥𝑘 (2) 

𝑧𝑘 = 𝐶𝑧𝑥𝑘 + 𝐷𝑧𝑢𝑘 (3) 

 

Where 𝑥𝑘 ∈  ℝ𝑛 is the state vector, 𝑢𝑘 ∈  ℝ𝑚 is the control input, 𝑥𝑘 ∈  ℝ𝑛, 𝑦𝑘 ∈  ℝ𝑞 is the output of the system, and 𝑧𝑘 ∈
 ℝ𝑠 is a performance output. The nonlinear function, 𝑓𝑘 ≜ 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘):ℝ𝑛 × ℝ𝑚 × ℝ𝑝 → ℝ𝑛, has the following 

properties: 
 

𝑓(0,0, 𝑤𝑘) = 0 (4) 

E𝑥𝑘
{𝑓𝑘} = 0 (5) 

E𝑥𝑘{𝑓𝑘𝑓𝑗
T} = 0 ∀𝑘 ≠ 𝑗 (6) 

E𝑥𝑘{𝑓𝑘𝑓𝑘
T} ≤  ∑ 𝑇𝑖(𝑥𝑘

T𝑀𝑖𝑥𝑘 + 𝑢𝑘
T𝑁𝑖𝑢𝑘)

𝑟

𝑖=1
 (7) 

 

where 𝑤𝑘 ∈ ℝ𝑝 is a timewise uncorrelated zero-mean noise sequence, and 𝑟 = 𝑛(𝑛 + 1)/2. Additionally, since (7) 

represents an upper bound to the second moment of the stochastic nonlinearity, it follows that all matrices on the right-

hand side of the inequality are symmetric and at least positive semidefinite. It is further assumed that these matrices are 

known. 

The nonlinearity described by (4) - (7) is quite general, and includes several well-known systems such as: 
 

 Linear systems with state and control multiplicative noise: 
 

𝑓𝑘 = 𝑤𝑘
1 𝐺T𝑥𝑘 + 𝑤𝑘

2 𝐷T𝑢𝑘  (8) 

 

 State and control norm dependent random vectors: 
 

𝑓𝑘  = ‖𝑥𝑘‖𝐺𝑤𝑘
1 + ‖𝑢𝑘‖𝐷𝑤𝑘

2 (9) 

 

 Random vector dependent on the sign of a nonlinear function of the state and control input: 
 

𝑓𝑘 =  sgn[ℎ(𝑥𝑘 , 𝑢𝑘)]𝐺𝑤𝑘 (10) 
 

as well as many others which can be found in [2]. 

Allowing the control law to be of the form 𝑢𝑘 = 𝐾𝑦𝑘 = 𝐾𝐶𝑥𝑘, where 𝐾 ∈ ℝ𝑚×𝑞 is an unknown static gain matrix, 

we can express (1), (3), and (7) respectively as: 

 

𝑥𝑘+1 = 𝐴𝑐𝑥𝑘 + 𝑓𝑘 (11) 

𝑧𝑘 = 𝐶𝑐𝑥𝑘 (12) 

E𝑥𝑘{𝑓𝑘𝑓𝑘
T} ≤ ∑ 𝑇𝑖𝑥𝑘(𝑀𝑖 + 𝐶T𝐾T𝑁𝑖𝐾𝐶)𝑥𝑘

𝑟

𝑖=1
  (13) 

 

where 𝐴𝑐 ≜ 𝐴 + 𝐵𝐾𝐶 and 𝐶𝑐 ≜ 𝐶𝑧 + 𝐷𝑧𝐾𝐶. 
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Next, we derive an LMI which will allow for the determination of a static gain matrix, 𝐾, such that the closed-

loop response of the system in Eqn. (11) satisfies the ℋ2 property of optimality. As shown in [8], a system that satisfies 

the ℋ2 property must satisfy the following inequality: 

 

E𝑥𝑘
{ 𝑥𝑘

𝑇𝑃𝑥𝑘 − 𝑥𝑘+1
T 𝑃𝑥𝑘+1 − 𝛿‖𝑧𝑘‖2} > 0  (14) 

 

Where 𝑃 ∈ ℝ𝑛×𝑛, 𝑃 = 𝑃T > 0, and 𝛿 ∈ ℝ > 0. Additionally, it was shown through the application of the Rayleigh 

inequality in [8], that the inequality in (14) could be equivalently expressed as: 

 

∑ ‖𝑧𝑖‖
2

𝑖
< 𝛿−1𝜆𝑚𝑎𝑥(𝑃)‖𝑥0‖

2 (15) 

 

which will be useful later for considering the ℋ2 gain of the system. Substituting (11) and (12) into (14) yields: 

 

E𝑥𝑘{𝑥𝑘
T𝑃𝑥𝑘 − (𝐴𝑐𝑥𝑘 + 𝑓𝑘 )

T𝑃 (𝐴𝑐𝑥𝑘 + 𝑓𝑘 ) − 𝛿 (𝐶𝑐𝑥𝑘)
T𝐶𝑐𝑥𝑘} > 0 (16) 

 

Using (5) – (7) and exploiting the properties of the trace operator, the above inequality can be expressed as: 

 

𝑥𝑘
T (𝑃 − 𝐴𝑐

T𝑃𝐴𝑐 − 𝛿𝐶𝑐
T𝐶𝑐 − ∑ Tr[𝑃 𝑇𝑖](𝑀𝑖 + 𝐶T𝐾T𝑁𝑖𝐾𝐶)

𝑟

𝑖=1
) 𝑥𝑘 > 0 (17) 

 

which implies: 

 

𝑃 − 𝐴𝑐
T𝑃𝐴𝑐 − 𝛿𝐶𝑐

T𝐶𝑐 − ∑ Tr[𝑃 𝑇𝑖](𝑀𝑖 + 𝐶T𝐾T𝑁𝑖𝐾𝐶)
𝑟

𝑖=1
> 0 (18) 

 

A computational problem arises due to the fact that the decision variables (𝑃, 𝐾, and 𝛿) appear nonlinearly in (18). An 

additional computational issue arises from the decision variable, 𝑃, appearing inside the trace operator. To overcome these 

difficulties, we define an upper bound to the matrix 𝑃 as: 

 

𝛾𝐼𝑛 ≥ 𝑃 > 0 (19) 

 

where 𝛾 ∈ ℝ > 0. Substituting (19) into (18) and rearranging terms, we can write a sufficient condition for (18) to hold as: 

 

𝑃 > 𝛾𝐴𝑐
T𝐴𝑐 + 𝛿𝐶𝑐

T𝐶𝑐 + 𝛾 ∑ Tr[𝑇𝑖](𝑀𝑖 + 𝐶T𝐾T𝑁𝑖𝐾𝐶)
𝑟

𝑖=1
  (20) 

 

Dividing both sides of the above inequality by 𝛾, and rearraigning terms, we obtain the following matrix inequality: 

 

�̃� − 𝐴𝑐
T𝐴𝑐 −

𝛿

𝛾
Cc

T𝐶𝑐 − ∑ Tr[𝑇𝑖](𝑀𝑖 + 𝐶T𝐾T𝑁𝑖𝐾𝐶)
𝑟

𝑖=1
> 0 (21) 

 

where: 

 

�̃� ≜
1

𝛾
𝑃 > 0 (22) 
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After repeated use of Schur's lemma, (21) can be expressed as: 

 

[
 
 
 
 
 �̃� − ∑ Tr[𝑇𝑖]𝑀𝑖

𝑟

𝑖=1
𝐴𝑐

T 𝐶T𝐾T ( ∑ Tr[𝑇𝑖]𝑁𝑖
𝑟

𝑖=1
)
T/2

𝐶𝑐
T

∗ 𝐼𝑛 [0]𝑛×𝑚 [0]𝑛×𝑠

∗ ∗ 𝐼𝑚 [0]𝑚×𝑠

∗ ∗ ∗ 𝜎𝐼𝑠 ]
 
 
 
 
 

> 0 (23) 

 

where: 

 

𝜎 ≜
𝛾

𝛿
> 0 (24) 

 

Equation (23) is an LMI that can be solved for �̃�, 𝐾, and 𝜎 with the restrictions given in (22) and (24). It is noted that if (23) 

has a solution, then the static output gain matrix, 𝐾, will yield a closed-loop response that satisfies the ℋ2 property given in 

(15). 

 

3. Stability 
It was shown in [9] that if a solution exists to the LMI given by: 

 

Ω =

[
 
 
 �̃� − ∑ Tr[𝑇𝑖]𝑀𝑖

𝑟

𝑖=1
𝐴𝑐

T 𝐶T𝐾T (∑ Tr[𝑇𝑖]𝑁𝑖
𝑟

𝑖=1
)
T/2

∗ 𝐼𝑛 [0]𝑛×𝑚

∗ ∗ 𝐼𝑚 ]
 
 
 

> 0 (25) 

 

then, the closed-loop system, with 𝐾 as a static output feedback gain matrix, will be asymptotically stable in the M.S. and 

A.S. senses. Substituting, the inequality in (25) into (23) yields: 

 

[
Ω ΦT

Φ 𝜎𝐼𝑠
] > 0 (26) 

 

where Φ = [𝐶𝑐 [0]𝑠×𝑛 [0]𝑠×𝑚]. By Schur’s lemma, (26) can be expressed as Ω − 𝜎−1ΦTΦ > 0, which implies Ω > 0. 

Thus, if (23) has a solution, then it follows the closed-loop response will be asymptotically stable in the M.S. and A.S. senses 

in addition to satisfying the ℋ2 property of optimality. 

 

4. Simulation Results 
This section presents simulation results which demonstrates controller design under the proposed framework. For the 

purposes of demonstration, we consider Chua's circuit, which is a well-known nonlinear circuit that exhibits chaotic behavior 

[10]. Continuous-time equations describing Chua's circuit are given below with parameters obtained from [8], [10], and [11]: 

 

�̇�(𝑡) = [

−𝛼 𝛼 0

1 −1 1

0 −𝛽 𝜇

] 𝑥(𝑡) + [

7

1

1

] 𝑢(𝑡) + [

−𝛼𝑓(𝑥1(𝑡))

0

0

] (27) 

𝑦(𝑡) = [1 0 0] 𝑥(𝑡) (28) 

where 𝛼 = 10.0063, 𝛽 = 16.5811, and 𝜇 = 0.138083 are system parameters [8], and: 
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𝑓(𝑥1(𝑡)) = 𝑏𝑥1(𝑡) + 0.5(𝑎 − 𝑏)(|𝑥1(𝑡) + 1| − |𝑥1(𝑡) − 1 |) (29) 

 

is a nonlinear function in 𝑥1(𝑡), with 𝑎 = −1.39386 and 𝑏 = −0.75590. The nonlinearity in (29) can be equivalently 

piecewise defined as: 

 

𝑓(𝑥1(𝑡)) = {

𝑏𝑥1(𝑡) + (𝑏 − 𝑎),

𝑎𝑥1(𝑡),

𝑏𝑥1(𝑡) + (𝑎 − 𝑏),
      

𝑥1(𝑡) ≤ −1
|𝑥1(𝑡)| < 1

𝑥1(𝑡) ≥ 1
 (30) 

 

It is noted that in this example, the form of the nonlinearity is known. In general, it is not required that the 

nonlinearity be known. Rather, it is only necessary that an upper bound to the second moment of the nonlinearity can 

be determined. The choice to consider a system with a known nonlinearity was intentional and made for the purposes 

of simulation. 

The continuous-time equations are discretized using forward Euler discretization with time step 𝑇𝑠 = 0.01𝑠. 

The discrete-time state space equations are given as follows: 

 

[

𝑥1,𝑘+1

𝑥2,𝑘+1

𝑥3,𝑘+1

] = [

0.8999 0.1001 0.0000

0.0100 0.9900 0.0100

0.0000 −0.1658 0.9986

] [

𝑥1,𝑘

𝑥2,𝑘

𝑥3,𝑘

] + [

0.07

0.01

0.01

]𝑢𝑘 + 𝑓𝑘 (31) 

 

where 𝑓𝑘 = [−0.1001𝑓𝑘(𝑥1,𝑘) 0 0]
T

. Choosing the initial conditions of the system to be 𝑥0 = [1 1 1]T, a simulation 

of the uncontrolled system is shown in Fig. 1. While the evolution of the system states Fig. 1(a) may appear to be periodic, 

the chaotic nature of the circuit is evident in the phase portrait in Fig. 1(b) by noting that the trajectories never overlap. 

 

                         (a) Evolution of system states                                                         (b) Phase portrait showing chaotic behavior 

Fig. 1: Simulation of uncontrolled Chua’s circuit 

 

By treating the discrete nonlinear function, 𝑓𝑘, as a discrete stochastic process, we can express the conditional 

covariance as follows: 

 

𝐸𝑥𝑘
{𝑓𝑘𝑓𝑘

T} = 𝐷𝑖𝑎𝑔(0.0100𝑓2(𝑥1,𝑘), 0, 0) (32) 

 

An upper bound to the second moment of the nonlinearity can be easily determined by considering Eqn. (30). 

Since |𝑎| > |𝑏|, it follows that: 

sup
𝑥1,𝑘

𝑓2(𝑥1,𝑘)  =  (𝑎𝑥1,𝑘)
2
  (33) 
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which, from (7), implies that the second moment of the discrete nonlinearity can be bounded above by: 

 

∑ 𝑇𝑖(𝑥𝑘
T𝑀𝑖𝑥𝑘 + 𝑢𝑘

T𝑁𝑖𝑢𝑘)
𝑟

𝑖=1
≤ 𝐷𝑖𝑎𝑔(1, 0, 0) 𝑥𝑘

T 𝐷𝑖𝑎𝑔(0.0100𝑎2, 0, 0) 𝑥𝑘 (34) 

 

Which further implies that: 

 

∑ Tr[𝑇𝑖]𝑀𝑖
𝑟

𝑖=1
= 𝐷𝑖𝑎𝑔(0.0100𝑎2, 0, 0), 𝑁𝑖 = 0 ∀𝑖 (35) 

 

Since an upper bound to the second moment of the nonlinearity exists, and can be determined, (35) can be used in 

(23) and the LMI can be solved for �̃�, 𝐾, and 𝜎 with the restrictions given in (22) and (24). A solution to (23) which 

satisfies these restrictions is given below where 𝐶𝑧 = 0.01𝐼3, and 𝐷𝑧 = [0.1  0.1  0.1]T. 

 

�̃� = 𝐷𝑖𝑎𝑔(1.9310, 1.9212, 1.9212), 𝜎 = 1.9212, 𝐾 = −11.7029 (36) 

 

A plot showing the simulated response of the closed-loop system is shown in Fig. 2. 

Fig. 2: Simulation of controlled Chua’s circuit 

 

We now consider the ℋ2 property of the controller. To begin, we first use inequalities (22) and (24) to write: 

 

�̃� =
1

𝜎𝛿
𝑃 (37) 

 

which, after substitution of �̃� and 𝜎 in (36), implies 𝑃 = 𝐷𝑖𝑎𝑔(3.7809𝛿, 3.6911𝛿, 3.6911𝛿). Since by definition 𝛿 >
0, it follows 𝜆𝑚𝑎𝑥(𝑃) = 3.7809𝛿. Thus, the right side of (15) can be expressed as: 

 

𝛿−1𝜆𝑚𝑎𝑥(𝑃)‖𝑥0‖
2 = 𝛿−1 (3.7809𝛿)(3) = 11.3427 (38) 

 

Where ‖𝑥0‖
2 = 3 has been substituted into the above expression. It can be shown that for this simulation ∑ ‖𝑧𝑖‖

2
𝑖 = 0.0695,  

which clearly satisfies the inequality in (15) thus showing the ℋ2 property is satisfied. 

 
5. Conclusion  

This work considered a general class of discrete-time nonlinear stochastic systems. An LMI was presented which can 

be used to determine a static output feedback gain which ensures that closed-loop system is not only asymptotically stable 



 

 

 

 

 

 

 

110-8 

in the M.S. and A.S. senses, but also satisfies the ℋ2 property of optimality. In this formulation, exact knowledge of 

all states of the system was not required. Rather, it was only necessary that the output of the system be available for 

measurement. Further, the proposed method does not require that the exact form of the nonlinearity be known. Instead, 

it is only necessary that an upper bound on the second moment of the stochastic nonlinearity can be determined. Chua's 

circuit was used to demonstrate controller design under the proposed framework. It was shown that the associated LMI 

had a solution which guaranteed that the closed-loop response would satisfy the ℋ2 criteria in addition to being 

asymptotically stable in the M.S. and A.S. senses. Simulation results showed that the static output gain determined 

from the solution to the LMI indeed regulated the states of the system to the origin. 
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