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Abstract - This paper proposes the use of by-design model-based digital control systems for motor speed control, while the motor is 

connected to a mechanical load. This research is motivated by the fact that most controllers are implemented digitally, but they are 

designed with techniques suiting analogue systems based on continuous mathematics. Such a discrepancy results in loss of performance. 

A communication delay occurring in digital implementation, practical torque limits and measurement noise were considered in this 

research. The proposed methodology leads to a simple, easy to implement, digital/discrete control system which outperforms a PID 

designed with Internal Model Control (IMC) method.   
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1. Introduction 
This paper targets a core challenge in digitalisation of control systems, mismatch of analogue (continuous) methods to 

design control systems and digital devices to implement control systems. Nowadays, most control systems, including well-
established Proportional-Integral-Derivative (PID) controllers, are formulated and designed with the methods developed in 

continuous mathematics, suiting analogue devices, but are implemented on digital devices [1, 2]. Digital implementation 

imposes sampling of signals; this limits the bandwidth of operation [3]. Moreover, in digital systems, a delay, at least equal 
to the sample time of the system, should exist to avoid algebraic loops [4]. These sampling-induced bandwidth limit and 

delay are widely neglected in continuous design methods as they do not appear in analogue systems. This mismatch of design 

and implementation have shown to influence the performance of control systems negatively[4]. Motor speed control is an 

area affected by this mismatch with wide use of analogue control methods implemented on digital drives [5]. Complicated 
reference filters have been employed to partly compensate this effect mostly at the cost of a slower response [6].  
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Preliminary research by the authors shows that using digital design methods, based on discrete mathematics, for 

digitally-implemented control systems inherently removes the issues caused by delay and bandwidth limit and leads to a 
superior performance[4]. As a main advantage, time delays  can be easily integrated into model-based discrete control system 

design methods [3], while, they lead to nonlinearity in continuous models [7].  In addition, commonly used PIDs, which are 

essentially continuous/analogue, are often designed based on trade-off[8]; while, comparable digital controllers have 

straightforward optimal design methods [3, 4].  
 

2. Problem Statement 
Fig.1 shows a servo control system for motors connected to a mechanical load, based on the information presented in 

[6]. However, the current control (or internal) loop has a such a fast dynamics, compared to the speed (or external) loop 

which can be ignored [9]; in other words, it is reasonable to assume that any physically realisable demanded torque by the 

speed controller is easily met. The real issue is the mechanical part with slow dynamics shown in Fig.2.  
 

 
Fig.1 Schematic of a Servo Drive with an encoder on motor shaft 

 

 
Fig.2 A simplified control system of a servo motor, where the current control system is so fast as to be neglected. 

 

Eq. (1) is a fairly accurate model of the load in time domain [9],  

                                                      𝐽�̇�(𝑡) + 𝐽𝜔(𝑡) = 𝐽(𝑡 − 𝑡𝑑). (1) 
where U, J , C and ω represent the input torque (from the motor), moment of inertia, viscous damping coefficient and 

rotational speed, respectively. In addition, td is the communication/processing delay, which is widely ignored [4]. As 
previously mentioned, such a delay, which is at least equal to the sample time, must exist in all digital closed loop systems 

to preclude an algebraic loop. (1) practically demonstrates that the control law generates the control input, U, to be applied 

at time t, based on measurements at time t- td.  

Eq. (1) can be re-written as the transfer function of (2) in Laplace domain assuming zero initial angular velocity: 
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                                                                       𝐽(𝐽) =
𝐽(𝐽)

𝐽(𝐽)
=

𝐽−𝐽𝐽𝐽

𝐽𝐽 + 𝐽
 . (2) 

In the following sections, a discrete model, equivalent of (1)/(2), is developed, then a discrete controller is designed 

based on this model. The closed loop response will be compared to the response of a closed loop system with continuous 
PID designed based on IMC.   

 

3. Discretisation of the Model 
Gwd (s) , presented by (3), represents the model of Eq. (2) without a delay in Laplace domain: 

𝐽𝐽𝐽(𝐽) =
𝐽(𝐽)

𝐽−𝐽𝐽𝐽
=

1

𝐽𝐽 + 𝐽
 . 

 

(3) 

Eq. (4) demonstrates the process of discretisation of Eq. (3) with zero order hold [10]: 

𝐽𝐽𝐽(𝐽) =
𝐽 − 1

𝐽
𝐽 {𝐽−1 {

𝐽𝐽𝐽(𝐽)

𝐽
}}. (4) 

Partial fraction decomposition, presented in (5), is required to transform the model from Laplace domain to Z domain, 

as shown in (6), e.g. with the formulae listed in [11]: 

𝐽𝐽𝐽(𝐽)

𝐽
=

1

𝐽𝐽2 + 𝐽𝐽
=

1
𝐽⁄

𝐽
−

𝐽
𝐽⁄

𝐽𝐽 + 𝐽
=

1

𝐽
(
1

𝐽
−

𝐽
𝐽⁄

𝐽
𝐽⁄ 𝐽 + 1

). (5) 

 

𝐽 {𝐽−1 {
𝐽𝐽𝐽(𝐽)

𝐽
}} =

1

𝐽
(

𝐽

𝐽 − 1
−

𝐽

𝐽 − 𝐽−
𝐽𝐽𝐽
𝐽

) =
𝐽 (𝐽 − 𝐽−

𝐽𝐽𝐽
𝐽 ) − 𝐽(𝐽 − 1)

𝐽(𝐽 − 1) (𝐽 − 𝐽−
𝐽𝐽𝐽
𝐽 )

. (6) 

Consequently, the discrete form of Gwd (s) is presented in (7): 

𝐺𝑤𝑑(𝑧) =
𝑧 − 1

𝑧

𝑧 (𝑧 − 𝑒
−

𝑡𝑠𝐶
𝐽 ) − 𝑧(𝑧 − 1)

𝐶(𝑧 − 1) (𝑧 − 𝑒
−

𝑡𝑠𝐶
𝐽 )

=

(𝑧 − 𝑒
−

𝑡𝑠𝐶
𝐽 ) − (𝑧 − 1)

𝐶 (𝑧 − 𝑒
−

𝑡𝑠𝐶
𝐽 )

=
1 − 𝑒

−
𝑡𝑠𝐶

𝐽

𝐶 (𝑧 − 𝑒
−

𝑡𝑠𝐶
𝐽 )

. 

 

(7) 

Considering (3) and (7), (8) is the discrete form of the transfer function of (2): 

𝐺(𝑧) =
1 − 𝑒

−
𝑡𝑠𝐶

𝐽

𝐶 (𝑧 − 𝑒
−

𝑡𝑠𝐶
𝐽 )

𝑧
−

𝑡𝑑
𝑡𝑠 =

1 − 𝑒
−

𝑡𝑠𝐶
𝐽

𝐶𝑧
𝑡𝑑
𝑡𝑠 (𝑧 − 𝑒

−
𝑡𝑠𝐶

𝐽 )

=

1 − 𝑒
−

𝑡𝑠𝐶
𝐽

𝐶

𝑧
𝑡𝑑
𝑡𝑠 (𝑧 − 𝑒

−
𝑡𝑠𝐶

𝐽 )

=

1 − 𝑒
−

𝑡𝑠𝐶
𝐽

𝐶

𝑧𝑛 (𝑧 − 𝑒
−

𝑡𝑠𝐶
𝐽 )

. 

 

 (8) 

where n is the delay order, which is assumed to be a natural number in this research.  
 

4. Model-based Digital Control 
In this section, based on the model shown in (8), first, a discrete controller is designed for n=1, the most plausible value 

of n for motor control. Then, the design methodology is extended to greater values of n. A transfer function such as (2) or 

(8) with a long delay can be used to present a first order process with time delay [12]. 

 
 

4.1. Model Based Control for Unit Communication Delay 
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Due to availability of very fast processors, it can plausibly be assumed that the processing/communication delay time of 

the motor drive has its minimum value or td=ts or n=1.  Then, 

𝐽(𝐽) =

1 − 𝐽−
𝐽𝐽𝐽
𝐽

𝐽

𝐽
𝐽𝐽
𝐽𝐽 (𝐽 − 𝐽−

𝐽𝐽𝐽
𝐽 )

=

1 − 𝐽−
𝐽𝐽𝐽
𝐽

𝐽

𝐽2 − 𝐽−
𝐽𝐽𝐽
𝐽 𝐽

=
𝐽

𝐽2 + 𝐽𝐽
=

𝐽

𝐽(𝐽)
, 

 

(9) 

where  

𝑎 =
1 − 𝑒

−
𝑡𝑠𝐶

𝐽

𝐶
 𝑎𝑛𝑑 𝑏 = −𝑒

−
𝑡𝑠𝐶

𝐽 . 

 

(10) 

The controller is presented as C(z), a proper discrete transfer function: 

𝐽(𝐽) =
𝐽( 𝐽)

𝐽( 𝐽)
=

𝐽𝐽𝐽𝐽
𝐽𝐽+ ⋯ + 𝐽1𝐽 + 𝐽0

𝐽𝐽𝐽+ ⋯ + 𝐽1𝐽 + 𝐽0
. 

 
(11) 

Based on Eqs. (10)-(11), assuming that the encoder in Fig.2 has no dynamics, Eq, (12) shows the transfer function of 

the closed loop system of Fig.2: 

𝐽𝐽𝐽(𝐽) =
𝑎 𝐽( 𝐽)

𝑎 𝐽(𝐽) + 𝐽( 𝐽)𝐽(𝐽)
. (12) 

Assuming pi as a closed loop pole, Eq. (13) relates these poles to the parameters of the transfer function and the 

controller: 

∏(𝐽 − 𝐽𝐽)

𝐽

= 𝑎 𝐽(𝐽) + 𝐽( 𝐽) 𝐽( 𝐽). (13) 

With adding desirable closed loop poles to the left side of Eq. (13), the parameters of R(z) and Q(z) can be found so as to 

realise these poles. In this section, Eq. (14), as a specific form of Eq. (11), is considered as the controller: 

𝐽(𝐽) =
𝐽( 𝐽)

𝐽( 𝐽)
=

𝐽1𝑧 

𝐽 + 𝐽0
. (14) 

Combination of Eqs. (9), (13) and (14) results in Eq. (15): 

∏(𝐽 − 𝐽𝐽) = 𝐽(𝐽1𝐽)  + (𝐽2 + 𝐽𝐽)(𝐽 + 𝐽0).

𝐽

 (15) 

As to Eq. (15), the closed loop system evidently has a pole at zero. Let us assume the other two poles are unique (or repeated), 

shown as p. Then, Eq. (15) is converted to Eq. (16): 

(𝐽 − 𝐽)2 = 𝐽𝐽1  + (𝐽 + 𝐽)(𝐽 + 𝐽0).                                        (16) 

As a result,  

𝐽2 − 2𝐽𝐽 + 𝐽2 = 𝐽2 + (𝐽+𝐽0)𝐽 +  (𝐽𝐽1  + 𝐽𝐽0).            (17) 

This leads to 

 {

𝐽0 = −2𝐽 − 𝐽,            

𝐽1 =
𝐽2 + 2𝐽𝐽 + 𝐽2

𝐽
.
 (18) 

 
4.2. Model Based Control for Non-unit Communication Delays 

       The methodology presented in the previous subsection can be extended to a longer (or a higher order of) time delay in 

Eq. (8). Considering Eq. (8) and (10), Eq. (2) with a long delay can be presented as Eq. (19), 

𝐽(𝐽) =
𝐽

𝐽𝐽(𝐽 + 𝐽)
. (19) 



 

 

 

 

 
 

 

112-5 

The following controller is proposed to control the system represented by Eq. (19):  

𝐽(𝐽) =
𝐽( 𝐽)

𝐽( 𝐽)
=

𝐽𝐽𝐽
𝐽

𝐽𝐽+ ⋯ + 𝐽1𝐽 + 𝐽0
. (20) 

Eq. (21) is the extended version of Eq. (15), the characteristic equation of the closed loop system, for the system of Eq. 
(19) and the controller of Eq. (20): 

∏(𝐽 − 𝐽𝐽) = 𝐽(𝐽𝐽𝐽
𝐽) + 𝐽𝐽(𝐽 + 𝐽)(𝐽𝐽+ ⋯ + 𝐽1𝐽 + 𝐽0).

𝐽

 (21) 

The closed loop system, with the characteristic equation of Eq. (21), has 2n+1poles in total:  n poles at 0, contributing 

to the stability of the system, and n+1 other poles of choice. After selection of these non-zero poles of choice, Eq. (21) leads 
to n+1 equations which can determine n+1 parameters of the controller, q0 to qn+1 and rn. This is a general discrete solution 

to any first order system with a time delay.  

 

5. Results and Analysis 
This section focuses on specifying the parameters of (18) and assessment of the control system with the use of the 

following realistic values for the system parameters and the sample time: J= 1kg.m2, C=0.1 N.m/s and ts=0.001 s.  

 
5.1. The Proposed Control System 

With the abovesaid parameters and n=1, Eqs. (2) and (9) can be presented as Eqs. (22)-(23): 

𝐽(𝐽) =
𝐽(𝐽)

𝐽(𝐽)
=

𝐽−0.001𝐽

𝐽 + 0.1
 . (22) 

𝐽(𝐽) =
𝐽(𝐽)

𝐽(𝐽)
=

9.9995 × 10−4

𝐽2  − 0.9999𝐽
 . (23) 

With the use of Eq. (23) as the motor model and the aforementioned parameters, Eq. (18) is converted to Eq. (24): 

{
𝐽0 = −2𝐽 + 0.9999,                              

𝐽1 = 1000𝐽2 −  1.9999𝐽 + 999.85  .     
 (24) 

which demonstrates how the controller parameters are obtained using pole placement. Absolute value of motor torque, as the 

control input, is limited to 300 N.m in this paper to have realistic simulations. This imposes nonlinearity in high torques and 
decelerates the convergence to the speed setpoint.  

The proposed control system was created and run in a mixed discrete-continuous model in MathWorks Simulink 

version 24.2, as shown in Fig. 3, with a fixed step Runge-Kutta solver. The solver step size was set equal to the sample time, 

1 ms. The discrete controller is a combination of (14) and (24). The unit of speed in Fig. 3 is rad/s, and the use of other units 
requires the addition of unit change blocks.  

 
Fig.3 The control system without noise and unit change blocks 

 
5.2. The Consequences of Torque Bound and Measurement Noise 

With bounded torque value and without considering speed measurement noise, it was observed that, change of the placed 

pole, p in (24), from 0.1 to 0.8 then to 0.97 does not significantly change the convergence speed. 0.1 is comparably very 

close to zero. and without torque limits, would lead to a much faster response compared to 0.97. However, in the presence 

of torque bounds, the closed loop responses and the control input (torque) diagrams for p of 0.1, 0.8 and 0.97 nearly match; 
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thus, they are not shown in the paper. Use of slower poles, however, decreases the controller magnitude, shown in (25) 

as function of the excitation frequency (ωe).  

𝐽𝐽(𝐽)(𝐽𝐽) =
𝐽1

√(1 + 𝐽𝐽cos (𝐽𝐽))2 + (𝐽𝐽cos (𝐽𝐽))2
 . (25) 

For instance, with p of 0.1, 0.8 and 0.97, r1 in (14) becomes 809.86, 39.96, 0.894, respectively, while the absolute 

value of q0 in (14) differs slightly across the aforementioned poles. A smaller controller magnitude reduces the negative 
effect of measurement noises, because the measurement noise is transferred to the control error.  

As to [13], 0.1% is a reasonable error for a motor speed encoder. As a result, a random value between [-0.1% 0.1%] 

of the actual speed is added as the speed encoder noise to make the simulation further realistic. The impact of noise on 
the response is insignificant in simulations; however, it results in fluctuations of the control input (torque) and raises 

implantability concerns as depicted in Fig. 4. This figure shows the torque demanded by the proposed controller, 

presented by (14) and (24), to track the reference shown in Fig.6.  

 
Fig.4 Torque demanded by the controller of (14) and (24) with different poles for tracking control problem of Fig.6 

 

Fig.4 evidently demonstrates that the controller parameters, calculated in (24), which place the pole of 0.1 are not 
implementable, as they lead to full range, -300 to 300 N.m, fluctuations too frequently. Fluctuation for the pole of 0.8 

are substantial and problematic too.  However, p=0.97 leads to manageable fluctuations in torque and the following 

discrete controller: 

𝐽(𝐽) =
𝐽(𝐽)

𝐽(𝐽)
=

  0.894𝐽 

𝐽 − 0.940
=

   0.894

−0.940𝐽−1 + 1
. (26) 

 or                                                                         U(k)=0.940 U(k-1)+ 0.894 E(k),                                                                  (27) 

where E stands for the control error. Advantageously, (27) is very easy to implement with any digital hardware.  
 
5.3 IMC-PID Feedback Controller for Comparison 

For comparison, with the use of Pade approximation, a feedback continuous IMC-based PID is designed on the 

basis of (2) and the parameter values presented in 5.1, according to the methodology detailed in the appendix of [14] 

and in [15]: 

𝐽(𝐽) =
𝐽(𝐽)

𝐽(𝐽)
=

0.005𝐽2 + 10.0005 𝐽 + 1

10(𝐽 + 0.0005)𝐽
 . (28) 

where λ is the time constant of the controller. The smaller λ, the quicker convergence towards the reference, and the less 
robustness [14]. However, similar to fast poles in the proposed discrete control system, too small values of λ in IMC-PID 



 

 

 

 

 
 

 

112-7 

lead to major torque fluctuations in the presence of measurement noise, as depicted in Fig. 5. Figures demonstrate the control 

input (torque) to track the reference shown in Fig. 6.   
 

 
Figure 5 Torque demanded by the controller of (25) for different values of λ for tracking control problem of Fig.6 

 

Figure 5 indicates that λ= 0.2 results in a manageable torque fluctuation and was chosen for (28): 

𝐽(𝐽) =
𝐽(𝐽)

𝐽(𝐽)
=

0.005𝐽2 + 10.0005 𝐽 + 1

2.005𝐽
= 4.988 +

0.4988

𝐽
+

𝐽

401
. (29) 

 
5.4 Control Performance 

Fig. 6 demonstrates the control performance for the feedback controllers of (27) and (29) with the aforementioned torque 

bounds and sensor noise. Let us define settling time as the time duration from change of the reference till the response settles 
in a 100 rpm vicinity from the reference. With this definition, the longest settling time of the PID controller in Fig.6 is more 

12s; whereas, the settling time for the discrete control system is always shorter than 2s. In addition, the PID controller 

presents noticeable overshoots up to 206 rpm.  

 
Figure 6 Control performance of (27) and (29) 
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4. Conclusion 
This paper reports the design and validation of a model-based digital control system for servo/speed control of a motor 

connected to a mechanical load. Digital or discrete approach to control system design removes the issues of digital 

implementation of control systems designed with continuous mathematics, e.g. sampling-induced delay and bandwidth limit.   

A control system for servo motors has two loops, one inside another. Current control or internal loop merely includes 

electrical components and is very fast compared to the speed or external loop, which has mechanical components; therefore, 
similar to many research works in the literature, this loop was not discussed in this paper.  

In order to design the proposed control system, first, a discrete parametric model of the system was developed with the 

use of zero order hold, considering the communication time delay associated with digital implementation.  With the most 
plausible value of the time delay, a simple discrete controller was proposed and designed based on pole placement. Due to 

the bounds of the control input (torque) and measurement noise, fast poles, with absolute values ≤0.9, lead to frequent and 

substantial fluctuations of torque; this phenomenon was found to be insubstantial with a repeated pole of 0.97. This 
apparently slow pole, in the presence of noise and torque bounds, provides a convergence speed close to the ones of fast 

poles and was used in design. The proposed controller outperforms a more complex feedback IMC-PID controller and 

provides very short (<2s) settling time with almost no overshoot   
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