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Abstract – An analysis scheme for state feedback control of a class of nonlinear stochastic systems with locally conic-type nonlinearities 

is developed, with a focus on the H2 and H∞ performance criteria. The proposed method effectively handles uncertainties in both the 

system’s nonlinearity and the randomly perturbed feedback gains. By utilizing linear matrix inequality techniques, the study presents a 

unified framework capable of analyzing whether H2 and H∞ performance objectives can be realized by state feedback controllers for 

select systems. Example systems that are unstable and chaotic, and where perturbed control gains are used, are provided to demonstrate 

the effectiveness of the proposed approach. 
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1. Introduction 
In this paper, a resilience analysis method for stochastic systems is proposed to evaluate whether a state-feedback 

controlled system satisfies multiple control criteria. The systems considered are discrete-time stochastic nonlinear systems. 

System parameter perturbations and nonlinearities are assumed to lie within a conic uncertainty region, whose boundaries 

are derived using a linear matrix inequality (LMI) formulation. By analyzing the system response in the presence of 
perturbations to the controller gains, the proposed method ensures resilient control.  

Small deviations from the ideal controller gains can lead to significant performance degradation, resulting in a so-called 

“fragile” controller [1]. Examples of such fragility include numerical round-off errors during gain computation, which may 
arise in microprocessor implementations of controllers or observers. Therefore, ensuring resilience—defined as the system’s 

tolerance to deviations in the control gain from its nominal value—is a desirable property. LMI techniques are employed to 

analyze resilient and robust controller properties, including asymptotic stability, H2 and H∞ performance, input strict 

passivity, output strict passivity, and very strict passivity [2], [3].  
Several related works have addressed these concepts in different contexts. For instance, extensions to time-delay systems 

are presented in [4] and [5]; switched systems are studied in [6] and [7]; and mixed criteria control is explored in [8]. Singular 

systems are treated in [9] and [10], while fault-tolerant control for time-varying delay systems is analyzed in [11]. Resilient 
control for networked systems is considered in [12], and sliding mode control for discrete systems is discussed in [13]. The 

works in [14] and [15] investigate H2/H∞ control of state-dependent nonlinear systems with mixed criteria. The current paper 

extends the results in [16–19] to discrete-time uncertain nonlinear systems with uncertainty in the applied control gain. The 
key distinction of this work lies in the stochastic nature of the nonlinear system, which enables the proposed design to 

guarantee resilient properties in the presence of randomness.  

The remainder of this paper is organized as follows. Section II introduces the system model and performance criteria, 

specifically H2 and H∞ norms. Section III presents the derivation of the analysis LMI. Section IV includes several simulation 
examples demonstrating the effectiveness of the proposed method. Finally, conclusions are drawn in Section V.  

The following notation is used in this work: 𝑥 ∈  𝑅 n represents an n-dimensions vector with real elements. 𝐴 ∈
 𝑅𝑚×𝑛  represents an 𝑚 ×  𝑛 matrix with real elements. 𝐴 >  0 implies that matrix 𝐴 is positive definite. The minimum and 

maximum eigenvalue of the symmetric matrix 𝐴 is represented by 𝜆𝑚𝑖𝑛(𝐴) and 𝜆𝑚𝑎𝑥(𝐴) respectively.  
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In [
𝐴 𝐵
∗ 𝐶

], * represents the transpose or 𝐵𝑇 . 𝐸{𝑥} denotes the expectation conditional on x. Lastly the Schur 

compliment lemma is used often and is shown below. 

Lemma 1. Schur complement lemma 

[
𝐴 𝐵
∗ 𝐶

] > 0 is true if and only if 𝐶 >  0 and 𝐴 − 𝐵𝐶−1𝐵𝑇 > 0 

 

2. Problem Formulation 
Let us consider a discrete time nonlinear system, 
 

𝑥𝑘+1 =  𝑓(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) (1) 

 

where 𝑥𝑘  ∈  𝑅𝑥 is the state, 𝑢𝑘  ∈  𝑅𝑢  is the input, and 𝑤 ∈  𝑅𝑤 is an ℓ2 disturbance input. 

A linear state feedback controller is used where it is assumed that there are uncertainties associated with the 

control gain K, the stochastic gain is perturbed as 

𝑢𝑘 =  𝐾𝑥𝑘 =  ∑ Ϛ𝑖 𝐾𝑖

𝑁

𝑖=1

 (2) 

 

where the white noise is defined as zero mean and 𝜎𝑖
2 variance 𝜁𝑖 ∼  (0, 𝜎𝑖

2) and the performance output is 

 

𝑧𝑘 =  𝐶𝑧𝑥𝑘 +  𝐷𝑧𝑢𝑘 +  𝐸𝑧𝑤𝑘 (3) 

 

It is assumed that the linear part of the system can be extracted as 

 

𝑥𝑘+1,𝑙𝑖𝑛 =  𝐴𝑥𝑘 +  𝐵𝑢𝑘 +  𝐹𝑤𝑘  (4) 

 

So, the nonlinear part of the system ℱ is 
 

ℱ𝑘 =  𝑓(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) −  (𝐴𝑥𝑘 +  𝐵𝑢𝑘 +  𝐹𝑤𝑘) (5) 

 
It is also assumed that the nonlinear part of the system satisfies the conic condition 

 

||ℱ𝑘||2 ≤ 𝛼(𝐶𝑓𝑥𝑘
+ 𝐷𝑓𝑢𝑘

+ 𝐸𝑓𝑤𝑘
)

𝑇
(𝐶𝑓𝑥𝑘

+ 𝐷𝑓𝑢𝑘
+ 𝐸𝑓𝑤𝑘

) (6) 

 

for every 𝑥 ∈  𝐷𝑥 , 𝑢 ∈  𝐷𝑢 , and  𝑤 ∈  𝐷𝑤 , where  𝐷𝑥  ∈  𝑅𝑥 , 𝐷𝑢  ∈   𝑅𝑢 , and  𝐷𝑤  ∈   𝑅𝑤 are domains which include the 

origin. 

We will consider the inequality 

 

𝐸𝑥𝑘
{𝑉𝑘 − 𝑉𝑘+1 − 𝛿||𝑧𝑘||2 +  𝜖||𝑤𝑘||2} >  0 (7) 

 

where 𝑉𝑘 is a quadratic energy function 𝑉𝑘 =  𝑥𝑇𝑘 𝑃𝑥𝑘 and 𝑃 >  0. The additional terms in the Lyapunov inequality are 

used to incorporate the H2 and H∞ performance criteria. This allows for the design of various performance criteria, for 

example, setting 𝛿 =  0 and 𝜀 =  0 will lead to mean square asymptotic stability. Setting 𝛿 >  0 and 𝜀 =  0 will yield a 

bound on the energy of the performance output with regards to the initial state x0, 

 

𝐸{∑ ||𝑧𝑖||2

𝑖

} ≤
1

𝛿
𝜆𝑚𝑎𝑥(𝑃)𝐸{||𝑥0||2}  (8) 
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Through the maximization of 𝛿, a bound on the energy of the performance output will be found, which is defined as 
H2 control. 

Similarly, by setting 𝛿 = 1 and 𝜀 < 0 will yield a bound on the energy of the performance output, 

𝐸{∑ ||𝑧𝑖||
2

𝑖

} < −𝜀𝐸{||𝑤𝑖||2} (9) 

 

Through the minimization of ε a bound on the energy of the performance output will be found, which is defined as H∞ 

control. By differing values for 𝛿 and 𝜀 each performance criteria can be selected and each type of controller listed in Table 
1 can be analyzed. In the next section, LMIs are formed to analyze controllers to see if the performance of the controllers 

meets the design criteria shown here. 
 

3. Main Results 
The following are the main results of this work:  

Theorem 1. There exists a resilient state feedback controller 𝑢 =  𝐾𝑥 for the discrete-time system described by (1) and 

(6) with the performance output (3), if the LMI for each case in Table 1 is feasible for some nonlinear bound 𝛼, a positive 

definite matrix 𝑃 >  0 and controller gain 𝐾. If this LMI is satisfied than the controller will be resilient and tolerate an 
uncertainty on the applied gain. 

 

(10) 

𝐻11 =  𝑃 −  𝛿(𝐶𝑧 + 𝐷𝑧𝐾)𝑇(𝐶𝑧 + 𝐷𝑧𝐾) − (𝐶𝑓 + 𝐷𝑓𝐾)
𝑇

(𝐶𝑓 + 𝐷𝑓𝐾) 

− ∑ 𝜎𝑖
2𝐾𝑖

𝑇𝐷𝑧
𝑇𝐷𝐾

𝑁

𝑖=1

− ∑ 𝜎𝑖
2𝐾𝑖

𝑇𝐷𝑓
𝑇𝐷𝐾 −

𝑁

𝑖=1

∑ 𝜎𝑖
2𝐾𝑖

𝑇𝐵𝑇(𝑃 − 𝛼−1)𝐵𝐾

𝑁

𝑖=1

 

𝐻12 =  𝛿(𝐶𝑧 + 𝐷𝑧𝐾)𝑇𝐸𝑧 − (𝐶𝑓 + 𝐷𝑓𝐾)
𝑇

𝐸𝑓 

𝐻22 =  𝜖𝐼 − 𝛿𝐸𝑧
𝑇𝐸𝑧 −  𝐸𝑓

𝑇𝐸𝑓 

 

Case 1. H∞ controller (noise present, δ ≠ 0) 

𝑆1  >  0 

where 𝐻1 > 0 
 

Case 2. H2 controller (non-noisy, δ ≠ 0) 

𝑆2  >  0 
 

where 𝑆3 is obtained from H1 by canceling the second row and column matrices. 

 

Case 3. Asymptotic Stability (non-noisy, δ = 0) 

𝑆3  >  0 
 

where 𝑆3 is obtained from H1 by canceling the second and third row and column matrices. 

 

Proof. Substitute 𝑉𝑘 and 𝑉𝑘+1in (7) to get, 

 

𝐸{𝑥𝑘
𝑇𝑃𝑥𝑘 −  𝛿||𝑧𝑘||2 +  𝜖||𝑤𝑘||2 −  (𝑥𝑘+1,𝑙𝑖𝑛 + ℱ)

𝑇
𝑃(𝑥𝑘+1,𝑙𝑖𝑛 + ℱ)} >  0 (11) 
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Considering the terms inside (11) using Schur’s complement 
 

[
xk

TPxk −  δ||zk||2 +  ϵ||wk||2 𝑥𝑇
𝑘+1,𝑙𝑖𝑛

𝑥𝑘+1,𝑙𝑖𝑛 𝑃−1
] > [ 0 −ℱ𝑇

−ℱ 0
] (12) 

Since, 

[𝛼−0.5ℱ𝑇

𝛼0.5𝐼
] [𝛼−0.5ℱ𝑇 𝛼0.5𝐼] = [𝛼−1ℱ𝑇ℱ ℱ𝑇

ℱ 𝛼𝐼
] (13) 

we have 

[𝛼−1ℱ𝑇ℱ 0
0 𝛼𝐼

] > [ 0 −ℱ𝑇

−ℱ 0
] (14) 

 

So, a sufficient condition for (11) is 

 

𝐸 {[
𝑥𝑘

𝑇𝑃𝑥𝑘 −  𝛿||𝑧𝑘||2 +  𝜖||𝑤𝑘||2 −  𝛼−1ℱ𝑇ℱ 𝑥𝑇
𝑘+1,𝑙𝑖𝑛

𝑥𝑘+1,𝑙𝑖𝑛 𝑃−1 − 𝛼𝐼
]} >  0 (15) 

 

Then using Schur’s complement, we have 
 

𝐸{𝑥𝑘
𝑇𝑃𝑥𝑘 −  𝛿||𝑧𝑘||2 +  𝜖||𝑤𝑘||2 −  𝛼−1ℱ𝑇ℱ − 𝑥𝑇

𝑘+1,𝑙𝑖𝑛(𝑃−1 − 𝛼𝐼)−1𝑥𝑘+1,𝑙𝑖𝑛} >  0 (16) 

 

Using (6) a sufficient condition is 

𝐸{𝑥𝑘
𝑇𝑃𝑥𝑘 −  𝛿||𝑧𝑘||2 +  𝜖||𝑤𝑘||2 −  (𝐶𝑓𝑥𝑘 +  𝐷𝑓𝑢𝑘 +  𝐸𝑓𝑤𝑘)

𝑇
(𝐶𝑓𝑥𝑘 +  𝐷𝑓𝑢𝑘 +  𝐸𝑓𝑤𝑘)

− 𝑥𝑇
𝑘+1,𝑙𝑖𝑛(𝑃−1 − 𝛼𝐼)−1𝑥𝑘+1,𝑙𝑖𝑛} >  0 

(17) 

 

Expand 𝑧𝑘 and 𝑥𝑘+1,𝑙𝑖𝑛 

 

𝐸{𝑥𝑘
𝑇𝑃𝑥𝑘 −  𝛿[(𝐶𝑧 + 𝐷𝑧𝐾)𝑥𝑘 + 𝐸𝑧𝑤𝑘]𝑇[(𝐶𝑧 + 𝐷𝑧𝐾)𝑥𝑘 + 𝐸𝑧𝑤𝑘] +  𝜖||𝑤𝑘||2

− (𝐶𝑓𝑥𝑘 +  𝐷𝑓𝑢𝑘 +  𝐸𝑓𝑤𝑘)
𝑇

(𝐶𝑓𝑥𝑘 +  𝐷𝑓𝑢𝑘 +  𝐸𝑓𝑤𝑘) − [(𝐴 + 𝐵𝐾)𝑥𝑘

+ 𝐹𝑤𝑘]𝑇(𝑃−1 − 𝛼𝐼)−1[(𝐴 + 𝐵𝐾)𝑥𝑘 + 𝐹𝑤𝑘]} >  0 

(18) 

 

Substitute for �̃� and take expectation. 

 

𝑥𝑘
𝑇𝑃𝑥𝑘 −  𝛿[(𝐶𝑧 + 𝐷𝑧𝐾)𝑥𝑘 + 𝐸𝑧𝑤𝑘]𝑇[(𝐶𝑧 + 𝐷𝑧𝐾)𝑥𝑘 + 𝐸𝑧𝑤𝑘] 

+ 𝜖||𝑤𝑘||2 − (𝐶𝑓𝑥𝑘 +  𝐷𝑓𝑢𝑘 +  𝐸𝑓𝑤𝑘)
𝑇

(𝐶𝑓𝑥𝑘 +  𝐷𝑓𝑢𝑘 +  𝐸𝑓𝑤𝑘) 

−[(𝐴 + 𝐵𝐾)𝑥𝑘 + 𝐹𝑤𝑘]𝑇(𝑃−1 − 𝛼𝐼)−1[(𝐴 + 𝐵𝐾)𝑥𝑘 + 𝐹𝑤𝑘] 

− ∑ 𝜎𝑖
2𝐾𝑖

𝑇𝐷𝑧
𝑇𝐷𝐾 − ∑ 𝜎𝑖

2𝐾𝑖
𝑇𝐷𝑓

𝑇𝐷𝐾 −

𝑁

𝑖=1

𝑁

𝑖=1

∑ 𝜎𝑖
2𝐾𝑖

𝑇𝐵𝑇(𝑃 − 𝛼−1)𝐵𝐾

𝑁

𝑖=1

>  0 

(19) 

  

Separate into its quadratic form. 

 

[𝑥𝑘 𝑤𝑘] 𝐻 [
𝑥𝑘

𝑤𝑘
] (20) 

 
where 



 

 

117-5 

𝐻 =  [
ℎ11 ℎ12

ℎ12
𝑇 ℎ22

]  

with 

ℎ11 =  𝑃 −  𝛿(𝐶𝑧 + 𝐷𝑧𝐾)𝑇(𝐶𝑧 + 𝐷𝑧𝐾) − (𝐶𝑓 + 𝐷𝑓𝐾)
𝑇

(𝐶𝑓 + 𝐷𝑓𝐾) − (𝐴 + 𝐵𝐾)𝑇𝐵𝑇(𝑃 − 𝛼−1)

− ∑ 𝜎𝑖
2𝐾𝑖

𝑇𝐷𝑧
𝑇𝐷𝐾 − ∑ 𝜎𝑖

2𝐾𝑖
𝑇𝐷𝑓

𝑇𝐷𝐾 −

𝑁

𝑖=1

𝑁

𝑖=1

∑ 𝜎𝑖
2𝐾𝑖

𝑇𝐵𝑇(𝑃 − 𝛼−1)𝐵𝐾

𝑁

𝑖=1

 

ℎ12 =  𝛿(𝐶𝑧 + 𝐷𝑧𝐾)𝑇𝐸𝑧 − (𝐶𝑓 + 𝐷𝑓𝐾)
𝑇

𝐸𝑓 

ℎ22 =  𝜖𝐼 − 𝛿𝐸𝑧
𝑇𝐸𝑧 − 𝐸𝑓

𝑇𝐸𝑓 + 𝐹𝑇(𝑃 − 𝛼−1)−1𝐹 

Using Schur’s complement to get, 
 

 

(21) 

 

where 

ℎ11
∗ =  𝑃 −  𝛿(𝐶𝑧 + 𝐷𝑧𝐾)𝑇(𝐶𝑧 + 𝐷𝑧𝐾) − (𝐶𝑓 + 𝐷𝑓𝐾)

𝑇
(𝐶𝑓 + 𝐷𝑓𝐾) − (𝐴 + 𝐵𝐾)𝑇𝐵𝑇(𝑃 − 𝛼−1)

− ∑ 𝜎𝑖
2𝐾𝑖

𝑇𝐷𝑧
𝑇𝐷𝐾 − ∑ 𝜎𝑖

2𝐾𝑖
𝑇𝐷𝑓

𝑇𝐷𝐾 −

𝑁

𝑖=1

𝑁

𝑖=1

∑ 𝜎𝑖
2𝐾𝑖

𝑇𝐵𝑇(𝑃 − 𝛼−1)𝐵𝐾

𝑁

𝑖=1

 

ℎ12
∗ =  𝛿(𝐶𝑧 + 𝐷𝑧𝐾)𝑇𝐸𝑧 − (𝐶𝑓 + 𝐷𝑓𝐾)

𝑇
𝐸𝑓 

ℎ22
∗ =  𝜖𝐼 − 𝛿𝐸𝑧

𝑇𝐸𝑧 − 𝐸𝑓
𝑇𝐸𝑓 

 

Then pre and post multiplying by [
𝐼 0 0
0 𝐼 0
0 0 𝑃

] and performing one more Schur’s complement we get 

 

 

(22) 

 

End of the Proof. 

In the case of 𝑖 =  1, the expectation of (22) is evaluated followed by two Schurs complements to separate the (𝑃 −
 𝛼−1) term. 

 

 

(23) 

where 

ℎ11 =  𝑃 −  𝛿(𝐶𝑧 + 𝐷𝑧𝐾)𝑇(𝐶𝑧 + 𝐷𝑧𝐾) − (𝐶𝑓 + 𝐷𝑓𝐾)
𝑇

(𝐶𝑓 + 𝐷𝑓𝐾) − (𝐴 + 𝐵𝐾)𝑇𝐵𝑇(𝑃 − 𝛼−1) 
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−𝜎2𝐾1
𝑇𝐷𝑧

𝑇𝐷𝑧𝐾1 − 𝜎2𝐾1
𝑇𝐷𝑓

𝑇𝐷𝑓𝐾1 − 𝜎2𝐾1
𝑇𝐵𝑇(𝑃 − 𝛼−1)𝐵𝐾1 

ℎ12 =  𝛿(𝐶𝑧 + 𝐷𝑧𝐾)𝑇𝐸𝑧 − (𝐶𝑓 + 𝐷𝑓𝐾)
𝑇

𝐸𝑓 

ℎ22 =  𝜖𝐼 − 𝛿𝐸𝑧
𝑇𝐸𝑧 − 𝐸𝑓

𝑇𝐸𝑓 

 
4. Simulations Studies 

Two systems will be used in simulation to show the effectiveness of the technique. The first system is a simple second 

order unstable system. The second system is Chua’s circuit which exhibits chaotic behavior. The applied control is analyzed 

using the provided method to check if the performance criteria are met. The design parameters are given in Table 2. 
 

Table 2: Design Parameters 

𝛿 𝜀 𝐶𝑧  & 𝐶𝑧 𝐶𝑧  & 𝐶𝑧 𝐶𝑧& 𝐶𝑧 

1 -3 0.1 ∗ 𝐼2 [0.1; 0.1] 0.1 ∗ 𝐼2 
 

Example 1 - Unstable System: Below is the state space model of an unstable second order system 
 

[
𝑥1,𝑘+1

𝑥2,𝑘+1
] = [

1 1.0101
1.0101 1

] [
𝑥1,𝑘

𝑥2,𝑘
] + [

0
−0.01sin (𝑥1,𝑘)] + [

0.02
0.02

] 𝑢𝑘 + [
0.01

0
] 𝑤𝑘  (24) 

 

with the finite energy term having the form of 𝑤𝑘  =  2𝑒𝑘 . 
Next, we use pole placement to stabilize the known linear part of the system. Placing the poles of the system very close 

to zero results in a gain of 𝐾 =  [−127.17 −  199. ]. Then we solve the LMI to determine if our performance criteria are 

still met with an increasing value of 𝜎 . Once the LMI is no longer feasible we have found the maximum value of 𝜎. The 

maximum value results are shown in Table 3. Then applying control where we use the perturbed gain 𝐾𝑝 we get the response 

shown in Fig 1b. 

 
Table 3: Unstable System Performance Criteria 
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Figure 1: Comparison of Open and Closed Loop Responses of an Unstable System 

 

Example 2 – Chua’s Circuit: The second system used is Chua’s circuit and the state space model is 

 

[
�̇�1

�̇�2

�̇�3

] = [
0.909 0.091 0
0.01 0.99 0.01

0 −0.1658 0.9986
] [

𝑥1,𝑘

𝑥2,𝑘

𝑥3,𝑘

] − [
0.091𝑓(𝑥1)

0
0

] + [
0.1
0.1
0.1

] 𝑢𝑘 + [
1
0
0

] 𝑤 (25) 

 

where 

𝑓(𝑥1) =  𝑏 𝑥1 +  0.5(𝑎 − 𝑏)(|𝑥1 + 1| −  |𝑥1 − 1|) 
 

with the parameters 𝛼𝑐 =  8.9, 𝛽𝑐 =  17, 𝜇 =  0.15, 𝑎 =  1.4, 𝑏 =  0.76 The discretized Chua’s circuit with a sampling 

time of 𝑇 =  0.01𝑠 is 

 

[

𝑥1,𝑘+1

𝑥2,𝑘+1

𝑥3,𝑘+1

] = [
0.909 0.091 0
0.01 0.99 0.01

0 −0.1658 0.9986
] [

𝑥1,𝑘

𝑥2,𝑘

𝑥3,𝑘

] − [
0.091𝑓(𝑥1)

0
0

] + [
0.1
0.1
0.1

] 𝑢𝑘 + [
0.1
0
0

] 𝑤𝑘  (26) 

where 

𝑤𝑘 =  𝑒−𝑘 
 

 

 

The open loop response of Chua’s circuit is shown in Fig 2a and is chaotic. The initial values for the state variables are 

chosen to be [1;  1;  1].  

Placing the poles of the system very close to 0.8 results in a gain of 𝐾 =  [−29.6652 −  49.1540 32.0592]. Then we 

solve the LMI to determine if our performance criteria are still met with an increasing value of 𝜎. Once the LMI is no longer 

feasible we have found the maximum value of 𝜎. The maximum value results are shown in Table 4. Then applying control 

where we use the perturbed gain 𝐾𝑝 we get the response shown in Fig 2b. 
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Table 4: Unstable System Performance Criteria  

 
4. Conclusion 

This work has presented resilience analysis of state feedback controllers are analyzed for a class of uncertain discrete-
time nonlinear stochastic systems, focusing on both H2 and H∞ performance criteria. The proposed method accounts for 

uncertainties in both the system’s nonlinearity and the randomly perturbed feedback gain, providing a resilient approach to 

control systems even when the systems gains are imprecise. By leveraging linear matrix inequality techniques, we have 
demonstrated how a unified framework can be developed to address various performance objectives, ensuring improved 

resilience in the control of complex systems. 

 
  

Figure 1: Comparison of Open and Closed Loop Responses of an Unstable System 
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