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Abstract - This paper provides a comprehensive retrospection of the current state of robotics, focusing on enhancing interoperability 

and developer support. This paper examines ROS 1 and ROS 2, highlighting their evolution in design, architecture, and real-world use, 

while addressing new challenges developers face in many different robotics ecosystems. We examine recent developments in cloud-

based frameworks such as RoboKube and FogROS2, which make cloud-robotics integration seamless. This paper also provides detailed 

information on communication protocols such as Cyclone DDS and Zenoh, emphasizing their role in improving time and multi-system 

performance. We analyse these systems and propose strategies to improve efficiency, performance, and ease of use, thereby laying the 

foundation for the next generation of robotics software frameworks. The goal of the survey is to provide researchers and clinicians with 

important insights into the future of robotics and to foster innovation and collaboration within the human community.  
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1. Introduction 
The fast development of robots and the Internet of Things (IoT) has had a revolutionary effect on mankind, with an 

anticipated 75 billion linked devices by 2025. But this has its own set of difficulties as well. The intricacy of robotic systems 

presents formidable obstacles. It gets harder to create software for robots as they get more powerful and adaptable. Traditional 

software development and reuse approaches are insufficient for today's robotic systems, which require specific operating 
systems made for the Internet of Things and robotics [1]. There is no need to develop a universal software solution because 

every robot has a unique hardware setup. 

In light of this, next-generation work that is appropriate for robots and the Internet of Things is required. The growing 

demand for safe, dependable, and expandable platforms that can manage the diverse range of sensors and actuators needed 
by contemporary systems must be satisfied by these systems. robotics day. Even with the success of systems like Robot 

Operating System 2 (ROS 2) [2], it is still very difficult to achieve smooth compatibility and interoperability across many 

platforms and versions. Despite the advancements in ROS 2, it still faces challenges in the integration of different hardware 
components and the complexity of robotics software development. 

The aim of this study is to identify and evaluate a real open-source robotics environment by focusing on ROS 2 

technology as the basis for a next-generation robotics framework. The aim is to provide a middleware solution that solves 
the communication and interoperability problems of multiple robotic systems while meeting the evolving needs of complex 

robotic applications. The middleware processes have facilitated the development of robotic software by providing flexible 

and adaptable processes, while also facilitating interaction with various physical objects. It also provides developers with 

simple design concepts and tools to create advanced robotic applications with unique functionality and performance. These 
middlewares offer new opportunities to create capable, high-performance robotic systems as a groundbreaking alternative to 

resource-constrained platforms.  
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2. Current ROS implementations and their features 
 
2.1. Overview of the First ROS Release 

ROS deviates from the concept of a traditional operating system by acting as a middleware communication layer 

[1]. Its deployment across heterogeneous computing clusters and comparison to existing robot software frameworks are 
noteworthy aspects. The modular architecture of ROS permits developers to construct flexible, utility-based software. 

Moreover, it promotes non-redundancy in design, allowing for further development by other parties. Consequently, ROS 

is recognized as a comprehensive application platform for diverse hardware configurations, research contexts, and 
execution requirements, thereby fostering advancements in robotic technology and innovation [1]. 

The philosophical goals of ROS can be summarized as follows: 

 Peer-to-peer communication model 

 Tools-based development approach 

 Support for multiple programming languages 

 Lightweight architecture 

 Free and open-source distribution 

 

 
Fig. 1: A typical ROS network configuration. 

 
2.2. ROS 2: Evolution in Design, Architecture, and Practical Applications 

Robot Operating System 2, or ROS 2, is a cutting-edge open-source framework designed to offer a stable and 
flexible platform for creating robotic applications, meeting the diverse requirements of the robotics community [2]. In 

contrast to ROS, which was its predecessor, ROS 2 brings several improvements. These improvements include increased 

adaptability, instantaneous response times, and strengthened security features like transport-level encryption that protect 

the privacy and integrity of data sent between nodes. Whereas ROS 1 relied on the TCP protocol, ROS 2 chose a more 
dependable and scalable protocol, DDS (Data Distribution Service), as its main communication middleware. Even while 

ROS 2 outperforms ROS in the aforementioned areas, it still has certain drawbacks [2]. 

The paper presents five case studies across different domains (land, sea, air, space, large-scale), showing how ROS 
2 has accelerated and helped facilitate the deployment of robots in real-world environments. 

It provides security, real-time assistance, and multi-robot communication based on the Data Distribution Service 

(DDS) standard. Better security, reliability, and performance are only a few of the architectural changes and 
improvements of ROS 2 over ROS 1 that are covered in the article. This shows how important ROS2 is for robotics, and 

how it improves the deployment of real time robots in the real world for a variety of different reasons [1] [2]. 

 
2.3. Laying the Groundwork for Cloud-Native Advancements in Robotics 

Robokube is a Kubernetes-based framework that aims to make deploying robotics applications via cloud technology 

straightforward [3]. It tackles issues related to porting traditional robotics apps into cloud-native environments, and 
untangles the mess of setting up network connectivity for systems spanning devices at the edge all the way to the cloud 

core. By walking users through containerization and how ROS nodes should be distributed alongside application 

deployment, RoboKube doesn't aim to do everything [3], it's just enough to kickstart your journey into cloud robotics 
with ROS. The framework is compatible with most Kubernetes distributions but highly recommends K3s due to its 

straightforwardness and ability to support edge computing scenarios. Take a tour on how we achieve this using real-
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world examples such as cloudifying teleoperation testbed— RoboKube stands out as an enabler for marrying robotics with 

clouds thus steering the technological shift towards cloud-native developments in robotics [3]. 

 
2.4. Advancements in Cloud Robotics Frameworks: FogROS2 

In this paper, the authors address the challenges faced by onboard computing resources in robots, which often struggle 

to keep pace with advancements in robotic algorithms and emerging computing hardware. Earlier work established FogROS 
(also known as FogROS1) [12], a framework that extends the Robot Operating System (ROS1) to provide rapid access to 

cloud resources, building based on cloud computing. FogROS1 did, however, have issues with automation, usability, and 

latency. In response, the current paper presents FogROS2, a revamped framework designed to mitigate latency, enhance 
usability, and automate further aspects of deploying robotic code in the cloud, while also broadening the range of potential 

robotic applications. 

FogROS2 has been developed from the ground up to achieve full integration with ROS 2, capitalizing on advancements 

in networking, launch configurability, and command line interface functionality [12]. Additionally, integration points have 
been established with Foxglove to support remote monitoring capabilities from any location worldwide. 

 

 
Fig. 2: Real-time robotics control with FogROS2 and DDS. 

 
2.5. Quantitative analysis of communication handling for centralized multi-agent robot systems using ROS2. 

The application of multi-agent robot systems, specifically mobile robots operating in dynamic human-interactive settings 

such as production environments, has experienced considerable growth in recent years [5]. To gain insights into ROS2 

communication performance under conditions of high network load, this paper investigates the data handling capabilities of 
a single tracking node receiving information from multiple robots within a centralized multi-agent system architecture. A 

quantitative performance analysis is presented comparing two publisher-subscriber communication architectures, employing 

the ROS2 Galactic framework with CycloneDDS, FastDDS, and GurumDDS as the underlying DDS vendors [5]. The 

examined architectures comprise a many-to-one configuration, where all robots communicate over a shared topic, and a one-
to-one configuration, where each robot communicates via a dedicated topic. The study employed single-computer 

simulations, increasing the number of simulated robots and their data publishing rate, to evaluate the performance of each 

DDS implementation. A further simulation using a distributed architecture with CycloneDDS was also conducted [5]. 
The simulation results indicate that, with an increasing node count, the one-to-one communication approach exhibited 

significantly reduced average data age and data miss ratios compared to the many-to-one approach. In the context of system 

startup, CycloneDDS displayed the greatest robustness regarding crashes and response time, while FastDDS demonstrated 
superior performance in mitigating data ageing. On a single-machine implementation, FastDDS excelled in minimizing 

update misses and data ageing; however, it was prone to random crashes during system launch and execution, making it the 

least stable. Consequently, CycloneDDS is favored as a more reliable choice given its absence of crash behavior and its 

improved metrics of data age, update miss ratio, and CPU utilization compared to GurumDDS [5]. 
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Table 1: Average data age with a 1ms update interval. 

 

Robots CycloneDDS FastDDS GurumDDS 

 M2O O2O M2O O2O M2O O2O 

10 0.930 0.990 0.580 0.790 0.900 0.910 

30 15.520 1.870 0.870 0.690 2.800 2.080 

50 70.120 11.400 4.810 1.470 24.470 13.740 

70 173.140 16.860 58.370 20.730 355.120 98.540 

90 811.260 62.460 - - - - 
 

Table 2: The average data age is calculated using a 1ms update interval. 
 

Robots CycloneDDS FastDDS GurumDDS 

 M2O O2O M2O O2O M2O O2O 

10 1.334 1.590 1.259 1.122 1.181 1.837 

30 2.502 1.788 1.340 1.345 1.671 1.707 

50 241.665 2.310 1.710 1.566 405.730 467.093 

70 295.255 13.753 4.697 2.865 83.183 1852.359 

90 228.581 22.758 - - 705.112 469.506 

 
2.6. Systematic Gap Analysis of Robot Operating System in Real-time Systems 

Today, most of the high-tech industrial robots and autonomous vehicles operate within these immediate constraints. 
The Robot Operating System (ROS) is designed as a framework that includes open libraries and tools that facilitate the 

development of robotic applications and devices [4]. A new version of ROS called ROS 2 was developed due to some 

shortcomings of the old version of ROS in the current meeting. ROS 2 includes features such as Data Distribution 
Service (DDS) for instant messaging. However, ROS 2 does not have an immediate impact yet and is therefore still in 

development. 

This paper conducts a literature review focusing on previous studies on the real-world performance of Robot 

Operating System 2 (ROS 2). It addresses the transition to real-time constraints for machine learning and autonomous 
vehicles and the evolution of ROS as a framework to support these applications. Although ROS 2 introduces 

improvements such as the Data Distribution Service (DDS) for real-time communication, it still faces challenges in 

meeting real-time and demand-side requirements, which require continuous improvement [4]. 
In conclusion, while simulation tools are valuable for evaluating system performance, real-time execution 

observations remain paramount due to the dynamic nature of distributed embedded systems [4]. Scheduling methods 

play a critical role in real-time systems, but the trade-off between schedulability and computation overhead necessitates 
further research to strike a balance. 

 
2.7. Priority Scheduling for Periodic Systems Using ROS 2 

This paper introduces a new dynamic priority scheduling algorithm for ROS 2 systems. The algorithm calculates 

callback deadlines based on channel buffer sizes and update rates [10]. We demonstrate its effectiveness with an 

example, showing a reduction in required buffer size compared to the standard single-threaded ROS 2 executor. 
The algorithm assigns deadlines to callbacks based on predicted buffer overflow times. It follows an earliest-

deadline-first scheduling approach. Initially, deadlines are set to infinite, but as new data arrives, the algorithm calculates 

the minimum time difference between arrivals to predict buffer overflow times and set deadlines accordingly [10]. It 
then updates the set of ready callbacks by scanning input buffers, adds newly arrived data to the ready set, and predicts 
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the time for the next trigger instance arrival to minimize middleware interactions. It selects the callback with the earliest  

deadline for execution, prioritizing those with shared deadlines based on buffer utilization and registration order [10]. 

The suggested scheduling technique maintains a buffer usage of no more than 40%, while the ROS2 system can 

reach a maximum of 60%. Also, fewer contacts with the RMW are required than in the ROS2 executor, enhancing 
efficiency. 

             

 
Fig. 3: Comparison of the current and proposed algorithms. 

 

3. Analysing Key Communication Protocols 
 
3.1. Performance Insights on Zenoh, MQTT, Kafka, and DDS 

With the growing demand for faster response times in applications like the Industrial Internet of Things (IoT), there’s a 

noticeable shift from traditional cloud computing toward the edge of the network. This change is driving the popularity of 

the publish/subscribe communication model, which has become a go-to method for sharing information. Two of the most 
widely used protocols in this space are MQTT and Kafka. Additionally, the Data Distribution Service (DDS) has emerged 

as a key player, serving as the communication protocol for ROS 2 (Robot Operating System 2) [2]. This enables efficient 

interactions in robotics applications. Known for its speed, reliability, and decentralized nature, DDS is also widely applied 
in critical industries like military, aerospace, and transportation [5]. 

In their study, the authors dive into a performance comparison of four prominent communication protocols: Zenoh, 

MQTT, Kafka, and DDS. They focus specifically on two important performance metrics: throughput and latency. Zenoh, 

which is a newer protocol based on a data-centric, pub/sub model, stands out for its capabilities in cloud-to-edge and edge 
computing. This makes it especially relevant for IIoT, robotics, and autonomous systems [6].  

The paper not only introduces each protocol but also details the experimental setup and the testing scenarios used in 

their evaluation. The experiments were set up in two different ways: one on a single machine and the other with multiple 
machines connected via Ethernet [6]. Researchers measured the average latency and throughput in both scenarios to see how 

well each protocol performed. For MQTT and Kafka, messages had to go through a broker, while Zenoh used a router to 

ensure fair comparisons, with both the publisher and subscriber running in client mode. To keep the process smooth, the 
team created scripts that automated the measurement of throughput and latency, ensuring a consistent and reliable testing 

environment. The findings reveal that Zenoh outperforms the other protocols in terms of performance. Ultimately, this study 

aims to provide valuable insights to developers, helping them choose the most appropriate communication protocols for their 

specific application requirements [6]. 
 

 
 
 
3.2. Performance Benefits of Zenoh’s Design 

Eclipse Zenoh unifies calculations, data in motion, data in use, and data at rest to provide a complete solution. It achieves 

a degree of time and space efficiency that is superior to mainstream stacks by deftly fusing geo-distributed storage, queries, 

and computations with conventional publish/subscribe techniques. 
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One of Zenoh's key strengths is its fully decentralized architecture, which enhances fault tolerance at the 

communication layer. Zenoh removes the possibility of a single point of failure (SPOF), in contrast to the majority of 

current pub/sub systems that depend on centralized implementations, such MQTT and Kafka, where brokers are 

necessary for connecting peers. Accordingly, Zenoh guarantees strong peer-to-peer connectivity without the risk of 
broker failure, whereas centralized systems may have serious problems. Centralized systems sometimes need extra 

hardware or software resources, including clustering many machines to increase broker availability, to reduce SPOF 

concerns [6]. 
Peer-to-peer communication is made feasible via Zenoh's full distributed architecture, which permits peers to 

connect directly for data exchange whenever practical. This feature aids in avoiding communication snags that are 

frequently connected to centralized brokers. The Mesh and Clique peer-to-peer configurations are among the models 

depicted in the graphic below. 
 

 
Fig. 4: Throughput data in msg/s for the single-machine scenario. 

 

 
3.3. Impact of ROS 2 Node Composition in Robotic Systems 

Node composition allows developers to combine multiple nodes into a single process, either manually or 
dynamically, while keeping their development modular and distributed [7]. This composition model significantly 

enhances the performance of resource-constrained robotic systems by optimizing memory usage, reducing latency, and 

enabling large-scale processing tasks, such as those seen in sensor data pipelines. By benchmarking the Component 

node against traditional multi-process architectures, the research demonstrates notable improvements in both 
computation and memory utilization, especially in applications that involve numerous nodes or require processing large 

amounts of sensor data, like images and point clouds [7]. 

The paper benchmarks different methods of node composition, including manual and dynamic, comparing them 
with standard multi-process systems. Through these experiments, the paper evaluates memory usage, CPU load, latency, 

and data throughput (goodput) on embedded systems such as the Raspberry Pi 4 [7]. The findings show that node 

composition drastically reduces the memory and CPU overhead by minimizing communication delays between nodes. 
Additionally, the use of intra-process communication (IPC) and zero-copy techniques further boosts performance, 

particularly for large message sizes. These improvements make ROS 2 composition a crucial tool for real-time robotic 

applications. The paper also explores the role of executors in task scheduling and system performance, outlining the 

different executor models available in ROS 2 that enable developers to fine-tune system execution [7]. 
 
3.4. ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Cooperation 

The ALLIANCE architecture is designed for fault-tolerant and adaptive control of multi-robot teams, enabling them 

to perform cooperative tasks in dynamic and unpredictable environments [11]. This architecture is fully distributed, 

meaning each robot in the team makes decisions independently without relying on centralized control. The core concept 
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of ALLIANCE revolves around allowing heterogeneous mobile robots to autonomously select their tasks and actions based 

on the overall mission objectives, the status of other robots, and the current environmental conditions [11]. 

In ALLIANCE, each robot is equipped with multiple behavior sets, where each set corresponds to a high-level task 

the robot can perform. The architecture uses behavior-based control, where tasks are represented by behavior sets that 
include specific actions, such as avoiding obstacles, picking up objects, or navigating to a location. The activation of 

these behaviors is regulated by a set of motivational behaviors, which determine when a robot should start or stop a task 

[11].These motivational behaviours are determined by internal factors, notably impatience, which is exhibited by a robot 
taking over a task when it perceives the original robot is not completing it efficiently, and acquiescence, which is a robot's 

tendency to abandon a task if it is not performing optimally or if a robot is better suited. These motivations are essential for 

allowing robots to respond adaptively to failures, inefficiencies, or dynamic alterations in the environment. For example, if 

a robot becomes incapacitated or experiences sensor malfuntion, another robot can takeover its task without the necessity of 
centralized coordination. 

Within this architecture, decision-making is driven by robots actively and continuously evaluating the environmental 

conditions and their teammates' behaviors, while simultaneously broadcasting their individual actions to the entire team. 
Instead of having direct one-on-one discussions, the robots interact via broadcast messages, simplifying the communication 

structure and allowing for higher scalability. This architecture allows robots to flexibly reallocate labor, recover from 

individual robot failures, and assure mission accomplishment without human intervention. The inherent fault tolerance of 
ALLIANCE is a key component that enables the team to carry on efficiently even in the case of a robot failure by reassigning 

its responsibilities to other participating robots [11].   

 
4. Conclusion 

We provide an in-depth analysis of the Robotics Operating System (ROS 2), point out its advantages and disadvantages, 

and sketch out potential directions for future research. Key architectural issues that impede the integration of various robotic 
applications are highlighted by our thorough investigation. Our research has focused on cross-platform operation issues, 

collaboration, and real-time operations, all of which enable us to come up with practical answers. 

Through a deep understanding of the ROS 2 architecture and communications, we are developing strategies to improve 
reliability and enhance developer support. Focusing on performance and efficiency, we have identified a clear path to 

improve and expand the capital structure of ROS 2 by moving to upper-mid-range products such as DDS and FogROS2. 

Our primary findings highlight the need of addressing limits in real-time communication, optimizing resource utilization 
in multi-robot systems, and improving interaction with cloud-based robotics. Additionally, we highlight upcoming ROS 2 

advancements that will facilitate hardware abstraction, guarantee improved support for a variety of devices, and enhance 

security protocols. 

Essentially, our work lays a strong basis for further development of ROS 2 and its use in the broader robotics domain. 
By applying our results to enhance robotic frameworks, researchers and developers might push the boundaries of what the 

next generation of robotic systems can do. The solutions we propose provide the foundation for future robotics advancements 

by providing a way to enhance developer support, scalability, and interoperability. 
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