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Abstract - In order to acquire satisfactory dynamic performance of the active magnetic bearings (AMBs) -rigid rotor system, a design 

method for the proportional-differential (PD) feedback controller based on eigenvalue assignment is proposed. Firstly, the cross-

differential feedback control scheme was introduced, and the four-degree-of-freedom (4-DOF) AMBs-rigid rotor system was transformed 

into two identical 2-DOF sub-systems. Then, aiming at one 2-DOF sub-system, the numerical relation between the PD parameters and 

the closed-loop eigenvalues was obtained through eigenvalue assignment. Moreover, the appropriate eigenvalues of the closed-loop 2-

DOF sub-system were given, and the related PD parameters were obtained. Finally, the designed PD controller based on eigenvalue 

assignment for the AMBs-rigid rotor system was verified to be effective in numerical simulations. 
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1. Introduction 
AMBs completely eliminate the mechanical friction between the bearings and the rotor, which dramatically expand the 

lifespans of rotating machineries. Due to the absence of the mechanical contacts, various rotating machines supported by the 

AMBs can operate at a very high rotational speed. Nowadays, AMBs have been widely used in various rotating machineries, 

such as high-speed motors, air compressors, flywheel energy systems, etc [1]. 

The AMBs-rotor system is inherently unstable, and the design of its controller is necessary and vital to the normal 

operation of the system. Many control methods, such as sliding-mode control [2], robust H control [3], fuzzy control [4], 

LQG control [5], and so on, have been applied to the AMBs-rotor system to obtain good stability and dynamical performance. 

In this paper, a simple design method based on eigenvalue assignment for the PD controller is proposed. Firstly, in order 

to simplify the design process of the PD controller, the 4-DOF AMBs-rigid rotor system is transformed into two identical 2-

DOF sub-systems by applying cross-differential feedback. Then, aiming at one 2-DOF sub-system, the numerical relation 

between the parameters of the PD controller and the closed-loop eigenvalues is derived through eigenvalue assignment. By 

setting proper eigenvalues, the PD controller with desire performance is obtained. The design method of the PD controller 

for the AMBs-rigid rotor system is verified to be feasible and effective in numerical simulations. 

 

2. Model of the AMBs-rigid rotor system 
The structure diagram of the AMBs-rigid rotor system is shown in Fig. 1. 

In Fig. 1, the points O and C denote the geometric and mass center of the rotor, respectively. Since the unbalance mass 

is far smaller than the rotor mass, O and C are almost coincident. la, lb, lsa, and lsb are the axial distances from the AMB-A/-

B and the sensor-A/-B to C, respectively. fxa, fxb, fya, and fyb are the electromagnetic forces provided by the AMB-A and -B in 

x- and y-directions, respectively. The rotor position can be described by the generalized coordinate vector of C, q1=[y x x 

y]T, where x and y denote the deflection angles of the rotor around x- and y-axes, x and y denote the displacements of C in 

x- and y-directions, respectively.  
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Fig. 1: The structure diagram of the AMBs-rigid rotor system. 

 

According to rotor dynamic theory, the motion differential equation of the AMBs-rigid rotor system can be 

described as 

 1 1 1 1 1AMB 1G 1ε  M q G q F F + F&& &  (1) 

where M1 and G1 are the generalized mass matrix and the gyroscopic matrix of the AMBs-rotor system, respectively. F1G is 

the rotor gravity vector, F1AMB is the generalized electromagnetic force vector of the two AMBs, and F1 is the unbalance 

force vector, defined as 

1

0 0 0

0 0 0

0 0 0

0 0 0

r

r

J

m

J

m

 
 
 
 
 
 

M , 
1

0 0 0

0 0 0 0

0 0 0

0 0 0 0

z

z

J

J





 
 
 
 
 
 

G , 
1G

0

0

0

mg

 
 
 
 
 
 

F , 

a a b b

a b

1AMB

a a b b

a b

x x

x x

y y

y y

f l f l

f f

f l f l

f f

 
 


 
  
 

  

F , 

2

u

2

u

1ε 2

u

2

u

( cos sin )

( cos sin )

( sin cos )

( sin cos )

z

z

U

U

U

U

    

   

    

   

 
 

 
  
 

  

F

& &&

& &&

& &&

& &&

. 

where m is the rotor mass. Jz and Jr are the moments of inertia of the rotor around z- and x-(y-)axes, respectively. Uu=mu is 

the amount of the rotor unbalance, where mu is the unbalance mass.  and z are the radial and axial offset of the unbalance, 

respectively.  and  are the angular speed and the rotation angle of the rotor, respectively, which satisfy =d/dt.  

F1AMB can also be written as follows: 

  1AMB 1 i1 c1 h1 b1 F L K I K q  (2) 

where Ki1=diag[ki ki ki ki] and Kh1=diag[kh kh kh kh] are the current and displacement stiffness matrix of the AMBs in the 4-

DOF AMBs-rotor system, respectively, where ki and kh are the current and displacement stiffness coefficients, respectively. 

Ic1 is the control current vector. qb1=L1
Tq is the rotor displacement vector at AMBs position. L1 is the coordinate 

transformation matrix, defined as 
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Due to the gyroscopic effect, the rotational motion around x-axis is coupled with that around y-axis. Besides, it may 

decrease the stability of the AMBs-rotor system when the rotor rotates at a high rotational speed. In order to decouple 
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the 4-DOF AMBs-rotor system and suppress the gyroscopic effect, a cross-differential feedback is introduced to the control 

system, whose matrix can be expressed as 

 
 

1 T 1 1 T

g 1 i1 1 1 i1 1 1 1

     K L K G L K L G L
 (4) 

According to rotor dynamic theory, by applying the cross-differential feedback, the 4-DOF AMBs-rigid rotor system 

system can be decomposed into two 2-DOF sub-systems. After linearizing the electromagnetic force of the AMBs and using 

the PD controller, one of the 2-DOF sub-systems can be written as follows: 
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where M=diag[Jr m] and q=[y x]T are the generalized mass matrix and coordinate vector of the 2-DOF sub-system, 

respectively. Ki=diag[ki ki] is the current stiffness matrix. Kp=diag[p1,p2] and Kd=diag[d1,d2] are the proportional and 

differential feedback matrices, respectively. Kss is the negative displacement stiffness matrix, and L is the coordinate 

transformation matrix, which are defined as 
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The structure of the closed-loop 2-DOF sub-system under the PD control is shown in Fig. 2, where xaref(s)=xbref(s)=0. 

 
Fig. 2: The structure diagram of the AMBs-rigid rotor system. 

 

3. Eigenvalue assignment 
According to Eq.Error! Reference source not found., the closed-loop eigenstructure problem of the 2-DOF sub-system 

can be described as 
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where si is the eigenvalue. vi and wi are the right eigenvector and control vector of the system with respect to si. wi is defined 

as 

 

 
T

2 2

1 2 T

2 2

i

i

i is





   
    

  

vL
w K K

vL

0

0
 (7) 

From (6) we obtain 

 

2

ss i 2 2

i

i

i

s 

 
    

 

v
M K LK

w
0

 (8) 

Suppose that 2

ss i
[ ]i is  KH M LK . Hi is full-rank since rank(LKi) =2. According to PBH-rank criterion [6], the system 

is controllable. Besides, it is obvious that the vector [vi wi]T lies in the null space of Hi.  

The singular value decomposition (SVD) is applied to Hi and we have 
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where PiC22 and QiC44 are both unitary matrices. ()H denotes the conjugate transpose of the matrix (). si=[diag(i1, 

i2) 022], where i1 and i2 are the singular values of Hi. 

The matrix Qi can be partitioned as follows: 
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where EiC22, NiC22, CiC22, and DiC22 are the submatrices of Qi. 

Since each column of the matrix T T T[ ]i iN D  is the base vector in the null space of Hi, 
T T T[ ]i iv w  is a linear 

of the columns of T T T[ ]i iN D , expressed as 
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where giC21 are free complex vectors. 

Combining (7) and (11), we obtain 
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where Di1 and Di2 are the first and second rows of Di, respectively. 
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(12) can be expressed as 
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(13) is an overdetermined linear system of equation for p1, d1, p2, and d2. Thus, in order to make it valid, the 

following conditions should be satisfied: 
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From (14) we know that Y1 must be the linear combination of each row of X1, and Y2 must be the linear combination 

of each row of X2, which can be expressed as 
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Let 
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If s1, s2, s3, and s4 are given, c1, c2, c3, c4, x1, y1, x2, and y2 are uniquely determined, and thus g1 and g2 are also 

uniquely determined. After substituting g1 and g2 into (13), the PD parameters p1, d1, p2, and d2 can be derived. 
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4. Numerical simulation 
The parameters of the AMBs-rigid rotor system are shown in Table 1, where Jz is the moment of inertia of the rotor 

around z-axis, and i0 is the bias current. 

 
Table 1: Caption for table goes at the top. 

 

Symbol Quantity Unit Symbol Quantity Unit 

m 18.09 kg lsa 0.163 m 

Jr 0.2 kgm2 lsb 0.112 m 

Jz 0.0223 kgm2 ki 321.09i0 N/A2 

la 0.155 m kh 847600i0
2 N/(mA2) 

lb 0.105 m I0 1 A 

 

The eigenvalues of the sub-systems are set as s1,2=100j300, s3,4=150j400, and the value of p1, d1, p2, and d2 are 

4564, 3.955, 7564, and 7.822, respectively. The step responses and acceleration responses in the operation are shown as 

follows. 

 
4.1. Step responses 

Suppose that the initial position of the rotor in y-direction at AMB-A and -B, ya0 and yb0, are both -0.24mm, and the 

reference position, yaref and ybref, are both 0mm. After applying the PD control based on eigenvalue assignment, the step 

responses of the rotor displacement in y-direction at AMB-A and -B are shown in Fig. 3.  

 

     
      (a) at AMB-A                         (b) at AMB-B 

Fig. 3: The step responses of the rotor displacement in y-direction. 

 

As is shown in Fig. 3, the AMBs-rigid rotor system controlled by the designed PD controller can achieve fast and steady 

suspension, and the overshoots of the step responses are both smaller than 0.11mm, which is far smaller than 0.24mm, the 

air gap length between the rotor and the backup bearing. 

 
4.2. Acceleration responses 

Suppose that the amount of the unbalance is 310-4kgm, and the axial offset of the unbalance is 0.01m. The displacement 

responses of the rotor in the constant acceleration operation of 100rpm/s are shown in Fig. 4. 
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      (a) at AMB-A in x-direction                (b) at AMB-A in y-direction 

     
      (c) at AMB-B in x-direction                (d) at AMB-B in y-direction 

Fig. 4: The displacement responses of the rotor in the constant acceleration operation of 100rpm/s. 

 

As is shown in Fig. 4, the peak amplitudes of the rotor displacement at AMB-A and -B in x- and y-direction are all 

smaller than 0.048mm, 20% of the air gap length between the rotor and the backup bearing. It is obvious that the AMBs-

rigid rotor system can cross the rigid critical speed safely and operate stably and steady with small vibration in full 

rotational speed range.  

 

5. Conclusion 
This paper proposes a design method for the PD feedback controller based on eigenvalue assignment. The cross-

differential feedback is applied to simplify the controller design process and obtain the 2-DOF sub-systems. After 

assigning the closed-loop eigenvalues, the PD parameters are obtained by eigenvalue assignment. Numerical simulation 

verifies that the design method of the PD controller proposed in this paper is feasible and effective. 
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