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Abstract - This paper studies the trajectory tracking of a network composed of two differential-drive mobile robots. For this purpose, 

the kinematic model is utilized, and a synchronization scheme based on the master-slave configuration is developed. Networks were 

proposed to analyze different cases in the trajectory-tracking problem. To guarantee asymptotic synchronization, the network used 

Lyapunov's theorem to conduct a stability analysis. 
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1. Introduction 
This work proposes the trajectory-tracking problem for a network composed of two differential-wheel robots. The robots 

in the network will go from an initial position pi to a final position pf grouping together on a path defined by kinematic 
modeling and synchronization of complex networks, assuming a mobile robot is a master with a desired path and a mobile 

robot is a slave. 

Some techniques attack the path-tracking problem. In the work of [8], path tracking is carried out using feedback control 

based on the backstepping law for a kinematic and dynamic model. Meanwhile, [6] carries out a study on the stability of 
differential-wheel mobile robots, focusing on the periodic solution based on the kinematic model of the robot based on 

Lyapunov stability.  

In general, the kinematic behavior of a mobile robot is characterized by a mechanical description. The kinematic model 
estimates position and velocity, so the problem of direct kinematics in a differential wheel robot consists of estimating the 

mobile robot's position and orientation from the geometry and speeds of the wheels with respect to a reference frame [5]. 

This paper is organized as follows: Section 2 describes the kinematic model of the mobile robot considered. Section 3 
explains the process and theory for the synchronization of dynamic networks. Section 4 presents a solution to the trajectory 

Tracking problem using the theory of synchronization of complex networks. Section 5 studies the desired position control 

problem for a complex network. Finally, the conclusion is made in Section 6. 

 

2. Kinematic model 
2.1. Differential wheel mobile robot 

The structural properties of mobile robots have been studied by [3]. This work considers a differential wheel robot with 

a pair of wheels with independent angular rotation velocities and a spherical wheel for support (Figure 1).   
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Figure 1: Differential robot with non-holonomic constraints. 

 

The reference plane of the robot is defined by position coordinates and an orientation angle (𝑥𝑝, 𝑥𝑝 , 𝜙) concerning 

the center of mass at point 𝑝, where the orientation angle 𝜙 is considered as the angular difference between the global 

reference frame relative to the origin (𝑋𝑜, 𝑌𝑜)  of the Cartesian plane of  Figure 1 [3]. The rotational speed on the left 

and right wheels 𝜔𝑙  and 𝜔𝑟 , is directly related to the linear and angular velocities in the form: 𝑣𝑙 = 𝜔𝑙𝑑, 𝑣𝑟 = 𝜔𝑟𝑑, 

where 𝑑 is the diameter of the robot wheels, 𝑏 is the distance between the wheel axles and 𝛼 is the distance at 𝑝 point. 
Therefore, the relation between the body velocities and the wheel velocities is given by: 

𝑣 =
𝑣𝑟 + 𝑣𝑙

2
=

(𝜔𝑟 + 𝜔𝑙)𝑑

2
;              𝜔 =

𝑣𝑟 − 𝑣𝑙

𝑏
=

(𝜔𝑟 − 𝜔𝑙)𝑑

𝑏
 (1) 

⇒  

𝜔𝑙 =
𝑣−(

𝑏

2
)𝜔

𝑑
;                 𝜔𝑟 =

𝑣+(
𝑏

2
)𝜔

𝑑
 (2) 

⇒  

𝑣𝑙 = 𝑣 − (
𝑏

2
)𝜔;         𝑣𝑟 = 𝑣 + (

𝑏

2
)𝜔 (3) 

The kinematic model for a differential wheel robot is given: 

�̇� = 𝐽(𝑝)𝑞 = [
cos 𝜙 −𝛼 sin 𝜙
sin 𝜙 𝛼 cos 𝜙

0 1

] 𝑞 (4) 

Where 𝑝 = [𝑥𝑝 𝑦𝑝 𝜙]𝑇 is the global coordinate vector at point 𝑝 and 𝑞 = [𝑣 𝜔]𝑇 = [𝑣𝑝 𝜔𝑝]𝑇   is a vector 

that contains the linear and angular velocities, respectively, 𝐽(𝑝)  is known as the Jacobian matrix and satisfy the 

relationship given in [1]. Then, from (4) one has 

𝑞 = [(J(p))𝑇𝐽(𝑝)]−1�̇� (5) 

⇒  

[

�̇�𝑝

�̇�𝑝

�̇�

]=[
cos 𝜙 −𝛼 sin 𝜙
sin 𝜙 𝛼 cos 𝜙

0 1

] [
𝑣
𝜔

] (6) 

For the differential wheel mobile robot with non-holonomic constraints, in this work is considered the case in which 

the geometric center of the robot is separated at a distance 𝑎 from the position reference point illustrated in Figure 1. 
From the relationship (6), it is possible to obtain a kinematic representation with the following structure. 

[

�̇�𝑝

�̇�𝑝

�̇�

]=[
cos 𝜙 −𝛼 sin 𝜙
sin 𝜙 𝛼 cos 𝜙

0 1

] [

(𝜔𝑟+𝜔𝑙)𝑑

2
(𝜔𝑟−𝜔𝑙)𝑑

𝑏

] 

 

 

(7) 
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2.2. Synchronization condition for complex network 

Let´s consider a complex dynamic network composite by N identical nodes (𝑥𝑖) coupled linearly through the first 
state variable of each node described by [7]: 

�̇�𝑖 = 𝑓(𝑥𝑖) + 𝑢𝑖1  (8) 

With                                           

𝑢𝑖1 = 𝑐 ∑ 𝑎𝑖𝑗Γ𝑥𝑗1

𝑁

𝑗=1

 
(9) 

Where 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑁)𝑇   ∈  ℝ𝑛 is the vector state for the node 𝑖,  �̇�𝑖 represents a dynamic system in the 𝑛𝑜𝑑𝑒 𝑖. 

In this work �̇�𝑖 = (�̇�1, �̇�2)𝑇  and represent the dynamic model for the  master  and slave nodes respectively, 𝑢𝑗1  ∈  ℝ𝑛 is 

the diffusive coupling and represents the control signal for the first variable state on the 𝑛𝑜𝑑𝑒 𝑖, 𝑐 > 0 represents the coupling 

constant between the input signal and the state,  Γ = 𝑑𝑖𝑎𝑔(𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑁  ) is a matrix with constant coefficients and relates 

the state variables coupled in the network. 

For the complex network described in equation (8), the coupling matrix network is defined by: 

𝐴𝑐 = 𝐴(𝑔) − 𝐷(𝑔) (10) 

The coupling matrix 𝐴𝑐  ∈  ℝ𝑛×𝑛 represents the network topology in which if there exists a connection between node 𝑖 

and node 𝑗 of the network, the elements 𝑎𝑖𝑗 ∈ 𝐴𝑐 are defined in equation (11): 

𝑎𝑖𝑖 = − ∑ 𝑎𝑖𝑗 = − ∑ 𝑎𝑗𝑖 = −𝑑𝑖 ,    

𝑁

𝑗=1
𝑗≠𝑖

𝑁

𝑗=1
𝑗≠𝑖

𝑓𝑜𝑟         𝑖 = 1,2, ⋯ , 𝑁. (11) 

The adjacency matrix 𝐴(𝑔) relate the links between the nodes and take the values: 𝑎𝑖𝑗 = 1, otherwise 𝑎𝑖𝑗 =  0 for  𝑖 ≠

𝑗. The degree matrix𝐷(𝑔) is a diagonal matrix which elements 𝑑𝑖𝑗 given by:  

𝑑𝑖𝑗 = {
𝑑𝑖;    𝑖 = 𝑗
0;   𝑖 ≠ 𝑗

 (12) 

Where 𝑑𝑖 is the degree of i-th node and are studied by [2], [7]. Suppose there are no isolated nodes in the network (8), 

then 𝐴𝑐 is a symmetrical and irreducible matrix, in this case 𝐴𝑐 will have an eigenvalue in 𝜆1 = 0 with multiplicity one and 

the other eigenvalues will be strictly negative, so the synchronization of the states of the network (8) can be characterized by 

the non-zero eigenvalues of the matrix 𝐴𝑐.  According to [6] the states of the network (8) are asymptotically synchronized 
if. 

𝑥1(𝑡) = 𝑥2(𝑡) = ⋯ = 𝑥𝑁(𝑡)      𝑤ℎ𝑒𝑛       𝑡 → ∞ (13) 

Where the diffusive coupling condition (13) guarantees that; the state synchronization is a solution 𝑠(𝑡) ∈  ℝ𝑛  of an 

isolated node, that is: 

�̇�(𝑡) = 𝑓(𝑠(𝑡)) (14) 

Where 𝑠(𝑡) can be an equilibrium point, a periodic orbit, or a strange attractor. So, the stability of the state 

synchronization: 

𝑥1(𝑡) = 𝑥2(𝑡) = ⋯ = 𝑠(𝑡) (15) 

This stability will be determined by the dynamics of an isolated node, that is; the function 𝑓, the coupling constant 𝑐, 

the coefficient matrix Γ and the coupling matrix 𝐴𝑐. 

Theorem 1 Consider the dynamic network (8) and let 

0 = 𝜆1 > 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑁 (16) 

The eigenvalues of the coupling matrix 𝐴𝑐. Suppose there exists a diagonal matrix 𝐷𝑛×𝑛 > 0 and two constants �̅� < 0 

and 𝜏 > 0 such that: 

[𝐷𝑓(𝑠(𝑡)) + 𝜂Γ]
𝑇

𝐷 + 𝐷[𝐷𝑓(𝑠(𝑡)) + 𝜂Γ] ≤ −𝜏𝐼𝑛  (17) 

for all 𝜂 ≤ �̅�  where In ∈  ℝ𝑛×𝑛 is the identity matrix, such that: 

𝑐𝜆2 ≤ �̅� (18) 
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Then, the synchronization of the states (15) of the dynamic network (8) will be exponentially stable. Where 𝜆2 < 0, 

so the inequality (18) is equivalent to: 

𝑐 ≥  |
�̅�

𝜆2
|. 

(19) 

 

 
3. Synchronization network for mobile robots 

In this section, the fundamental aspects for the synchronization of mobile robot networks will be described, based 

on the synchronization of dynamic networks which have been recently studied by [1] and [6], among others. According 
to (8) and (9), a master-slave network is depicted in Figure 2, whit kinematic model for the master node described as 

follow: 

[
�̇�₁₁
�̇�₁₂
�̇�₁₃

] = [

(1/2)𝛼(cos 𝜙)(𝜔𝑟 + 𝜔𝑙) − (𝑎/𝑏)𝛼(sin 𝜙)(𝜔𝑟 − 𝜔𝑙) + 𝑢₁₁

(1/2)𝛼(sin 𝜙)(𝜔𝑟 + 𝜔𝑙) + (𝑎/𝑏)𝛼(cos 𝜙)(𝜔𝑟 − 𝜔𝑙) + 𝑢₁₂
(1/𝑏)𝛼(𝜔𝑟 − 𝜔𝑙) + 𝑢₁₃

] (20) 

And the slave node: 

[
�̇�₂₁
�̇�₂₂
�̇�₂₃

] = [

(1/2)𝛼(cos𝜙)(𝜔𝑟 + 𝜔𝑙) − (𝑎/𝑏)𝛼(sin𝜙)(𝜔𝑟 − 𝜔𝑙) + 𝑢₂₁

 (1/2)𝛼(sin𝜙)(𝜔𝑟 + 𝜔𝑙) + (𝑎/𝑏)𝛼(cos𝜙)(𝜔𝑟 − 𝜔𝑙) + 𝑢₂₂
(1/𝑏)𝛼(𝜔𝑟 − 𝜔𝑙) + 𝑢₂₃

] (21) 

 
Figure 2: Master Slave Network configuration for differential wheel robots. 

With the coupling matrix defined as: 

𝐴𝑐 = [
0 0

−1 −1
] (22) 

Which is a symmetric and irreducible matrix and eigenvalues 𝜆₁ = 0 and 𝜆2 = −1 < 0 [1]. Where the diffusive 

coupling condition for this case will be: 𝑢₁₁ = 𝑢₁₂ = 𝑢₁₃ = 0, 𝑐 ≠ 0 since a11 = 𝑎12 = 0, and 𝑢₂₁ = 𝑐(𝑎₂₁𝑥₁₁ +
𝑎₂₂𝑥₂₁), 𝑢₂₂ = 𝑐(𝑎₂₁𝑥₁₂ + 𝑎₁₂𝑥₂₂), 𝑢₂₃ = 𝑐(𝑎₂₁𝑥₁₃ + 𝑎₂₂𝑥₂₃),with 𝛤 = 𝑑𝑖𝑎𝑔(1,1). So, the states of the slave robot 

(21) will be asymptotically synchronized with the states of the master robot (20) if 𝑥₁(𝑡) = 𝑥₂(𝑡) 𝑤ℎ𝑒𝑛 𝑡 → ∞. 
Definition. The states of the system nodes (20) and (21) are asymptotically synchronized if: 

lim
𝑡→∞

‖𝑒(𝑡)‖ = 0 (23) 

Regardless of the initial conditions of 𝑥₁(0) and 𝑥₂(0), where e(𝑡) = (𝑒₁(𝑡), 𝑒₂(𝑡), 𝑒₃(𝑡))𝑇 represents the error 

synchronization with: 
𝑒₁(𝑡)   =  𝑥₁₁(𝑡) − 𝑥₂₁(𝑡)
𝑒₂(𝑡)   =  𝑥₁₂(𝑡) − 𝑥₂₂(𝑡)
𝑒₃(𝑡)   =  𝑥₁₃(𝑡) − 𝑥₂₃(𝑡)

 (24) 

Then, the error dynamics defined by (23) will be: 
�̇�₁(𝑡)   =  �̇�₁₁(𝑡) − �̇�₂₁(𝑡)
�̇�₂(𝑡)   =  �̇�₁₂(𝑡) − �̇�₂₂(𝑡)
�̇�₃(𝑡)   =  �̇�₁₃(𝑡) − �̇�₂₃(𝑡)

 (25) 

Replacing the equation (25) on to (20) and (21) we have the error dynamic as: 

{[
�̇�₁₁
�̇�₁₂
�̇�₁₃

] = [
−2𝑐𝑒₁ + (𝑑𝜔𝑟 + 𝑑𝜔𝑙2sin(((𝑥₂₃ + 𝑥₁₃)/2))cos(((−𝑒₃)/2)) − 𝑐𝑒₁

 (𝑑𝜔𝑟 + 𝑑𝜔𝑙)(cos(𝑥₁₃) − cos(𝑥₂₃)) − 𝑐𝑒₂
−𝑒₃

] (26) 

Thus, the asymptotic stability at zero of the error dynamics (23) can be determinate by the following theorem. 
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Theorem 2 The state vectors of the slave robot (21) and the master robot (20) are asymptotically synchronized for the 

condition (13) if: 

𝑙𝑖𝑚
𝑡→∞

‖𝑒(𝑡)‖ =0 (27) 

Where the error synchronization vector is considered in equations (24) and (25). 

 

Proof. A stability analysis by Lyapunov theorem’s, is carried on the equation (26) for the network composed of two 
mobile robots in order to guarantee (27): 

{[
�̇�₁₁
�̇�₁₂
�̇�₁₃

] = [
−2𝑐𝑒₁ + (𝑑𝜔𝑟 + 𝑑𝜔𝑙2sin(((𝑥₂₃ + 𝑥₁₃)/2))cos(((−𝑒₃)/2))

 (𝑑𝜔𝑟 + 𝑑𝜔𝑙)(cos(𝑥₁₃) − cos(𝑥₂₃))
0

] − [
−𝑐𝑒₁ 0 0

0 −𝑐𝑒₂ 0
0 0 −𝑒₃

] (28) 

Which is satisfied for the origin with 𝜔𝑟 = 𝜔𝑙 = 0. Proposing a candidate Lyapunov function as: 

𝑉(𝑒, 𝑡) =
1

2
∑ 𝑒𝑖

3

𝑖=1

 (29) 

Whose time derivative is given as: 

�̇�(𝑒, 𝑡) =
1

2
∑ 𝑒𝑖�̇�𝑖

3

𝑖=1

= −3𝑐𝑒₁² − 𝑐𝑒₂² − 𝑐𝑒₃² (30) 

To satisfy stability asymptotically it is necessary that: 

�̇�(𝑒, 𝑡) = 𝑉(𝑒, 𝑡) = −𝑒𝑇𝑄𝑒 = −𝑒 [
−𝑐𝑒₁ 0 0

0 −𝑐𝑒₂ 0
0 0 −𝑒₃

] 𝑒 (31) 

From condition (29), the function it is negative definite for any c > 0, so it follows that the origin of the dynamical 
system defined by the error (25) is asymptotically stable in the Lyapunov sense. This guarantees that the synchronization 

will be exponentially stable. For the condition (18), there exists a coupling constant 𝑐 ≥ �̅�, such that the dynamic network 

composed of (20) and (21) can synchronize. To satisfy the condition (19) is necessary chose a constant 𝜂 >  0, such that zero 
is an equilibrium point of the dimensionless system. 

𝐷𝑓(𝑠(𝑡)) + 𝜂𝛤 (32) 

Which is equivalent to find an isolated node with constant 𝜂 > 0, such that the feedback system with −𝜂𝑥₁  can stabilize 

the isolated node [1]: 
�̇�1 = 𝑓₁(𝑥) − 𝜂𝑥₁  

�̇�2 = 𝑓₂(𝑥) − 𝜂𝑥₂ (33) 

�̇�3 = 𝑓₃(𝑥) − 𝜂𝑥₃  

which for a particular value 𝜂 = 1 can be stabilized ∎. 
 

4. Experimental results 
In order to synchronize the network for mobile robots in the master slave configuration (20), (21) with kinematic model, 

suppose in the master network (20) a parametric variation on the left wheel, in order to create a trajectory using the function: 

𝜔𝑖  =  𝑓(𝜔𝑖) = {

1.2; 𝑡 ≤ 10
0; 10 < 𝑡 < 25
2;

0.6;
25 < 𝑡 < 40

𝑡 > 40

 (34) 

Figure 3 shows the master node with a circular path and the slave robot following a straight line path with a coupling 

constant zero (𝑐 =  0), in this case, there will be no state synchronization, as show in third column of Figure 3.  
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Figure 3: The first and second columns show the individual trajectories of each robot in the network; the third column corresponds to 

the lack of synchronization for c = 0. 

 

For values of the coupling constant 𝑐 >  0, the states of both mobile robots begin to couple, for values slightly 

higher than 0 (𝑐 =  0.01). When a coupling constant 𝑐 =  1 is considered, and an error synchronization is observed in 

the third column on Figure 4, with the convergence to zero in condition (27) for the trajectory errors 𝑒1(𝑡); 𝑒2(𝑡); 𝑒3(𝑡)  

in the network (8) composed by (20) and (21).   
 

 
Figure 4. Trajectories and error for the tracking problem in network of two nodes. 
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In addition to coupling constant 𝑐 >  0,angular velocities in the wheels for the master and slave nodes are considered, 

with: 𝜔𝑙_𝑠𝑙𝑎𝑣𝑒  =  1.2 rad/s, 𝜔𝑟_𝑠𝑙𝑎𝑣𝑒  =  1.2 rad/s,  𝜔𝑟_𝑚𝑎𝑠𝑡𝑒𝑟 =  1.2 rad/s  and 𝜔𝑙_𝑚𝑎𝑠𝑡𝑒𝑟 =  𝑓(𝜔𝑙) described by the 

function (34), in order to trace the trajectories of each robot in the network (8). 
The trajectory synchronization of mobile robots with kinematic model (20) and (21) is shown in Figure 5 for trajectories 

with a coupling constant c = 1, in the third column the synchronization of states trace a line inclined at 45 degrees, which 

indicates that the trajectory of states 𝑥1(𝑡)  =  𝑥2(𝑡) is the same in (13).  On the other hand, in the first and second columns 
of Figure 5, the space states for the master node (20) and the slave node (21) are the same as proposed in the condition form 

equation (13). 

 
Figure 5. Synchronization of network composed by two differential wheel mobile robots with constant velocities 𝜔𝑖_𝑠𝑙𝑎𝑣𝑒  =  1.2 and 

𝜔𝑟_𝑠𝑙𝑎𝑣𝑒  =  1.2 for the slave robot and 𝜔𝑖_𝑚𝑎𝑠𝑡𝑒𝑟 =  𝑓(𝜔𝑖) and 𝜔𝑟_𝑚𝑎𝑠𝑡𝑒𝑟 =  1.2 for the master node. 

 

These computational results suggest that state synchronization is possible for a set of mobile robots with a kinematic 
model.    

         

5. Conclusion 
This work shows the possibility of synchronizing mobile robot network trajectories using only the first state of the master 

mobile robot kinematic model. For the case of path tracking where the working environment is known, it sufficient control 

of the angular velocity of a single wheel to obtain the velocity, position, and synchronization network of differential-wheel 
mobile robots. Furthermore, asymptotic trajectory synchronization is possible for a network formed by two differential-

wheel mobile robots through the complex network theory. Future work includes experiments for more than two mobile 

robots, including obstacle avoidance and studies for different network topologies. 
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