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Abstract - Complex non-square systems require optimal control strategies due to the challenge of limited controllability and 

observability. This paper proposes a new technique which would be an extension to a Sliding mode control scheme in which trajectories 

are driven towards a sliding surface, guaranteeing closed loop stability. In this proposed extension, sliding mode control is applied to 

single input-multiple output nonlinear underactuated system involving a real time estimation of the hyperplane transformation matrix to 

optimally track specific states. System modeling uncertainty due to unknown parameters is also fixed by implementing a real time 

estimation for the system parameters. Optimal tracking of specified states was demonstrated in each case, and improvement in control 

effort was seen when on-line parameter estimation for the system model was introduced. 
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1. Introduction 
Non-square systems have unequal number of outputs and inputs and are ubiquitous in engineering. Such systems can be 

classified into underactuated (greater number of outputs compared to inputs) and over-actuated (greater number of inputs 

compared to outputs) systems. There is increased difficulty in designing control schemes for such systems because of the 

lack of controllability and observability of a specific state. One way this problem has been solved is by transformations 

wherein the number of outputs is made equal to the number of the inputs either by reducing or increasing the number states 

based on the system type. Singular value decomposition (SVD) is one of the oldest methods used for designing the control 

schemes for non-square systems [1-2]. While this method has been used for designing different types of control strategies, 

its highly impractical to implement it in real time due to its computational costs. It’s also sensitive to noise and disturbance 

with an inability to account for actuator constraints making it ineffective.  

Cascaded control also known as loop separation is another method wherein the system states to be controlled are split 

into different loops. This method is beneficial for controlling non-square systems as it helps in the control allocation among 

actuators efficiently and stabilizes the system when the loop responses are at different rates [3-4].  Even though cascaded 

control is a great strategy it has difficulties in terms of tuning, disturbance rejection and loop coordination while 

implementation.  

Sliding mode control (SMC) is a well-established control scheme in which state trajectories are driven toward a 

constructed sliding surface on which trajectories are global asymptotically stable. But controlling non-square systems with 

SMC is notoriously difficult due to their noninvertible input gain matrix. Current approaches of controlling non-square 

systems with SMC include dynamic extension, wherein the derivatives of inputs are considered as additional inputs, making 

the system square. Alternatively, the Moore-Penrose Pseudoinverse [5-6] can be applied to the input gain matrix to make the 

system square. The drawback to these approaches is that they only allow for perfect tracking of one state, which is determined 

by the dynamics of the system being controlled.  

This issue can be addressed with the application of the hyperplane transformation matrix [7], which instead of increasing 

the number of input states as in dynamic extension or applying a pseudoinverse matrix, reduces the number of outputs of the 

system to be equal to the number of inputs. In doing so, the choice of hyperplane transformation matrix can be made to 

specify which state is weighed more in the control effort, enabling perfect tracking of a specified state.  

In this paper, we propose a novel extension of this technique that involves uniting the time varying hyperplane 

transformation matrix with on-line parameter estimation to allow for real time estimation of the hyperplane transformation 

to optimally track specified states. This novel control scheme is then applied to an example non-square system with non-

unitary input gain. Additionally, the control effort is improved by implementing on-line system parameter estimation. 
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2. Hyperplane Transformation Matrix Estimator Architecture 
The estimation of the hyperplane transformation matrix [T] is handled by a gradient estimator which is used to drive the 

tracking error of weighted states to zero. This is done by defining different weighting of specific states in the prediction 

error, which drives the estimator. A gradient estimator is chosen for its simplicity and applicability to linear parametrization 

models whose representation is same as the hyperplane transformation, which is given by, 

y = Tx (1) 
 The form of the linear parametrization models required for gradient estimation necessitates the estimation of the 

transpose of the hyperplane transformation matrix 𝑻𝑻, which is inconsequential as the output of the estimator can simply be 

transposed to return the hyperplane transformation matrix. The prediction error chosen to drive the gradient estimator is 

given by Eq. (2).  

e = x̃TTT − x̃TQTTT (2) 
 Where "Q” is the weighting matrix that controls which, states are estimated and the tracking error vector, �̃�, serves as the 

excitation of the estimator. A steady state hyperplane transformation matrix can only be reached by either minimizing 

tracking error in the case where a state is heavily weighted by the "Q" matrix or minimizing the entry in the hyperplane 

transformation matrix corresponding to the state when it is not heavily weighted. This suggests that for a specified state to 

be tracked, the weighting matrix should be a diagonal matrix corresponding to the specified desired state. The hyperplane 

transformation matrix (transpose) update from the gradient estimator is given by Eq. (3) 

d

dt
(TT) = −p0

∂(e2)

∂(TT)
= −p0x̃e (3) 

 With "p0" being the estimator gain. The lack of explicit reference to any model suggests that this estimator architecture 

can be applied to any system and eventually to a model free controller [8].  

 
2.1. Implementation of Hyperplane Transformation Matrix in SMC 

  

The system model chosen to implement the hyperplane transformation matrix was based on a nonlinear two mass-spring-

damper system with an applied force on one of the masses. This system was selected for its open loop stability and the 

model’s state space representation is given by Eq. (4). 
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Where 𝑘1, 𝑘2, 𝑚1,𝑚2, 𝑏1, 𝑏2 are all system parameters that are unknown, bounded and constant in time while B is the 

non-unitary input gain which is equal to 
1

𝑚1
 . For notational purposes, the model can also be expressed as Eq. (5), with the 

definitions of its terms given from Eqs. (6)-(10). 

 

ẍ = K1f1(x) + K2f2(x) + B1g1(ẋ) + B2g2(ẋ) + Bu (5) 
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For this system, the sliding surface is defined by Eq. (11) 

s = ẏ − ẏd + λ(y − yd) (11) 
Differentiating the sliding surface, yields Eq. (12). 

ṡ = ÿ − ÿd + λ(ẏ − ẏd) (12)
According to hyperplane transformation, 

y = Tx (13) 
The derivatives of 𝑦 are given by differentiating Eq. (13),  

ẏ = Tẋ + Ṫx (14) 

ÿ = Tẍ + 2Ṫẋ + T̈x (15) 
Plugging in Eq. (14) and Eq. (15) to Eq. (12) gives, 

ṡ = Tẍ − Tẍd + 2Ṫ(ẋ − ẋd) + T̈(x − xd) + λT(ẋ − ẋd) + λṪ(x − xd) (16) 
Further calculations can be simplified using the function definition in Eq. (17). 

Γ = −Tẍd + 2Ṫ(ẋ − ẋd) + T̈(x − xd) + λT(ẋ − ẋd) + λṪ(x − xd) (17) 
This finally gives Eq. (18) for the derivative of the sliding surface. 

ṡ = Tẍ + Γ (18) 
Plugging in the system model equation (Eq. (5)), to Eq. (18) gives Eq. (19). 

ṡ = T(K1f1(x) + K2f2(x) + B1g1(ẋ) + B2g2(ẋ)) + TBu + Γ (19) 
Trajectories on the sliding surface should be forced to stay on the sliding surface. To force this to be the case, Eq. (19) 

is set to zero and the control effort is solved for given by Eq. (20).  

𝑢 = −(𝑇𝐵)−1(𝑇(𝐾1𝑓1(𝑥) + 𝐾2𝑓2(𝑥) + 𝐵1𝑔1(�̇�) + 𝐵2𝑔2(�̇�)) + Γ) (20) 
A switching gain must be added so that surfaces off the sliding surface are driven towards it, satisfying the sliding 

condition 𝑠�̇� ≤ −𝜂|𝑠| and guaranteeing global asymptotic stability of trajectories. Ensuring that the switching gain is placed 

in the correct location to satisfy the sliding condition and replacing system parameters with best estimates yields Eq. (21). 

u = −(TB)−1 (T (K̂1f1(x) + K̂2f2(x) + B̂1g1(ẋ) + B̂2g2(ẋ)) + Γ + Ksgn(s)) (21) 

To solve for the switching gain, the sliding condition must be used, with substitution of �̇� followed by 𝑢. Doing so yields 

Eq. (22): 
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−η|s| ≥ sṡ = T(K1f1(x) + K2f2(x) + B1g1(ẋ) + B2g2(ẋ))s

 −TB(TB̂)
−1
(T (K̂1f1(x) + K̂2f2(x) + B̂1g1(ẋ) + B̂2g2(ẋ)) + Γ + Ksgn(s)) s + Γs (22)

 

Simplifying Eq. (22) requires the simplification given by Eq. (23). 

(TB)(TB̂)
−1
= ((T1 T2) (

B
0
))((T1 T2) (

B̂
0
)) = (T1B)(T1B̂)

−1
= BB̂−1 (23) 

Substituting Eq. (23) in Eq. (22) gives Eq. (24),  

−η|s| ≥ sṡ = T ((K1 − BB̂
−1K̂1)f1(x) + (K2 − BB̂

−1K̂2)f2(x) + (B1 − BB̂
−1B̂1)g1(ẋ) + (B2 − BB̂

−1B̂2)g2(x)) s

+(1 − BB̂−1)Γs − BB̂−1K|s| (24)
 

Since the real values of the system parameters are unknown but bounded, their best estimates can be geometric mean of 

the upper and lower bounds defined in Eqs. (25)-(30).  

k̂1 = √k1,uk1,l (25) 

k̂2 = √k2,uk2,l (26) 

b̂1 = √b1,ub1,l (27) 

b̂2 = √b2,ub2,l (28) 

m̂1 = √m1,um1,l (29) 

m̂2 = √m2,um2,l (30) 
A gamma function is defined for the simplification of Eq. (24), 

BB̂−1 =  γ (31)
Using these expressions, Eq. (24) can be solved for the switching gain, leading to Eq. (32). 

K|s| ≥ T(K1  γ − K̂1)f1(x)s + T(K2 γ − K̂2)f2(x)s + T(B1 γ − B̂1)g1(ẋ)s

 +T(B2 − BB̂
−1B̂2)g2(x)s + ( γ

−1 − 1)Γs + γ−1η|s| (32)
 

To be the most conservative, the absolute value of each term is taken so that the |𝑠| terms cancel, resulting in Eq. (33). 

K = |T(K1  γ − K̂1)f1(x)| + |T(K2 γ − K̂2)f2(x)| + |T(B1 γ − B̂1)g1(ẋ)|

 +|T(B2 − BB̂
−1B̂2)g2(x)| + |( γ

−1 − 1)Γ| + γ−1η (33)
 

Using the methods outlined in [9], the discontinuous signum function can be replaced with a smooth saturation function 

with a dynamic boundary later. Doing so removes chattering, smoothing the control effort. The updated control effort 

becomes Eq. (34),  

u = −(TB)−1 (T (K̂1f1(x) + K̂2f2(x) + B̂1g1(ẋ) + B̂2g2(ẋ)) + Γ + K
∗sat(s/ϕ)) (34) 

With 𝐾∗(𝒙) given by Eq. (35).  

K∗(x) = K(x) − ϕ̇ (35) 
 

The sliding condition with the new boundary layer becomes Eq. (36), which forces trajectories outside of the boundary 

layer to be forced towards the boundary layer. The controller form in Eq. (34) can be shown to reproduce the updated sliding 

condition, Eq. (36).  

sṡ ≤ (η − ϕ̇)|s|, |s| > ϕ (36) 
Update in the boundary layer is given by Eq. (37), with its initial condition given by Eq. (38). 

ϕ̇ + λϕ = K(xd) (37) 
ϕ(0) = η/λ (38) 

The control system parameters 𝜂 and 𝜆 will dictate the convergence and control effort. When implementing the 

hyperplane transformation matrix estimator, a small constant 𝛿 was added to the product "(TB)" in Eq. (12) so that the 

reciprocal does not diverge if the first entry of the hyperplane transformation matrix is near zero.  
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2.2. Real Time Estimation of system parameters 

To avoid the impact of the additional system parameter uncertainty, the system parameters were estimated in real time. 

This was done with a least-squares estimator with exponential forgetting [10] with prediction error given by Eq. (39) 

e = Wâ − ẍ (39) 
 With excitation matrix “W” given by Eq. (40) and estimated parameter matrix given by Eq. (41). In Eq. (40), the vectors 

separated by commas indicate matrix concatenation, so that "W” is a 2 × 7 matrix.  

W = [f1(x), f1(x), f2(x), g1(x), g1(x), g2(x), (
1
0
) u] (40) 

â = (
k1
m1

k1
m2
   
k2
m2

b1
m1
  
b1
m2

b2
m2

B)
T

(41) 

The form of the excitation for the system parameter estimator leverages the linear form of the model given by Eq. (5) 

and only requires nonzero excitation to achieve convergence, not perfect tracking of states. The update of the system 

parameter guesses is given by Eq. (42). 

ȧ̂ = PWTe (42) 
With the estimator gain matrix, "P”, calculated with Eq. (43) 

Ṗ = λfP − PW
TWP (43) 

With "𝜆𝑓" being the forgetting factor. Since the system parameters are now being estimated in real time, gain margins 

can no longer be used to simplify the switching gain expression. 

 

3. Simulation Results for Hyperplane Transformation in SMC 

The estimator for the hyperplane transformation matrix was implemented on the nonlinear, second order spring mass 

damper system defined in Eq. 4. Real time estimation of the system parameters is carried out to improve the control effort of 

the sliding mode controller. The control system designed was simulated in Simulink and MATLAB using an ode5 solver and 

was tested for tracking both the states 𝑥1 and 𝑥2. The key simulation parameters used in the testing of this control law are 

detailed in Table 1. To test the hyperplane transformation matrix estimator, an initial guess of T0 = (. 1 . 1) was considered 

and the weight matrix, "Q", was varied. 

Table 1: Key simulation parameters for unitary input gain simulations. 

Parameter Range Value 

𝑘1 [1, 2] 2 

𝑘2 [1, 3] 2.5 

𝑏1 [2,4] 3.5 

𝑏2 [3, 5] 3 

𝑚1 [5,15] 10 

𝑚2 [15,25] 20 

�̂�1 N/A √2 

�̂�2 N/A √3 

�̂�1 N/A 2√2 

�̂�2 N/A √15 

𝜅1 N/A √2 

𝜅2 N/A √3 

𝛽1 N/A √2 

𝛽2 N/A √5/3 

𝜂 N/A 0.35 

𝜆 N/A 30 

𝛿 N/A 0.01 

𝑝0 N/A 1 

𝑥1𝑑 N/A sin(𝜋𝑡/2) 
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𝑥2𝑑 N/A (1/2) sin(𝜋𝑡/3) 
 

3.1 Tracking of state 𝐱𝟏 

 

The system was simulated for 𝑡 = 25 using a time step of 𝑑𝑡 = 0.0001. To track state 𝑥1, a weight matrix of 𝑸 = 

(
1 0
0 0

) was chosen. Fig. 1 shows that a close to perfect tracking of the desired state 𝑥1 is achieved by the controller. 

 

 
 

Fig. 1: Tracking of States 𝒙𝟏 and 𝒙𝟐 while Hyperplane transformation matrix is estimated to track state 𝒙𝟏. 

 

This tracking is achieved through rapid convergence to an ideal hyperplane transformation matrix, shown in Fig. 2. 

 

 
 

Fig. 2: Estimation of hyperplane transformation matrix and the prediction error driving estimation. 

 

 The control effort remains smooth as seen in Fig. 3. The magnitude of the control effort is attributed to the complexity 

of the system with a nonunitary input gain. 
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Fig. 3: Control effort with estimation of the hyperplane transformation matrix to track state 𝒙𝟏 of nonunitary input gain system with 

system parameter estimation. 

 

The sliding surface remained within the boundary layer, so the sliding condition was met for all time, shown in Fig. 4. 

The magnitude of the sliding surface remains well within the boundary layer and near zero, due to the elimination of the 

error between estimates of system parameters and their true values.  

 

 
 

Fig. 4: Sliding surface inside boundary layer and the sliding condition being satisfied (𝒔�̇� ≤ (�̇� − 𝜼)|𝒔| for |𝒔| > 𝝓) for the system. 

 

3.2 Tracking of state 𝐱𝟐 

 

To track state 𝑥2 the same system parameters and configuration was considered except for the weight matrix, 𝑸 = 

(
0 0
0 1

). It can be seen from Fig. 5 that a good tracking of the state 𝑥2 was achieved.  

 

 
Fig. 5: States a) 𝒙𝟏 and b) 𝒙𝟐 of the nonunitary input gain system with system parameter estimation. Hyperplane transformation matrix 

is estimated to track state 𝒙𝟐. 

 

The remaining simulation results for tracking the state 𝑥2 are identical to the results obtained for tracking state 𝑥1. The 

control effort is smooth, and the boundary layer and the sliding condition were satisfied proving the stability of the system.  

 

 

I.  Conclusion 

A novel application of SMC to non-square systems involving the real time estimation of the hyperplane transformation 

matrix using a gradient estimator to allow for optimal tracking of specified states has been proposed. The control law was 

implemented for a spring mass damper nonlinear system with nonunitary input gain. Simulation of the non-square system 

shows that perfect tracking of desired states is achieved with a smooth control effort that may be implemented on a real 
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system. The sliding condition remains met for all time, guaranteeing stability of the system. High frequency oscillations in 

the control effort stemming from an unmodeled disturbance introduced to the control law to prevent divergence of the system 

were investigated and eliminated with real time estimation of system parameters.   

In the future, this technique will be further tested through implementation on non-square systems with more than two 

outputs states. The hyperplane transformation matrix estimator will also be implemented in a model-free SMC architecture 

to allow for model free control of non-square systems.  
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