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Abstract - This study presents an online Particle Swarm Optimization (PSO)-based approach for controlling chemical processes with 

delay dynamics, by adaptively tuning time-varying Proportional-Integral (PI) controller gains. In the developed method, the swarm is 

reseeded at each sampling instant, around the time-varying PI gains computed by a tuning mechanism, and searches for improved gains 

in a narrowed region. For the tuning mechanism, the Dahlin method is employed to generate the initial time-varying PI gains, which 

depend on the time-varying delay of the mixing tank at each control iteration. Around these gain points, new particles are sampled from 

a Gaussian distribution, and the most suitable gains are selected using a fitness function based on tracking error. This enables the PSO 

algorithm to perform fast and stable fine-tuning in a narrow parameter space, enhancing search efficiency, reducing overshoot and 

oscillations, while retaining the stability and proximity-to-optimality advantages of the classical tuning technique. The developed Dahlin 

tuning-based online PSO refined PI controller is applied to a nonlinear mixing tank system and compared with a conventional Dahlin 

tuning-based PI controller in simulations. The developed controller demonstrated better regulation performance than the conventional 

Dahlin tuning-based PI controller, and it became more robust to disturbance effects.  
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1. Introduction 
Online tuning of PI/PID controllers aims to automatically adjust controller gains during operation, enabling adaptation 

to time-varying process dynamics and reducing the need for manual re-tuning. While suitable online tuning algorithms can 

effectively adapt controllers as system behavior evolves, many approaches require inducing oscillations or perturbations to 

converge to the desired parameters [1]. For instance, classical methods, such as the Ziegler–Nichols tuning technique, can 

drive the system into sustained oscillations, potentially causing temporary instability or process saturation [2]. In general, 

difficulties in online tuning include disrupting the process during tuning, the need for sufficient system stimulation for some 

algorithms to be successful, and maintaining robust performance under all conditions [2-6]. Therefore, online tuning methods 

should be supervised and used within safe operating ranges for industrial applications.  

Dahlin’s tuning method is a direct synthesis approach for digital controller design, providing an aperiodic response with 

the targeted time constant, especially in processes with first-order plus dead time (FOPDT) models. [3]. This method can 

perform more consistently in processes with large delays than classical PID settings [3]. Indeed, the advantages of the Dahlin 

method in chemical process control have been demonstrated in studies [7-8]. However, its direct use in nonlinear systems 

poses limitations. Applying the Dahlin method to a linearized model at each operating point can result in abrupt control 

actions or undesired ringing [8-9]. Hence, Dahlin method-based controllers are frequently integrated into gain scheduling or 

adaptive frameworks [10-11].  

Analytical tuning methods, such as the Dahlin method, are typically based on a nominal process model and compute 

controller parameters. However, in practical applications, the actual process dynamics may deviate from the assumed model, 

or more optimal tuning points may exist. As a result, researchers have increasingly explored the idea of optimizing controller 

parameters. In this context, heuristic optimization algorithms have emerged as powerful tools for enhancing control 

performance beyond the limitations of model-based analytical tuning [12-15]. Particle Swarm Optimization (PSO), a 

heuristic approach, has been utilized in PI/PID controller tuning [16-17]. The role of PSO is to search for controller 
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parameters that will optimize a specific performance index beyond classical tuning rules [4, 5]. In the literature, PSO-

based tuning has been successfully applied to chemical processes [18-22]. Furthermore, PSO has been used to find 

optimal PID gains in nonlinear or unstable systems [20-21].  

The advantage of PSO is that it can compensate for model errors or uncertainties in the optimization process, even 

if a model is required in advance. By searching within the parameters determined by analytical tuning, PSO can find a 

better solution based on the actual system performance metrics [6]. This approach presents a hybrid method that 

combines the strengths of model-based and heuristic methods: the tuning algorithm provides a fast initial controller 

tuning for the system, while the PSO optimizes the performance criteria by fine-tuning around this starting point [7, 8]. 

This paper presents a Dahlin tuning-based online PSO refined PI controller, where the initial gains are calculated using 

the Dahlin tuning method and subsequently refined online via a PSO algorithm. In the developed controller, PSO 

particles are reseeded at each iteration around externally supplied PI controller gains, computed using the Dahlin method 

and Gaussian sampling. By restricting the search space to a limited region around good initial values, the algorithm 

ensures enhanced transient performance without destabilizing the system. In contrast to conventional Particle Swarm 

Optimization (PSO) implementations, which disperse particles across the entire parameter space, this method capitalizes 

on previously identified good parameter regions. This allows for efficient tuning with a reduced number of particles and 

iterations.  

The rest of the paper is organized as follows: Section 2 explains the Dahlin tuning method and the PSO algorithm; 

Section 3 describes the developed Dahlin tuning-based online PSO refined PI controller. In Section 4, the mixing tank 

system equations and simulation results comparing the developed controller with a conventional Dahlin tuning-based PI 

controller are presented. Section 5 concludes the paper. 

 

2. Background 
This section presents the background of the study. 

 
2.1. Dahlin Tuning Method 

The Dahlin tuning rule is a model-based PI/PID control tuning method explicitly developed for time-delay systems. 

This method operates on the system's FOPDT model and calculates the desired closed-loop behavior directly, as 

described in [3]. A FOPDT model is given as follows. 

 

𝐺(𝑠) =  
𝐾

𝜏𝑠 + 1
𝑒−𝑠𝐿 (1) 

  

Herein, 𝐾, 𝜏 and 𝐿 are process gain, time constant, and time delay, respectively. If a desired closed-loop time constant 𝜏𝑐 is 

defined, the PI controller gains and the PI controller equation might be given as follows [3]. 

 

𝐾𝑃 =  
𝜏

𝐾(𝜏𝑐 + 𝐿)
 (2) 

𝐾𝐼 =  𝐾𝑃/𝜏 (3) 

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡′)𝑑𝑡′

𝑡

0

 (4) 

 

where 𝐾𝑃 is proportional gain, 𝐾𝐼 is integral gain, 𝑡 is current time, 𝑒(𝑡) is instantaneous tracking error, 𝑢(𝑡) is control signal, 

and 𝑡′ corresponds to the integral variable. 
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2.2. Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a nature-inspired, population-based, derivative-free optimization algorithm that 

that iteratively evolves particles of candidate solutions by minimizing a defined fitness function [9]. Its main idea is that a 

a collection of particles acts together to find the best solution in the search space by mimicking the foraging behaviour of 

of bird flocks. Each particle represents a potential solution, and each particle updates its position (𝑥𝑖) and velocity (𝑣𝑖) in 𝑁-

in 𝑁-dimensional search space by learning from its personal best (𝑝𝑖) and the best position found by the swarm (𝑔), gradually 

converging toward the global optimum. The updated velocity and position for 𝑣𝑖 and 𝑥𝑖 are presented by Eqs. (5) - (6). 

 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 − 𝑥𝑖(𝑡)) (5) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (6) 

 

where 𝑤, 𝑐1, 𝑐2 are the inertia weight, cognitive coefficient, and social coefficient, respectively, and 𝑟1, 𝑟2 denote random 

numbers in [0, 1]. 𝑤𝑣𝑖(𝑡) term preserves the particle's previous velocity trend, 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖(𝑡)) term tries to pull the particle 

into its best experience, and 𝑐2𝑟2(𝑔 − 𝑥𝑖(𝑡)) guides the particle towards the best experience of the swarm. 
 

3. Developed Dahlin tuning-based online PSO refined PI controller 
Considering a time delay chemical process, the developed Dahlin Tuning-based Online PSO refined PI controller closed-

loop scheme is given as in Fig. 1. Herein, 𝑟, 𝑦(𝑡), 𝑒(𝑡) = 𝑟 − 𝑦(𝑡), 𝐾𝑃′(𝑡), 𝐾𝐼
′(𝑡), 𝐾𝑃(𝑡), 𝐾𝐼(𝑡), 𝐿(𝑡), 𝑢(𝑡) denote reference 

of closed-loop, output of closed-loop at time 𝑡, tracking error at time 𝑡, initial value to be used as particle center for PSO at 

time 𝑡, initial value to be used as particle center for PSO at time 𝑡, updated proportional gain after the PSO round at time 𝑡, 

updated integral gain after the PSO round at time 𝑡, a known time varying delay of chemical process at time 𝑡, and PI 

controller output, respectively.  

 

 
Fig. 1: The developed Dahlin tuning-based online PSO scheme. 

 

 PSO algorithm is initialized by defining an inertia weight 𝑤, cognitive coefficient 𝑐1, social coefficent 𝑐2, particle 

number 𝑁, and maximum iteration number 𝐾, initial search spreads 𝛿𝐾𝑃
 and 𝛿𝐾𝐼

 (standart deviations) around the Dahlin-

derived gains 𝐾𝑃′ and the 𝐾𝐼′; each particle velocity 𝑣𝑖, and personal best position 𝑥𝑏𝑖 are set to 0. Its personal best fitness 

value 𝑥𝑏𝑣𝑖, and global best fitness value defined as 𝑔𝑏𝑣 are set to infinity. Global best position of the entire swarm, defined 

as 𝑔𝑏, is initialized to [𝐾𝑃
′ (𝑡); 𝐾𝐼

′(𝑡)], which has first gains that are found using Dahlin tuning. 

Following the FOPDT modelling of time delay chemical process, the transfer function is obtained as given in Eq. 1. 

Considering Eq. (2) and Eq. (3), the identified FOPDT model parameters 𝐾, 𝜏, and time-varying delay 𝐿(𝑡) of the system 

are employed to compute the initial parameters of the PSO algorithm, according to Eqs. (7) – (8).  

 

𝐾𝑃′(𝑡) =  
𝜏

𝐾(𝜏𝑐 + 𝐿(𝑡))
 

(7) 

 

𝐾𝐼′(𝑡) =  𝐾𝑃′(𝑡)/𝜏 (8) 
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To adapt to unmodeled dynamics and disturbances, then, each particle 𝑖 is generated using a Gaussian distribution 

𝒩 to form a population of 𝑁 particles by: 

 

𝑥𝑖 = [𝐾𝑃
′ (𝑡); 𝐾𝐼

′(𝑡)] + [𝛿𝐾𝑃
𝒩(0,1); 𝛿𝐾𝐼

𝒩(0,1)] (9) 

 

where 𝑥𝑖 corresponds to the particle position of 𝑖. Assuming a one-step-ahead control action that is computed the current 

error 𝑒(𝑡) = 𝑒 that comes from the closed-loop (Fig. 1), its integral ∫ 𝑒(𝑡′)𝑑𝑡′
𝑡

0
= 𝑒𝑖𝑛𝑡, 𝑖’s particle proportional gain 𝐾𝑃𝑖

and 

𝑖’s particle integral gain 𝐾𝐼𝑖
, for each particle 𝑖, at current iteration 𝑘 of the PSO algorithm, one-step ahead control action 

𝑢𝑝𝑟𝑒𝑑𝑖
 is computed as in Eq. (10) where 𝑇𝑠 denotes the sampling time. 

 

𝑢𝑝𝑟𝑒𝑑𝑖
(𝑘𝑇𝑠) = 𝐾𝑝𝑖

𝑒 + 𝐾𝐼𝑖
𝑒𝑖𝑛𝑡    (10) 

 

Herein, 𝐾𝑃𝑖
= 𝑥𝑖(1) and 𝐾𝐼𝑖

= 𝑥𝑖(2). Assuming a one-step-ahead model instead of using a linear model or a complete model 

for faster evaluation with a low computational load, for each particle 𝑖, at current iteration 𝑘 of the PSO algorithm, the fitness 

value 𝐽𝑖 is defined as an absolute error for each particle. 

 

𝐽𝑖(𝑘𝑇𝑠) = |𝑒 − 𝑢𝑝𝑟𝑒𝑑(𝑘𝑇𝑠)|    (11) 

 

For each particle 𝑖, at current iteration 𝑘, 𝑥𝑏𝑣𝑖, 𝑥𝑏𝑖, 𝑔𝑏𝑣 and 𝑔𝑏 values are updated according to 𝐽𝑖. Considering Eqs. 5 and 

6, the new position and new velocity are computed as in Eqs. (12) - (13). 
 

𝑣𝑖((𝑘 + 1)𝑇𝑠) = 𝑤𝑣𝑖(𝑘𝑇𝑠) + 𝑐1𝑟1(𝑥𝑏𝑖  − 𝑥𝑖) + 𝑐2𝑟2(𝑔𝑏 − 𝑥𝑖) (12) 

𝑥𝑖((𝑘 + 1)𝑇𝑠) = 𝑥𝑖(𝑘𝑇𝑠) + 𝑣𝑖((𝑘 + 1)𝑇𝑠) (13) 

 

where 𝑤, 𝑐1, 𝑐2 are the inertia weight, the cognitive coefficient, and the social coefficient, respectively, and 𝑟1 and 𝑟2 are 

random numbers in (0, 1), and they are generated for each particle 𝑖. Upon the completion of the iterations for the PSO 

algorithm, the pair (𝐾𝑃(𝑡), 𝐾𝐼(𝑡)) corresponding to the global best position 𝑔𝑏 is selected for use in the PI controller as in 

Eq. (4) in every control iteration of the closed-loop. 

 

4. Results and Discussion 
The developed Dahlin Tuning-based Online PSO refined PI controller scheme was applied to the mixing tank 

system.  

 
4.1. Mixing Tank  

       Considering the mixing tank system in Fig. 2, two hot and cold streams enter the tank. 𝑊1(𝑡) (kg/s), 𝑊2(𝑡) (kg/s) show 

the mass flows of the hot and cold liquid streams, respectively. 𝑇1(𝑡) (K) and 𝑇2(𝑡) (K) are the hot liquid temperature and 

the cold liquid temperature. 𝑇3(𝑡) (K) is the temperature inside the tank, while 𝑇4(𝑡) (K) is the temperature value measured 

by the sensor at the end of a 38.1 m long pipe that exits the tank. TT, TC, and the Set Point correspond to the temperature 

transmitter, the temperature controller, and the reference value for the temperature transmitter. The controller output adjusts 

cold liquid mass flow by controlling a valve.  

       Certain assumptions have been made on the system, including the assumption that the liquid volume in the tank is 

constant, that the tank components are well mixed, that the tank and pipe are well insulated, and that the temperature 

transmitter is calibrated to convert temperature values between 310.93 K and 366.48 K to fractions. The equations for the 

system are presented below [10]. 
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𝑊1(𝑡)𝐶𝑝1𝑇1(𝑡) + 𝑊2(𝑡)𝐶𝑝2𝑇2(𝑡)-(𝑊1(𝑡) + 𝑊2(𝑡))𝐶𝑝3𝑇3(𝑡) = 𝑉𝜌𝐶𝑣3
𝑑𝑇3(𝑡)

𝑑𝑡
 (14) 

𝑇4(𝑡) = 𝑇3(𝑡 − 𝐿(𝑡)) and 𝐿(𝑡) = 𝑙𝐴𝜌/(𝑊1(𝑡) + 𝑊2(𝑡)) (15) 

𝑑𝑉𝑝(𝑡)

𝑑𝑡
= [𝑚(𝑡) − 𝑉𝑝(𝑡)]/𝜏𝑣𝑝

  (16) 

𝑊2(𝑡) =
500

60
𝐶𝑉𝐿𝑉𝑝(𝑡)√𝐺𝑓𝛥𝑃𝑣  

(17) 

 

𝑑𝑇𝑂(𝑡)

𝑑𝑡
=

[(𝑇4(𝑡) − 310.93)/55.55 − 𝑇𝑂(𝑡)]

𝜏𝑇
 

(18) 

 

 

Herein, 𝐶𝑝1, 𝐶𝑝2, and 𝐶𝑝3 (J/(kg · K)) denote the constant‐pressure specific heat capacity of the liquids, and 𝜌 (kg/m3) 

is the density of the mixing tank fluids. 𝑉 (m3) represents the liquid volume, while 𝐶𝑣3 (J/(kg · K)) is the constant-volume 

specific heat capacity. The parameters 𝑙, 𝐴, 𝐿 correspond to the pipe length (m), pipe cross-sectional area (m2), and time 

delay (s), respectively. Control input 𝑚(𝑡) ∈ [0, 1] is the fractional valve command, 𝜏𝑣𝑝
 represents the time constant (s) of 

the actuator, and 𝑉𝑝  ∈  [0, 1]  represents the fractional valve position—zero indicating fully closed and one fully open. Valve 

flow coefficient is 𝐶𝑉𝐿 ((m3/s)/Pa0.5), 𝐺𝑓 is the specific gravity, and 𝛥𝑃𝑣 (Pa) is the pressure drop across the valve. Finally, 

𝑇𝑂(𝑡) ∈ [0, 1] is the fractional temperature transmitter output, and 𝜏𝑇 (𝑠) is the time constant of the temperature transmitter.  

 

 
Fig. 2: Mixing tank [11]. 

 
4.2. Simulation Results  

The FOPDT model of the mixing tank, as presented in subsection 4.1, is derived from the process reaction curve and is 

given as follows [24-25]. 

 

𝐺(𝑠) =  
𝑋(𝑠)

𝑈(𝑠)
=

−46.8

139.2 + 1
𝑒−178.2𝑠 (19) 

 

where 𝑋(𝑠), 𝑈(𝑠) are the temperature transmitter output, controller output, and they are the deviation variables that are 

fractional expressions. Therefore, 𝑢(𝑡) = 𝑚(𝑡) − �̅�, 𝑋(𝑡) = 𝑇𝑂(𝑡) − 𝑇𝑂̅̅ ̅̅  and tracking error 𝑒(𝑡) = 𝑟 − 𝑇𝑂(𝑡) are taken 

[10]. Herein, �̅�,  𝑇𝑂̅̅ ̅̅̅, 𝑟 are the steady-state values of the controller output, temperature transmitter output, and reference of 

the closed-loop as in Fig. 1. Therefore, 𝑢(𝑡) ∈ [−0.478, 0.522] is in a controller design. The mixing tank model has been 

developed using Eqs. (14) - (18) in the Simulink environment. The parameters of the equations have been obtained from 

[10]. 𝑇1 and 𝑇2 are set to 393.15 K and 283.15 K. In the simulation, 𝑊1(𝑡) has been varied over time as a disturbance effect. 

In the developed Dahlin Tuning-based Online PSO refined PI controller, following parameter assignments are made: for the 

PSO part, 𝑐1, 𝑐2, 𝑁, 𝐾, 𝛿𝐾𝑝
, 𝛿𝐾𝑝

, 𝑇𝑠 are set to 0.5, 1, 10, 20, 0.05, 0.01, 1 s, respectively; whereas for the Dahlin tuning part, 
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considering Eqs. (7) - (8) and (19), the time constant 139.2 s, 𝐾 = −46.8, 𝜏𝑐 = 𝐿(𝑡) s [3] and time varying delay 𝐿(𝑡) (s) is 

computed as in Eq. (15). The simulation time in the Simulink environment is 36000 s, the sampling time is 1 s, and 𝑟 is 0.5. 

The developed controller is compared to a conventional Dahlin tuning-based PI controller [10] and its parameters are 

computed as 𝐾𝑃 = −0.5 and 𝐾𝐼 = −0.0035. Tracking performance of controllers for transmitter output 𝑇𝑂(𝑡), time varying 

delay 𝐿(𝑡) and time evolution of 𝑊1(𝑡) are given in Fig. 3, Fig. 4 and Fig. 5. Comparison of controllers regarding overall 

error, steady state error in terms of mean absolute error (MAE), settling time according to 2% criterion, and overshoot 

percentage is given in Table 1 [12]. 

  
            Fig. 3: Tracking performance of controllers for             Fig. 4: Time evolution of time varying delay 𝐿(𝑡). 

                          transmitter output 𝑇𝑂(𝑡).                

 

 
Fig. 5: Time evolution of 𝑊1(𝑡).                

                

While the developed Dahlin tuning-based online PSO refined PI controller demonstrates better performance in terms of 

overall tracking error, steady-state error, and overshoot percentage compared to the conventional Dahlin tuning-based PI 

controller, it does require a longer settling time to reach its final value. This trade-off suggests that Dahlin tuning-based 

online PSO refined PI controller sacrifices a degree of responsiveness to achieve tighter regulation and reduced oscillation. 

The settling time values in Table 1 represent settling times when the first disturbance effect is introduced as in Fig. 5, but 

subsequently developed Dahlin tuning-based online PSO refined PI controller demonstrates a smaller settling time for later 

disturbances compared to other controller as in Fig. 3, it can be inferred that the developed Dahlin tuning-based online PSO 

refined PI controller, while less effective in first disturbance rejection, ultimately offers better long-term performance. 
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Table 1: Comparisons of tracking performance of the developed controller and the conventional Dahlin-tuning based PI controller  

 
Controller Overall MAE 

error 𝑒(𝑡) 

Steady State MAE 

error 

𝑒𝑠𝑠(𝑡) 

Settling time (s) Overshoot (%) 

The Developed Dahlin 

Tuning-based Online 
PSO refined PI 

controller  

0.0072 3.1286e-07 7020 0 

Conventional Dahlin 
tuning-based PI 

Controller 

0.1925 0.3291 6660 7.98 

 

The developed controller gains 𝐾𝑃, 𝐾𝐼 and controller signals are given in Figs. 6, and 7, respectively. The control signal 

transition for the developed controller is markedly smoother and entirely free of ringing phenomena compared to the other 

controller, indicating better damping and robustness during disturbance changes. 

  
                     Fig. 6: Time evolution of developed controller   Fig. 7: Time evolutions of controller signals. 

        gains 𝐾𝑃(𝑡) and 𝐾𝐼(𝑡).   

 

5. Conclusion 
This paper presents a Dahlin tuning-based online PSO refined PI controller scheme. This scheme is a hybrid scheme 

that incorporates the initial gains of PSO, which are tuned using Dahlin tuning. Hence, an adjustment can be made to account 

for the time delay effect, and then fine-tuning can be performed using an online PSO algorithm. The developed controller is 

applied to a mixing tank system and compared with the conventional Dahlin tuning-based PI controller. According to 

simulation results, the Dahlin tuning-based online PSO refined PI controller exhibits better performance in terms of overall 

error, steady-state error, and overshoot, while it generally has a lower settling time compared to the other controller for 

disturbance changes. 
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