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Abstract– Performance of the automatic transcription of out-of-vocabulary (OOV) words into their corresponding 

phoneme sequences has been difficult to get improved because using a single approach does not suffice to cover 

most of the problems existing in grapheme-to-phoneme (G2P) conversion. Therefore, we employ a novel phoneme 

transition network (PTN)-based architecture for G2P conversion that allows various approaches to be combined to 

treat different kinds of related problems simultaneously. This proposed approach first uses different approaches to 

convert an input word into various phoneme sequences. Second, it generates a confusion network from these 

obtained sequences and then applies our proposed model prioritization voting algorithm for selecting the best 

scoring phoneme sequence from the generated PTN sequence. Evaluation results using the CMUDict corpus show 

that the proposed approach achieves higher word accuracy than previous baseline approaches (p < 0.005). 
 

Keywords: grapheme-to-phoneme conversion, multiple approaches combination, phoneme transition 

network (PTN), model prioritization voting schemes. 

 

 

1. Introduction 
The automatic phoneme prediction of arbitrary text, usually known as grapheme-to-phoneme (G2P) 

conversion, plays an important role in speech synthesis system because the knowledge relating to the 

process of word reading instead of the orthographic representing of the word is required.  

Over the last few years, many well-known data-driven approaches such as the G2P conversion based 

on Hidden Markov Model (Ogbureke et al., 2010), joint-sequence models (Bisani et al., 2008), Weighted 

Finite-State Transducer (WFST) (Novak et al., 2012), have been proposed with good accuracy. However, 

in terms of performance improvement, it seems very difficult and limited to use a single approach to deal 

with a variety of problems existing in G2P conversion because each approach was designed using 

different techniques to address different challenges (Kheang et al., 2014b).  

Therefore, inspired by Furuya et al. (2012) and Kanda et al. (2013), in this paper, we present a novel 

phoneme transition network (PTN)-based G2P conversion that allows many different approaches to be 

applied together to possibly solve different kinds of related problems. First, it converts a target word into 

many phoneme strings using various data-driven approaches: a multi-layer artificial neural network 

(ANN) using both grapheme and phoneme contexts (Kheang et al., 2014a), joint-sequence models (Bisani 
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et al., 2008), and a WFST-based approach (Novak et al., 2012). Second, it generates a PTN using the 

obtained phoneme sequences and then selects the best phoneme from each block between two nodes in 

the PTN—a PTN bin—to represent the final output. For the best output phoneme selection, in this study, 

we also propose a model prioritization voting algorithm that is more accurate than the voting algorithm 

implemented in the NIST Recognizer Output Voting Error Reduction (ROVER) system (Ficus, 1997).  

 

2. PTN-based G2P Conversion 
 

2. 1. Six Data-Driven Models for G2P Conversion 
Many data-driven approaches for G2P conversion have been proposed, but the joint-sequence models 

implemented in Sequitur-g2p (Web-1) and the WFST-based G2P conversion available in Phonetisaurus 

toolkit (Web-2) have proven to be the most powerful statistical approaches for dealing with OOV words. 

In addition, the use of the context information of each output phoneme in our two-stage ANN-based G2P 

conversion has also proven to be important for increasing the accuracy of OOV words (Kheang et al., 

2014a). In order to build our new approach, we therefore used three kinds of existing approaches, the G2P 

conversions based on joint-sequence models, WFSTs, and ANNs, to implement six different models. 

The first model is a statistical joint-sequence model-based G2P conversion built in the Sequitur-g2p 

toolkit (Bisani et al., 2008). The second model refers to the original WFST-based approach proposed by 

(Novak et al., 2012), which was implemented to develop a rapid and high quality joint sequences-based 

G2P conversion model. For the third model, we integrated a specific grapheme generation rule (GGR) 

listed in Table 1, into the previous WFST-based model to allow the addition of extra detail to the vowel 

graphemes appearing in a given word (Kheang et al., 2014b); the rule in Table 1 can distinguish the 

separated vowel V in the CVC pattern and the last vowel Vn in the V1V2...Vn pattern from the connecting 

vowels V1, V2, ..., Vn-1 in the V1V2...Vn pattern. According to the first-stage of our previous two-stage 

ANN-based G2P conversion (Kheang et al., 2014a), three other remaining models were implemented 

based on the ANNs using a context window of plus/minus x graphemes (i.e., a window of 2x+1 

graphemes) as input and a window of plus/minus y phonemes as output of the network; in this study, we 

used 17 graphemes (i.e., x = 8) and three different values of y (i.e., y = {0, 1, 2}) for three different 

models (i.e., ANN1, ANN3 and ANN5 depicted in Fig.1). By displaying all the output windows one after 

another, Fig.1 demonstrates that there are 2y+1 columns of phonemes, and hence 2y+1 different phoneme 

sequences can be extracted vertically by using the information of the surrounding columns if necessary.  

 

 
Fig. 1. Schema of the three proposed ANN-based G2P conversion models. This figure also demonstrates the 

method for generating multiple phoneme sequences from the output of each model. 
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Table 1. The selected grapheme generation rule (GGR) 
 

Rule (Word  Grapheme Sequence) Example 

 

If (n >1): 𝑣1 … 𝑣𝑛𝑐𝑛+1  
𝑣1𝑣2   𝑣2𝑣3 …  𝑣𝑛−1𝑣𝑛  𝑣𝑛𝑐𝑛+1  

𝑐𝑛+1 

“OKEECHOBEE” 

𝑣1 … 𝑣𝑛       𝑣1𝑣2   𝑣2𝑣3 …  𝑣𝑛−1𝑣𝑛   𝑣𝑛   

If (n = 1): 
      𝑔𝑖  𝑔𝑖 

“O K EE  EC  C  H  O  B  EE 

E” 

Where       𝑔𝑖 = {𝑐𝑖 , 𝑣𝑖};        𝑔𝑖 , 𝑐𝑖 , 𝑣𝑖 = grapheme, consonant and vowel at index i;   

n= number of connecting vowels in a given word;     ‘   ’ = End of word 

 
2. 2. PTN Generation Using Multiple Phoneme Sequences 

As shown in Fig.2, our proposed approach for the automatic conversion of an input word into various 

phoneme sequences uses six G2P conversion models described in Section 2.1. Second, the use of the 

ROVER system (Ficus et al., 1997) allows us to align those obtained phoneme sequences using the 

dynamic time warping (DTW) algorithm, and then merge all of them to a single confusion network (CN) 

or PTN, as depicted in Fig.2. In this context, when there is any insertion or deletion problem during the 

alignment process, a NULL phoneme /@/ is used in the PTN to represent a NULL transition. 

 

 
Fig. 2. Fundamental architecture of a PTN-based G2P conversion  

 

By default, the ROVER system sets the costs of insertions (Ins), deletions (Del), and substitutions 

(Sub) for the alignment process to 3, 3, and 4, respectively. Hence, every two unmatched phonemes are 

treated equally, which means that the cost of phoneme substitution is equal to 0 if the comparing 

phonemes are the same and 4 otherwise. As a consequence, the method sometimes provokes incorrect 

alignments between vowel and consonant phonemes (e.g., /EH/ and /HH/), or between phonemes with 

close features (e.g., /AA/ and /AH/). In order to create a PTN with better alignment in this study, instead 

of a static value, we use the Hamming distance of articulatory features—an AF sequence (Yurie et al., 

2010) represents a phoneme using 28 dimensions (place of articulation and manner of articulation)— 

(AFdist) and type similarity coefficient (Tcoef) to calculate the cost of substitution used in the DTW-

based alignment process, as shown in the following equations: 

 

𝐷(𝑖, 𝑗) = min {

𝐷(𝑖, 𝑗 − 1)         + 𝐷𝑒𝑙,           𝑤ℎ𝑒𝑟𝑒 𝐷𝑒𝑙 = 6

𝐷(𝑖 − 1, 𝑗)        + 𝐼𝑛𝑠,            𝑤ℎ𝑒𝑟𝑒 𝐼𝑛𝑠 = 6

𝐷(𝑖 − 1, 𝑗 − 1) + 𝐴𝐹𝑑𝑖𝑠𝑡(𝑖, 𝑗) + 𝑇𝑐𝑜𝑒𝑓(𝑖, 𝑗)

          (1) 

 

Tcoef(i, j) = {
0, 𝐼𝑓 (𝑇𝑦𝑝𝑒(𝑎𝑖) == 𝑇𝑦𝑝𝑒(𝑏𝑖))

10,                                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (2) 
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 where ai and bj are the phonemes at index i and j of the two aligning phoneme sequences phseq1= 

a1a2...an and phseq2= b1b2...bm, respectively, D(i,j) is the distance between a1a2...ai  and b1b2...bj, 

AFdist(i,j) is the Hamming distance calculated from the AF of ai and bj, and Tconf(i,j) is the coefficient 

indicating if ai and bj are in the same group of consonant or vowel phonemes. Both Ins and Del are set to 

the smallest value of AFdist between vowel and consonant phonemes. To avoid the mis-alignment 

between consonant and vowel phonemes, Tcoef must be bigger than the other parameters when ai and bj 

are in different groups. 

 
2. 3. Best Phoneme Determination Using Model Prioritization Voting Schemes 

When the PTN sequence has been established, we select the best scoring output phoneme from each 

PTN bin using our newly proposed voting schemes (known as the model prioritization voting schemes).  

As seen in Algorithm 1, these voting methods are the modified versions of three voting schemes (i.e., 

voting by frequency, average confidence score and maximum confidence score) in the ROVER system, 

which were proposed for maintaining the high accuracy of accurate source models when combined with 

other, poorer models. The scoring function is calculated based on the following formula: 
 

𝑠𝑐𝑜𝑟𝑒(𝑝ℎ) = 𝛼 (
𝑁(𝑝ℎ,𝑖)

𝑛
) + (1 − 𝛼)𝐶(𝑝ℎ, 𝑖)             (3) 

 

C(ph, i) = {
𝐴𝑉𝐺(𝑐𝑜𝑛𝑓1(𝑝ℎ, 𝑖), 𝑐𝑜𝑛𝑓2(𝑝ℎ, 𝑖), … , 𝑐𝑜𝑛𝑓𝑛(𝑝ℎ, 𝑖))       the voting by Avg.  conf. score

𝑀𝐴𝑋(𝑐𝑜𝑛𝑓1(𝑝ℎ, 𝑖), 𝑐𝑜𝑛𝑓2(𝑝ℎ, 𝑖), … , 𝑐𝑜𝑛𝑓𝑛(𝑝ℎ, 𝑖))      the voting by Max.  conf. score
 (4) 

 

 Where N(ph,i) is the number of occurrences of phoneme ph in the ith PTN bin, while n here indicates 

the number of phoneme sequences to be combined. C(ph,i) represents the calculated confidence score for 

phoneme ph in the ith PTN bin, where 𝑐𝑜𝑛𝑓1(𝑝ℎ, 𝑖), … , 𝑐𝑜𝑛𝑓𝑛(𝑝ℎ, 𝑖) indicate the different confidence 

scores for phoneme ph in the ith PTN bin given by different models. The real value of α = [0... 1] refers to 

the tradeoff between using phoneme frequency and confidence score. In contrast, the value of the NULL 

confidence score ncfs in this paper was not a static value as in the original ROVER system, but a value 

equal to the confidence score assigned to the model where it belongs (e.g., 𝑐𝑜𝑛𝑓2(𝑁𝑈𝐿𝐿, 𝑖)). 

 
Algorithm. 1. Best phoneme selection using model prioritization voting schemes. 

 

   

 PROCEDURE  Model_prioritization_voting(PTNbini, α, 𝐶𝑜𝑛𝑓1(𝑝ℎ, 𝑖), … , 𝐶𝑜𝑛𝑓𝑛(𝑝ℎ, 𝑖))  

  Assign the N-best models  e.g., the models with high accuracy  

  if (N best models produce the same phoneme ph) and (N>1) then  

   bestPh  ph  Rapid selection  

  else   

   bestPh  𝑎𝑟𝑔𝑚𝑎𝑥𝑝ℎ𝑠𝑐𝑜𝑟𝑒(𝑝ℎ)  using Eq. (3) and (4)  

  end if   

  return bestPh  e.g., the best phoneme of the ith PTN bin  

 END PROCEDURE   

    

 

3. Evaluation 
 

3. 1. Datasets 
In this study, we conducted experiments using the American English word-based pronunciation 

dictionary (CMUDict corpus available in Web-3) used in our previous studies (Kheang et al., 2014a), 

except that the newly prepared training and testing datasets selected only the words after the alignment 

process using the m2m-aligner software (available in Web-4), the aligned grapheme-phoneme pairs of 
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which appeared at least four times in both datasets. Therefore, the training and testing datasets contained a 

total of 100,564 and 11,125 words, respectively. 

 

3. 2. Performance Metrics 
We evaluated the model performance in terms of phoneme accuracy (PAcc) and word accuracy 

(WAcc) using the NIST Sclite scoring toolkit (ref. Web-5). However, in this paper, we mostly report the 

results of the accuracy evaluated on OOV words. We also conducted statistical significance testing 

(measuring p-values) using McNemar's test. 

 
3. 3. Experimental Results and Discussion 

In our experiments, all six separate models, the Phonetisaurus using GGR (Ph.GGR), Phonetisaurus 

(Ph.), Sequitur-g2p (Sequitur), ANN1, ANN3, and ANN5, presented in Section 2.1 were treated as the 

baselines. The accuracy for ANN1, ANN3, and ANN5 was evaluated at their best epochs, 25, 31, and 47, 

respectively, while the accuracy of Sequitur was evaluated after the seventh training process (i.e., Model-

7). As a result, in terms of the PAcc and WAcc of the OOV dataset, Fig.3 shows that the Ph.GGR, Ph., 

and Sequitur models outperform the ANN1, ANN3, and ANN5 models. Moreover, Ph.GGR provides the 

highest accuracy (PAcc = 93.63% and WAcc = 73.89%). 

 

 
 

Fig. 3. WAcc and PAcc for the baseline approaches 

 

As listed in Table 2, in order to compare our approach with the baselines as well as understand the 

impact of different model combinations, we proposed various PTN-based G2P conversion models 

(denoted as PTNn-m) using different combinations of n phoneme sequences obtained from m models. For 

example, PTN3-1 uses three (e.g., ANN3-1, ANN3-2, and ANN3-3) phoneme sequences and PTN5-1 uses 

five (e.g., ANN5-1,…, ANN5-5) sequences, both obtained from the same ANN3 and ANN5, respectively. 

In the model prioritization voting schemes, we assign the models with highest accuracy to represent the 

N-best models, hence the symbol “P” in each row of Table 2 represents one of the N-best models 

involved in the PTN generation. Each symbol “x” in the table represents a model to be combined with the 

chosen N-best models. Moreover, in Eqs. (3) and (4), the confidence scores of the models involved in the 

PTN generation were manually assigned based on their performances; the model with the highest 

accuracy was assigned the highest score, while the one with the lowest accuracy was assigned the lowest 

score. Therefore, Table 2 reports the WAcc of all the proposed PTN-based models obtained when the 

confidence scores of Ph.GGR, Ph., Sequitur, ANN1, ANN3-x, and ANN5-x were assigned to 0.6, 0.5, 

0.4, 0.3, 0.2, and 0.1, respectively. 
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Table 2. WAcc of the eleven proposed test sets using the model prioritization voting schemes. 
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M.P. 

Voting by 
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(α = 0.5) 

PTN3-1     x x x      67.43% 67.43% 67.43% 

PTN5-1        x x x x x 67.53% 67.53% 67.53% 

PTN4-2 P    x P x      70.93% 73.35% 73.35% 

PTN6-2 P       x x P x x 71.00% 72.80% 74.30% 

PTN9-3    P x P x x x P x x 70.04% 70.13% 70.10% 

PTN3-3.1 P x P          73.91% 73.90% 73.90% 

PTN3-3.2 P  P x         74.65% 74.56% 74.56% 

PTN4-4 P P P x         73.99% 74.01% 74.27% 

PTN6-4 P P P  x x x      74.77% 74.69% 74.60% 

PTN8-4 P P P     x x x x x 74.86% 74.69% 74.79% 

PTN12-6 P P P x x x x x x x x x 74.92% 74.86% 74.97% 

 

The evaluation results show that the PTN-based models using multiple phoneme sequences extracted 

from a single model such as ANN3 or ANN5 (i.e., PTN3-1 or PTN5-1 can achieve a 4-5% higher WAcc 

than the original ANN-based approaches (i.e., ANN3-x or ANN5-x). Moreover, when we combined the 

results obtained from the three ANN-based models (i.e., ANN1, ANN3, and ANN5), the results of PTN9-3 

demonstrate that the WAcc is further increased. 

In addition, the result of PTN3-3.1 (where WAcc = ~73.91%) reveals that the combination of many 

accurate models with a similar design is not always helpful for improving the WAcc of the OOV words. 

In contrast, when the PTN model combines more accurate models with inaccurate models (e.g., in the 

case of PTN3-3.2, PTN4-4, PTN6-4, PTN8-4, and PTN12-6), its performance level improves (p<0.05). 

On the other hand, according to our experimental results using different values of α (not reported in 

this paper due to the space constraint), the three voting schemes in ROVER system are highly correlated 

with the threshold α and NULL confidence score compared to our proposed model prioritization voting 

schemes. In contrast to the models that use the original voting schemes, when α is increased, the model 

prioritization voting schemes that use the average and maximum confidence scores attempt to increase the 

performance of the PTN-based G2P conversion model by choosing the most accurate models for the N-

best models and then maintain that performance by assigning the model confidence scores based on their 

individual performances. Furthermore, in this study, among the three model prioritization voting schemes, 

the evaluation results demonstrate that voting by frequency is the most stable and reliable voting scheme.  

 

4. Conclusion 
In this paper, we showed that the proposed PTN-based G2P conversion is a new effective method to 

improve the quality of phoneme prediction for OOV words because it allows different approaches for 

dealing with different problems to be combined. The evaluation results revealed that our model 

prioritization voting schemes could maintain and provide a reliably better model performance compared 

to the baseline approaches. To further improve our proposed approach, we plan to consider the use of the 

real phoneme confidence scores obtained from each combination approach into the model prioritization 

voting schemes and the use of other accurate models with different designs in place of ANN1 and ANN3. 
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