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Abstract- This paper proposes a model transformation to automatically generate Fault Tree models from UML 

software models annotated with dependability annotations. The goal is to extend the model-driven software 

development process with the capability of verifying some important dependability properties (such as reliability, 

safety) starting early in the software lifecycle, by solving the generated Fault Tree models with existing fault tree 

analysis tools. Feedback from the analysis will help developers in selecting suitable design alternatives in order to 

build systems that meet their non-functional requirements. The model transformation language used in this study is 

ATL (ATL Transformation Language). The transformation takes as input UML Composite Structure Diagrams, 

Sequence Diagrams and Use Case Diagrams, extended with two UML profiles: MARTE (a standard profile adopted 

by OMG) and DAM (a profile specializing MARTE). The focus of this paper is on the ATL transformation. 
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1. Introduction 
By changing the focus of software development from code to models, Model-Driven Development 

(MDD) enable developers to verify the non-functional properties (NFP) of software (such as performance, 

availability, reliability, safety, etc.) by transforming UML design specifications annotated with extra 

information to appropriate analysis models. Many formal modeling techniques and tools have been 

developed for the analysis of different non-functional properties (e.g., Markov chains, queuing networks, 

Petri nets, fault trees, etc.) The research challenge is to bridge the gap between model-driven development 

tools and different existing analysis tools by using model transformation techniques. 
Many approaches to model transformations have been based on general purpose programming 

languages, such as Java; but more recently specialized model transformation languages have also been 

developed. ATL for instance, offers semantics that allow for the specification of transformation rules, 

which are much more easily maintained than those expressed in general-purpose programming languages. 

It opens up the possibility of using formal proofs to verify transformation correctness through ATL's rule 

traceability capability, which are not feasible with transformations written in general-purpose 

programming languages. 
This paper addresses the problem of automatic derivation of Fault Tree models from a UML software 

model with dependability annotations. Before deriving fault tree models, we annotate UML design 

specifications with quantitative dependability attributes. We are using two existing UML profiles for this 

purpose: The standard UML Profile for Modeling and Analysis of Real-Time Systems (MARTE) (Web-

1) and the Dependability Analysis Model (DAM) profile, which extends MARTE (Bernardi et al., 2011) 

(Bernardi et al., 2013). Figure 1 shows the transformation process of UML+MARTE/DAM models to 

Fault Tree models. The modeling tool we used for producing UML Diagrams is Papyrus (Web-4), which 

is an open-source tool based on EMF (Web-2) and supports the MARTE profile. Additionally, we used a 

DAM profile application plugin (Bernardi et al., 2011) and (Bernardi et al., 2013) that enabled the use of 

DAM stereotypes in the Papyrus modeling environment. The annotated UML model conforms to the 

standard UML 2.4 Metamodel (Web3). The Fault Tree Metamodel is created by using Ecore tools. The 
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ATL transformation we developed, UML2FT, performs the mapping from the annotated UML source 

model to the Fault Tree target model. The generated Fault Tree model is then processed by a simple 

JAVA program to make it readable by the FaultCAT open-source fault tree analysis tool (Web-5). We 

selected FaultCAT because it is the only open-source tool we found that directly support XML 

input/output. 

 

 
Fig. 1. Activity of UML2FT transformation. 

 

The goal of this paper is to define, implement and test an ATL transformation accepting as input a 

source model composed of UML composite structure, use case and sequence diagrams (all with 

MARTE/DAM applied stereotypes) and generating as output a regular Fault Tree model. The steps for 

achieving this goal have resulted in the following contributions: 
a) Transformation mapping, i.e. the design of mapping rules from source to target model 

elements through the analysis of the problem domain, and  

b) Implementation and verification of the ATL transformation. 
The paper is organized as follows: section 2 briefly talks about related works; section 3 presents the 

source and target models and their mapping; section 4 discusses the ATL implementation; section 5 

presents verification issues; and section 6 presents the conclusions. 

 

2. Related Work 
Existing work on software dependability analysis by transforming UML models to different analysis 

models is surveyed in (Bernardi et al., 2012). Some of the previous papers, such as (Lauer et al., 2011), 

(Hu et al., 2011), (Grunske et al., 2005), (Domis et al., 2008) and (Hassan et al., 2005) use  fault tree as 

their target analysis model, but only a few of them applied model transformation languages to achieve 

automatic generation. Some of the existing approaches (e.g., those considering different failure modes 

and those using component fault trees) do contain manual steps throughout the derivation of the fault 

trees, so it is difficult to completely automate the entire generation of the fault trees. Since our focus was 

on complete automation of the transformation from UML to fault tree models, we have considered the 

generation of traditional fault trees, which do not require manual intervention.  

         (Web 6) proposed to consider every possible failure mode for each different element of the UML 

sequence diagrams, but this may bring too many unnecessary redundant events. Therefore, we choose not 

to take different kinds of failure modes into account. The works in (D’ambrogio et al., 2002) and (Pai et 

al., 2002) have presented an approach for automating the model transformation by providing high-level 

algorithms (implemented in general purpose languages rather than model transformation languages). The 

former took the system behavior into account by considering a path-based approach and proposed an 

algorithm for mapping the UML-based specification onto a fault tree model to predict the system failure 

rate. The latter describes a framework for modeling computer-based systems, based on UML, that 
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facilitates automated dependability analysis during design, using Dynamic Fault Trees as target formalism 

to evaluate the system unreliability of fault-tolerant software systems at design stage.  

One of the objectives of our work was to take into account the interaction between software 

components like in (D’ambrogio et al., 2002) and the redundancies in system architecture like in (Pai et 

al., 2002). Another main objective was to implement the transformation in a specialized Model 

Transformation Language (in our case ATL) instead of a general purpose languages, compared to those 

existing works.  

 

3. Fault Tree Model Derivation 
 
3. 1. Source Model 

The approach for obtaining the fault tree is path-based, similar with (D’Ambrogio et al., 2002), where 

the software architecture is described by sequence and deployment diagrams. The source model in our 

work includes a UML2 structural view (composite structure diagrams) and a behavioral view (use case 

and sequence diagrams), extended with MARTE/DAM performance annotations. A sequence diagram is a 

scenario notation that describes a finite sequence of operations between different objects. A use case 

diagram is a representation of a user's interaction with the system. In our work, each use case is associated 

with an interaction. A composite structure diagram shows the internal structure of a classifier, including 

its interaction points to other parts of the system (Web-3). It shows the configuration and relationship of 

parts, which together perform the behavior of the containing classifier. We chose to use composite 

structures in order to model the represented components, allocated hardware devices and connectors. 

Also, instead of using deployment diagrams to show the actual software to hardware allocation of the 

system, we chose to use the stereotype “allocate” from the MARTE profile in the composite structure 

diagram. An annotated UML source model example is shown in Figure 2. 
In the Composite Structure diagram, S/WComponent 1 and S/WComponent2 and H/WComponent 

are stereotyped with <<DaComponent>> from DAM_Profile, which has an attribute “failure” of type 

“DaFailure” allowing users to enter an “occurrenceProb” for each component. 

The hardware spare is stereotyped with <<DaSpare>> and shows its substituted component (in this 

example is “H/W Component”) it also has the complex property type of “failure”, as the software 

components. The stereotype <<Allocate>> from MARTE shows both the client and supplier of allocation, 

for instance in the example model, both of the software components are being allocated to the same H/W 

Component. In the sequence diagram, each lifeline represents a component from the composite structure 

diagram. 
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Fig. 2. Annotated UML source model example. 

 

3. 2. Target Model 
As there is no standard metamodel for Fault Trees defined in advance, we built a fault tree 

metamodel for our transformation (see Figure 3) according to the FaultCat analysis tool. The metamodel 

from Figure 3 describes regular fault trees, which are fully supported by the FaultCAT tool used in this 

work. In the literature there are extended fault trees models, such as dynamic fault trees, which contain 

other types of elements (such as spare gate, functional dependency gate or conditional events). Such 

elements are not being considered in our work yet, but we may refine our transformation in future work. 

As we can see from Figure 3, a Fault Tree model contains elements named FTelements, which can be 

either Events or Gates. Such an element can have children elements, for example an event can have a 

child gate, and a gate can have several children events. There is a constraint that a gate cannot have 

another child gate, and an event cannot have more than one child gate. Every event has two attributes: 

Title and Info (which can be used to store extra useful information). Some specialized events types 

(BasicEvent, Undeveloped Event and ExternalEvent) have also a Probability attribute, which is the 

occurrence probability of the event. The note shows that a gate element cannot have another gate as a 

child element. Figure 4 shows a fault tree example. Note that UndevelopedEvent and ExternalEvent are 

not used in our model transformation, and the content of Info is not shown in the figure. 

 

               Fig. 3. Fault Tree Metamodel       Fig. 4. Fault Tree Example 
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3. 3. Source to Target Mapping 
Based on the metamodels for both UML and Fault Trees, the mapping from source to target can be 

briefly described as in the table 1 below. A fault tree is generated from the top (which represents the 

undesired event that the system fails) to the bottom (each leaf is a basic events). In other words, the tree is 

constructed backwards: for every gate, first is generated the output event and then the input events. 

The top level of the fault tree (top event) corresponds to the root of the source model (a Model 

element), which is the output of an OR gate; the inputs of this OR gate are intermediate events 

corresponding to the failure of each use case. Each use case has an execution probability. However, for an 

intermediate event, we are unable to set the probability value, because the intermediate event probability 

is a result calculated from input events; moreover, the FaultCAT tool does not support conditional events 

(which could have a probability occurrence set by the user). To overcome this problem, we assign the 

occurrence probability value to the attribute Info of an intermediate event. Then, when assigning the 

probability value to any of the children (i.e., basic event) of this intermediate event, we multiply the 

original failure occurrence probability value by the intermediate event’s Info attribute. 
 

Table. 1. Mapping from source to target model 

 

UML+MATE/DAM diagrams FaultTree Model 

 

Model 

IntermediateEvent (TopEvent) 

OR_Gate 

<<PaStep>> 

UseCase 
IntermediateEvent 

Interaction OR_Gate 

CombinedFragment 
IntermediateEvent 

OR_Gate 

InteractionOperand 
IntermediateEvent 

OR_Gate 

BehaviorExecutionSpecification 
IntermediateEvent 

OR_Gate 

<<DaComponent>> 

S/W Component 
BasicEvent 

<<DaComponent>> 

H/W Component 

(without spare) 

 

BasicEvent 

<<DaComponent>> 

H/W Component 

(with spare) 

IntermediateEvent 

AND_Gate 

BasicEvent 

<<DaSpare>> 

Component 
BasicEvent 

<<DaConnector>> 

Connector 
BasicEvent 

 

We consider that a message may fail due to the failure of the hardware link conveying the message. 

A message can then be mapped to the connector between the hardware components on which the two 

software components exchanging the message are allocated. For a hardware component, we have two 

different mapping methods. For those that do not have spare components, we directly map the hardware 

component to a basic event representing the failure of the component; the failure occurrence probability is 

an attribute of the applied stereotype <<DaComponent>>. For the hardware components with spares, we 

generate an intermediate event representing the failure of all hardware components, along with an And 

Gate (only if all hardware components fail, then the system would fail). The input events to the AND gate 

are basic events representing the failure of the original hardware component along with its spares as basic 

events.          
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4. Implementation 
The ATL implementation of the transformation in this study follows the regular structure of ATL 

transformations. The source, transformation, and target models each has their own separate metamodels, 

which are each based on a common meta-metamodel (ECORE). 
Within the ATL module UML2FT that contains all the transformation rules, there are 7 matched 

rules for all conditional mappings, and 4 lazy rules for all unconditional mappings. We also used 32 

helpers that may be invoked by the transformation rules, 8 of which were particularly important. 

Examples of each type of rule/helper are shown in the table 2 below. 

 
Table. 2. Examples of main rules and helpers in UML2FT transformation 

 

Type Name Description 

Matched 

Rules 
CombinedFragment Transformed CombinedFragment to IntermediateEvent and Or_Gate 

Lazy 

Rules 
getHardwareComponent 

For those BehaviorExecutionSpecification running on HardwareComponent 

without spares, find its covered lifeline, then find its represented 

SoftwareComponent, then find the allocated HardwareComponent, 

transformed it into BasicEvent 

Helpers getSoftwareProb() 
For BehaviorExecutionSpecification, get its covered lifeline’s represented 

SoftwareComponent’s failure occurrence probability, returns the value of it 

 
In this implementation, matched rules are used for source elements such as model, use case, 

interactions, fragments, and certain applied MARTE/DAM stereotypes, whereas lazy rules are used for 

source elements that satisfy specific conditions generating target elements such as represented software, 

allocated hardware or spare components. The logic linking of each target elements with one another, 

based on the ordering of the source model's elements, is embedded within each rule, where the 

relationship is determined by the containment ‘Child’ association. This ensures that target elements are 

properly linked with each other when generated.  

Below shows the ATL code of each type of rule/helper example we described above. In Code 

Fragment 1, each combined fragment is transformed to an intermediate event followed by an Or_Gate. 

The name attribute of the intermediate event contains the name of the combined fragment itself and its 

operator kind. Code Fragment 2 shows the helper getSoftwareProb() in which the getAppliedStereotype() 

call retrieves the stereotype with the specified qualified name that is applied to this element, or null if no 

such stereotype is applied. The getValue() call retrieves the value of the property with the specified name 

in the specified stereotype for this element. So that this helper returns the occurrenceProb value of the 

complex data type ‘DaFailure’ from stereotype ‘DaComponent’.  

 
Code Fragment. 1. Matched rule example – CombinedFragment 

rule CombinedFragment{ 
from 

      uml: MMa!CombinedFragment 
to 

 Event: MMb!IntermediateEvent( 
  Title <- uml.name + uml.interactionOperator + ‘fail’, 
  Child <- Gate 
  ), 
 Gate: MMb!Or_Gate( 
  Child <- uml.operand 
     ) 

} 
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Code Fragment. 2. Helper – getSoftwareProb() 

 
5. Verification and Case Study 

We have used seven test cases and two case studies to verify our transformation. Each test case was 

designed to cover one or more specific conditions. These tests will cover all the matched rules and lazy 

rules introduced in section 4. During the execution, every helper has been called at least once.  

We also included two more complex case studies in which all the main aspects of our model 

transformation was covered and tested. For instance, the second case study is an example of a Message 

Redundancy Service (MRS) from (Bernardi et al., 2013), as shown in Figure 5 and 6. Figure 7 shows the 

composite structure diagram for MRS. As we can see from the diagrams, the Use Case Diagram shows 

the main use case realized by the scenario given in the Sequence Diagram in Figure 6. MessageReplicator 

receives messages from Clients, and then specifies target receivers and the file to deliver. The 

Redundancy Manager, which is in charge of the actual delivery, creates replicas called Payloads. Each 

Payload sends back to RM a result that can be either of approval or of rejection. The fault tree generated 

by our transformation is shown in Figure 8. 

 

  
        

Fig. 5. Message Redundancy Service overview (UCD)                      Fig. 6. MRS scenario (SD diagram) 

                              and architecture (DD)  

 

Helper context MMa!BehaviorExecutionSpecification 
def: getSoftwareProb(stereotype: String): OclAny =  
if self.covered.represent.getAppliedStereotype(‘DAM::’)+ stereotype).oclIsUndefined() 
then OclUndefined 
else self.covered.represent.getValue(‘DaComponent’,’Dafailure.occurrenceProb’) 
endif 

; 
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     Fig. 7. Rebuilt Composite Structure diagram for MRS                        Fig. 8. Generated fault tree of MRS 

 
6. Conclusion 

This paper presents a model transformation by using the ATL transformation language, which 

transforms UML 2.4 software models composed of sequence diagrams, composite structure diagrams, and 

use case diagrams, along with applied MARTE/DAM stereotypes into Fault Tree Models. 
The UML modeling tool used in this work is Papyrus, which is an open-source tool based on the 

Eclipse environment. One of the reasons we selected Papyrus was that the ATL engine was able to 

directly accept the UML model extended with profiles produced by Papyrus as the source model. Our 

ATL transformation model, UML2FT, also accepted the custom target Fault Tree metamodel, which we 

created with the ECORE tool. Using the Fault Tree metamodel, ATL was able to produce an XMI file of 

the target model, which could then be processed by a simple JAVA program and then be read and 

analyzed by an existing fault tree analysis tool. We selected the open-source tool FaultCAT as our Fault 

Tree analysis tool because it accepts input in an XML format, very similar with the output generated by 

our transformation. There are more sophisticated fault tree analysis tools available, but the problem is that 

they have their own input language different from XML, requiring a more complex translation of the 

generated fault tree. The ATL UML2FT module we have designed, implemented and tested consists of 7 

matched rules to handle conditional mappings, and 4 lazy rules for all unconditional mappings. We also 

used 32 helpers that may be called by transformation rules to achieve the transformation. 
The model transformation we produced has some limitations. For example, we generate only regular 

fault trees as target models, which are supported by the analysis tool we used (FaultCAT). We have not 

considered extended versions, such as dynamic fault tree introduced by Pai et al., (2002) which extend 

regular fault trees with dynamic gates (spare gates, priority AND gates, etc.) for the modeling of fault 

tolerant hardware systems. Extensions to regular fault tree are left as future work. 
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