
Proceedings of the 2nd International Conference on Computer and Information Science and Technology (CIST’16)

Ottawa, Canada – May 11 – 12, 2016

Paper No. 111

111-1

A Computational Verb Rules Based Approaching for Classification of
Microarray Data

KunHong Liu, Vincent Ng
Department of Computing, The Hong Kong Polytechnic University

Kowloon, Hong Kong, China

lkhqz@163.com; cstyng@comp.polyu.edu.hk

Abstract - This paper proposes a novel method to extract interpretable rules from microarray data based on computation verb theory.

Different from the existing rule based methods, the computational verb technique can produce template-based verbs and adverbs to

describe the relationships between gene pairs, making the results to be better understood. We use the verb stay based rules to deal with

the analysis task, and carry out experiments based on binary class and multiclass microarray datasets. And the experimental results

show that only five rules can produce more robust results compared with the tree-based methods in classifying the microarray data in

most cases.

Keywords: Computational verb rules; microarray data; interpretability

1. Introduction
 Up to now, many supervised and unsupervised machine learning techniques have been proposed to tackle the

microarray data analysis task, leading us to a more complete understanding of the molecular variations among tumors [1].

One difficulty of the microarray data analysis is that the number of samples collected tends to be much smaller than the

number of genes, resulting with a large number of genes making no contribution to cancer diagnosis [2]. A widely

deployed solution for this problem is the feature selection approach, with which a set of biologically significant genes will

be discovered and used to improve the cancer diagnosis accuracy [3]. In order to get a deep insight in the gene functions

and regulation relationships, when analyzing microarray data, experts hope that the mining results do not only produce

accurate results, but also generate comprehensive knowledge. There are many different methods for extracting rules from

microarray. For example, fuzzy-rule based models have been successfully applied in microarray classification by modeling

noun and adjective, such as “high”, “low”, etc. Some researchers presented a framework for learning fuzzy rules by

extracting fuzzy rules using genetic algorithms[4,5], while others presented rule-induction and filtering strategies to obtain

a small fuzzy classifier using a grid partition of feature space, to obtain rules like “if (H62098,HIGH) then BI” [6]. Note

that it is possible to incorporate biological knowledge into this kind of algorithm by specifying the forms and parameters of

fuzzy membership functions. However, the coverage of such rules cannot be naturally guaranteed because the rules are

only based on local information, leading to a large proportion of redundant rules.

 On the contrary, there are some algorithms producing rules based on the whole dataset, so the generalization of these

rules is better than the previously described ones. A typical method is k–Top Scoring Pairs (TSP), proposed in [7]. It

compares gene pairs, exploiting discriminating information contained in the data focusing on ‘marker gene pairs’, for

which there is a significant difference in the expression level across the N samples between two classes. These rules take

the form of: “IF SPTAN1>CD33 THEN ALL; ELSE AML”. Furthermore, there are some evolutionary based rule

generation systems. One typical system has been implemented with genetic programming (GP) by employing multiple

logical and mathematical operations in individual’s structure. The final GP individuals can be expressed as rules like: “if

max(Gene1722,Gene2165)>1.9190 then small-cell lung carcinomas”[8]. With such implementations, the final decision can

be made by fewer rules because each rule can cover all samples.

 The development of computational science technique provides us more different method for investigating

microarray data [9-10]. In this paper, we propose a Computational verb (CV) based method to generate rule based methods

for microarray data analysis. CV theory was invented by Tao Yang, and then it has been applied to a lot of scientific fields,

such as linguistics, biology, psychology, physics and computer sciences [11]. CV can be applied to build a complete

111-2

artificial language into machines, and the CV based rule (CVR) is a further step of CV, which can be expressed as some

simple rules using verbs and adverbs to describe the changes or status by summarizing interaction terms and constants into

linguistically interpretable forms. The CVR can act as a special role in investigating the relationships among different

classes in microarray data, because of the verb-based descriptions in the rules, which can provide a new point of view for

biologists and biomedical scientists to investigate microarray data. Experiments have been carried out in both binary class

and multiclass microarray datasets, and compared the CVR performance with different tree based methods. The results

confirm the effectiveness of our CVR methods. And we also list some typical rules to demonstrate the interpretability of

our algorithm.

2. The Framework of Computational Verb Rules
 CV can solve engineering problems by transforming different types of natural words to mathematical formulas. The

CV theory can be traced back to the 1997, and it has undergone a rapid growth [11-14]. However, there are still few

explorations in the application of CV to the bioinformatics field. Up to now, only Tong proposed a CVR based method to

analyze microarray data [15]. In his work, a computational verb rule is used to compare the change of expression levels

between them to deal with a binary-class problem by using the rules presented as: If Gene i increases/decreases relative to

Gene j, then class 1/2. In the rule, class 1/2 refers to normal/cancer type. With this type of rules, a sample can be classified

based on the expression levels of two genes. However, the gene expression data is not time-varying data, and

increase/decrease may not be perfect words to describe the comparison of gene expression level. Such rules may be

affected by the input sequence of a training set, making the performance of CVR unstable. Hence, the changes in the

sequence may lead to different decisions. An extreme example is the case when the input sequence is reverse. In such

circumstance, the sample set satisfies the first rule would no longer fit the second rule; vice versa, it becomes to satisfy the

second rule, producing completely different results.

 In this paper, we further the investigation of the use of CVR, and provide a deeper insight of CVR in the

bioinformatics field. Instead of using an action related verb, we suggest a verb describing states to model data: stay.

Although our rules are also based on a gene pair, they are different from the previously proposed rule set. Furthermore, we

also try to use computational adverbs to make our rules more comprehensible.

2.1. The Concept of Computational Verb
 A Computational Verb is formalized as a 4-tuple (v, T , Ψ, ɛ) [14], where v is a verb (e.g. increase). (T, Ψ, ɛ) is a

dynamical system, in which T is the life span. Ψ is the state space of the system, and ɛ is the evolution function of the

dynamical system.

ɛ : T × Ψ → Ψ (1)

ɛ(0, x) = x, ɛ(t2 , ɛ(t1 , x)) = ɛ(t1 + t2 , x) (2)

 where (T,+) is a monoid, x is the observation.

 Typical verbs in CV are: become, stay. They can describe the trend of changes in a time serial. Some adverbs, such

as fast, slow, can also be applied to facilitate the model building process. The consequents and antecedents of CVR can be

constructed with both dynamic and static forms. A CV based rule may take the form of:

If X1 Adx1○Vx1 AND X2 Adx2○Vx2 THEN Y AdY○VY (3)

 where Adx○Vx represents the adverb (Adx) and verb (Vx) used to feature Xi. A rule can contain as many verbs as

needed, but typical rules would not contain more than two verbs for alleviating the complexity. Most of verbs require one

or two features, the number of which is determined by the formula of a verb.

2.2. The CV Template and Evolving Functions

 In CV, there are many different template functions for verbs and adverbs. A typical computational verb template is

V = w2t
2 +w1t + w0 (4)

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E5%8F%8D%E8%BF%87%E6%9D%A5##
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E5%8F%8D%E8%BF%87%E6%9D%A5##

111-3

 In (4), t0 = 0 is set as the starting point, and ∆t = 1 as the time step. w0 ,w1 and w2 are parameters requiring to be set
by some learning algorithms. Such verbs can be used to form a set of rules. For example, a CV rule can express as:

If X1 fastly become Vx1, and X2 stay Vx2 then Y slowly become VY (5)

 where both X1 and X2 are the observations for this rule, and Y is the expected outputs. Words like fastly/slowly are
computational adverbs, which also requires to be defined on the context. There are also some other suggested templates for

adverbs in [14]. Then CV can be formulated as:

Ynew=f(s(X,Vx), Vy, Ycurrent) (6)

 where s(X,Vx) is used to evaluate the similarity between X and Vx. f is a preset function used to determine the way
to update Ynew according to the similarity between Vy and Ycurrent. The evolving function of the CV stands for an orbit of
its dynamical system, and it describes the change of an action with respect to time. The evolving function of the inputs is
generated with given samples. For example, the verb increase (expressed as Vincrease) can be expressed as a 4-tuple
(increase; R+; R; ɛ), where ɛ(t; x) = t + x, and t ∈R+. Here R represents the real number field. There are many possible
orbits for this dynamical system with different initial states. By setting x to 1, we can get a simple form of evolving
function for the verb increase as suggested in [14]:

ɛincrease =1 + t; tR+ (7)

 For different verbs, the evolving functions are different. For the verb stay, a typical evolving function is:

ɛstay =|1 + t|<; tR+ (8)

 where is the expected deviation.

2.3. The Similarity Function

 The similarity measurement function between two verbs is based on their evolving functions. Given the evolving

functions of the two verbs, ɛ1, ɛ2 E, where E stands for the set of evolving functions. Their similarity is calculated

according to a similarity function,
 REs 2: , which satisfies the following conditions:

s(ɛ1, ɛ2) = s(ɛ2, ɛ1), ɛ1, ɛ2 E (9)

s(ɛ1, ɛ1) =1, ɛ1E (10)

If ɛ1(t) ɛ2(t)0, ɛ1(t)+ɛ2(t)1, tT, then s(ɛ1, ɛ2)0 (11)

 ɛ1, ɛ2, ɛ3E, if ɛ1≤ɛ2≤ɛ3, then s(ɛ1, ɛ2)≤ s(ɛ1, ɛ3) and s(ɛ2, ɛ3)≤ s(ɛ1, ɛ3) (12)

 A similarity function is used to compare two states of a verb (Vx and X) or two verbs (V1 and V2). The design of
verb similarity function is problem-dependent. Up until now, there are mainly three kinds of verb similarity functions that
are widely used in various applications: distance-based, trend-based and frequency-based. In this study, we evaluate the
distance between two verbs according to the change of distance (sd) within the time interval [0, T], as shown in (13). sd is
the sum of the square of point-by-point amplitude diversities between two evolving functions within the time interval.
Function g() in (13) takes the form in formula (14) to map the outputs within the range of [0, 1].

))()((),(
0

2

2121

T

td ttgs (13)

(14)
xe

xg

1

2
)(

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E6%9C%9F%E6%9C%9B%E5%81%8F%E5%B7%AE##
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E6%9C%9F%E6%9C%9B%E5%81%8F%E5%B7%AE##

111-4

2.4. The Application to Cancer Classification Problem

 By using the canonical form, the template function can be parameterized and become learnable. Both the inputs and

the template functions are modeled by using a computational verb (v, R+, R, ɛ). Two genes are regarded as two tuples in

timeline, and a computational verb rule is used to compare the change of expression levels between them to deal with a

binary-class problem. Hence, a sample can be classified based on the expression levels of two genes. The similarity

function evaluates the probability of a sample belonging to a class.
 The computational verb stay is used to describe the states to model gene data, and the rules are presented as:

If Gene i stay relatively active to Gene j, then class 1; (15)
If Gene i stay relatively inactive to Gene j, then class 2; (16)

 Although our rules are also based on a gene pair, just like [15], they are different from the previously proposed rule
set in that the verb stay can describe the accumulate effect among a dataset and our method become independent to the
input sequence. The words active and inactive are used to report the gene expression status so that the rules are more
illustrative for researchers to understand the results.

Fig. 1: CVRStay algorithm.

 The verb used in the CVRStay algorithm in Figure 1 is based on the typical form recommended in [11]. For each
rule, the similarity is measured between the input and the antecedents of these rules. The final decisions are based on the
similarity of the rules’ output.
 Assume that V1i/V’1j represents stay active, and V2i/V’2j represents stay inactive for gene i/j. xi/xj represents the
expression level of a sample for gene i/j, and there are n samples in a dataset. Let S1 and S2 represent the results of the
antecedents of rule (15) and (16), then they can be calculated by combining the distance based similarity function, as
shown in (17), (18).

]))(([

]))()(([),(

2

1111

2

211111111

n jjii

n jjiijid

wGxGxkg

GxGxkgVVsS
(17)

])([

]))()(([),(

2

2222

2

423222222

n jjii

n jjiijid

wGxGxkg

GxGxkgVVsS
(18)

 Step 1. For a gene i, calculate the mean expression value of each class, and assign the larger one to G i1, the

smaller to G i2. Then calculate the differentiation value (DVi) of the active and inactive, DVi=|G i1 - G i2|. Repeat the

calculation until all genes are checked.

 Step 2. Sort genes according to DV, and select the top 100 genes to form a candidate pool.

 Step 3. Form a gene pair by picking the top gene i in the pool, and match it with a gene j that can produce the

largest value Di,j according to formula (19). Remove i and j from the pool.

1221, jijiji GGGGD (19)

 Step 4. Repeat Step 3 until the pool is empty.

 Step 5. For each gene pair: Train the gene pairs to build the computational verb rules according to (17) and (18);

Optimize the parameters (k1/k2 and W1/W2) using the gradient descent algorithm.

 Step 6. Select the top N trained CVR classifiers to predict the unseen samples with majority vote method.

111-5

 In (17) and (18), all σ are used as parameters for adjusting the rules to fit the data distribution better. To simplify the
calculation process, two parameters, w1 and w2 are introduced instead. Here, w1=k1×σ1+σ2, w2=k2×σ3+σ4.
 The verb template in (5) is applied to generate the rules along with the evolving function stay. In order to evaluate
the status of a gene, Gi1/Gj1 and Gi2/Gj2 are parameters used to determine whether gene i/j’s expression level is relatively
high (active) or low (inactive). They are determined entirely by using the data distribution. Here, a gene i's average
expression values of both classes in a dataset are calculated first. The relatively larger/smaller value is assigned to Gi1/Gi2
to represent the level of active/inactive status. The difference between these values affects the discriminative power of the
final rules. It is obvious that the performance of final rules relies on the differentiation of the active/inactive comparison
levels in the selected gene pair. The more significant difference in the level of two statuses in a gene pair, the higher
generalizability of the produced CVR could be obtained.
 To better illustrate the difference in the comparison of statuses in a rule, k1 and k2 are used to implement the adverb
relatively to in the rules. In the rules, relatively to is deployed to measure the degree of active/inactive. Such a relatively to
relationship can be more if k1 or k2 is larger than 1, and less otherwise. In this way, a rule can give a more accurate
comparison for a gene pair, taking the form as: If Gene i stay more active compared with Gene j, then class 1. With these
four parameters, k1/k2 and W1/W2, the CVRStay algorithm can be optimized to make rules matching with the training data
better. The gradient descent algorithm is employed to optimize these parameters. To limit the final outputs within [0, 1], the
final results are normalized by adjusting the output of (17) and (18) as:

)/(

)/(

212

'

2

211

'

1

SSSS

SSSS

 (20)

 In this way, S1’ and S2’ can reflect the probabilities of a sample belonging to a class 1/2. The final decision for a
sample is made by assigning it to the class obtaining a higher probability. In short, the workflow of algorithm CVRStay is
shown as Figure 1. In our framework, it is obvious that the larger difference in active or inactive status within a gene pair,
the more powerful the generalizability the CVR can be. Step 2-4 try to filter out unremarkable genes, and match
informative genes to form gene pairs quickly using a greedy selection scheme. After these steps, only top N gene pairs left
for building computational rules. This approach can produce gene pairs without overlaps. In our experiments, N is set to 5.
So in each CVR based experiment, only 10 genes are used to produce results.

3. Experiments and Results
 In our experiments, we use three binary class and four multiclass microarray datasets. The details about these

microarray datasets are listed in Table 1 and 2, respectively. In these datasets, all data samples have already been assigned

to training set or test set. Preprocessing of the datasets is done exactly as described in [7]: transforming the raw data to

natural logarithmic values, and then standardizing each sample to zero mean and unit variance. Besides the original

division, for the binary class problem, each dataset are reshuffled with 9 randomizations. For all datasets, each randomized

training and test set contains the same amount of samples of each class compared to the original training and test set.
 In all our experiments, the classifiers are built using the training samples, and the classification results are estimated
using the independent test set. The standardization and the feature selection steps are applied for all the classifiers. In other
words, all the classifiers receive the same reduced subset of features for a given training and test dataset.
 For comparison of the performance of CVRStay, some tree-based learners are also used in all experiments, including
decision tree, Random Forest and Rotation Forest. For decision tree and Random Forest, the implementations in scikit-
learn library are used [23]. An improved Rotation Forest algorithm, hybrid extreme rotation forest (HERF) [24], is
deployed, and its python implementation is available at [25]. All classifiers are used with the default settings. For each two-
class problem, five CV rules are used to produce outputs, working as an ensemble classifier. However, since there are only
ten genes used, the scale of the ensemble CV rules is of a smaller scale even when compared with using decision trees.
 There are no duplicate genes used in building the rules, so that the diversity of the final ensemble can be guaranteed.
 To evaluate the results, we use some different measures based on the suggestion of [16]. After obtaining the values

of true positive (tp), true negative (tn), false positive (fp) and false negative (fn), we use accuracy and Fscores to compare

the results. Classification accuracy indicates the percentage of correctly classified samples, and Fscores reveals the balance

degree of results between two classes.

111-6

Table 1: Binary Class Datasets used in Experiments.

Datasets No. of

Genes

No. of samples

of two classes

Reference

Ovarian 15154 162/91 [17]

Colon 20000 40/22 [18]

Lung 12533 150/31 [19]

Table 2: Multiclass Datasets used in Experiments.

Dataset
No. of

classes

No. of

genes

No. of

training

samples

No. of test

samples

Referen

ce

Leukemi

a1
 3 7129 38 34 [1]

Leukemi

a2
 3 12,582 57 15 [20]

Lung1 3 7129 64 32 [21]

Lung2 5 12,600 136 67 [22]

 For a m-class problem, different class labels are represented as 1, 2, m. Since CVRStay can only directly solve
binary-class problems by producing Yes/No answer, in our experiments, a multiclass problem is decomposed to a set of
binary class problems. Two commonly used decomposition methods are employed: One vs. One (OVO) and One vs. Rest
(OVR). For fair comparisons, decision tree, Random Forest and Rotation Forest methods are also used as binary classifiers,
fused with OVO and OVR methods. It should be noted that decision trees are also ensemble systems after they are fused
with OVO/OVR methods.
 In tackling the multiclass problem, experiments are only carried out based on the original splits. Because random
forest and HERF are based on random division of sample sets, they ran ten times with different random seeds.We use two
different measures, Fscoreμ and Average Accuracy (AAc for short) for results comparisons. Assume that there are c classes
in a dataset. Different from accuracy, AAc indicates the average per-class performance of a classifier. If a classifier fails to
recognize samples in a ‘hard’ class, it cannot achieve high scores in AAc. Fscoreμ is a measure combining the scores of
both precision and recall among all classes.

Table 3: Experimental results for binary datasets.

 colon Ovarian Lung

CVRStay
Fscore 0.824±0.024 0.968±0.000 0.947±0.000

Accuracy 0.843±0.010 0.976±0.000 0.983±0.000

DT
Fscore 0.743±0.053 0.967±0.009 0.891±0.022

Accuracy 0.799±0.040 0.975±0.007 0.961±0.008

RF
Fscore 0.743±0.053 0.966±0.009 0.891±0.022

Accuracy 0.835±0.004 0.969±0.003 0.918±0.040

HARF
Fscore 0.816±0.027 0.960±0.005 0.936±0.027

Accuracy 0.862±0.045 0.956±0.048 0.974±0.009

 To get a balance between precision and recall, β is set to 1 in calculating the Fscoreμ. From Table 3, it is found that
CVRStay can achieve the best Fscores and accuracy in two datasets. Since higher scores on Fscore represents the better
balanced results, it is obvious that our CVRStay algorithm can overcome the sample-imbalanced problem with providing
more accurate results.

111-7

 In Table 4, it can be found that CVRStay based classification results also take advantages in most cases for the
multiclass problem. In considering both Fscores and AAC, OVR based CVRStay beats other methods in two datasets, and
OVO based CVRStay wins in dealing with the Leukemia1 dataset. For other datasets, only random forest wins in case of
the DLBCL dataset. As a result, CVRStay can take advantage with a small ensemble size compared with other classifiers.

Table 4: Experimental results for multiclass datasets.

Table 4.

Experimental results

for multiclass

datasetsDatasets

OVO

CVRSt

ay
DT

Random

Forest
HERF

Leukemia1
Fscoreμ 0.941 0.941 0.881 ± 0.061 0.923 ± 0.074

AAc 0.961 0.960 0.918 ± 0.040 0.949 ± 0.049

Leukemia2
Fscoreμ 0.933 0.733 0.934 ± 0.066 0.956 ± 0.011

AAc 0.956 0.778 0.953 ± 0.043 0.997 ± 0.008

Lung1
Fscoreμ 0.813 0.668 0.791 ± 0.017 0.817 ± 0.013

AAc 0.875 0.792 0.861 ± 0.011 0.869 ± 0.009

Lung2
Fscoreμ 0.8358 0.955 0.950 ± 0.008 0.933 ± 0.013

AAc 0.9343 0.982 0.980 ± 0.031 0.965 ± 0.009

Datasets

OVR

CVRSt

ay
DT

Random

Forest
HERF

Leukemia1
Fscoreμ 0.794 0.882 0.917 ± 0.012 0.941 ± 0.019

AAc 0.863 0.922 0.944 ± 0.008 0.951 ± 0.012

Leukemia2
Fscoreμ 1.000 0.773 0.921 ± 0.050 0.925 ± 0.026

AAc 1.000 0.882 0.947 ± 0.033 0.940 ± 0.017

Lung1
Fscoreμ 0.813 0.781 0.771 ± 0.025 0.818 ± 0.036

AAc 0.875 0.854 0.847 ± 0.017 0.868 ± 0.026

Lung2
Fscoreμ 0.970 0.851 0.908 ± 0.014 0.946 ± 0.017

AAc 0.988 0.940 0.963 ± 0.006 0.964 ± 0.013

4. Conclusion
 In this paper, the computational verb rule (CVR) is introduced to analyze microarray datasets by providing the verb

stay based rules. Such rules can describe the status of data by summarizing them into linguistically interpretable

expressions. So the rules can provide biologists and biomedical scientists with a deep insight of microarray data. The

principle and learning method for CVRStay is described in this study. To demonstrate the effectiveness of CVRStay, some

experiments are carried our based on binary class and multiclass datasets, and the decision tree, random forest and rotation

forest are also used in these experiments for comparisons. Although only top five rules are fused to form the final CVRStay

classifiers for each two-class problem with ten genes engaged, the final results prove that CVRStay can achieve the best

performance in most cases.

Acknowledgements
 The authors would like to thank Mr. Tong Muchenxuan for his help in the design of algorithm. The work is partly
supported by National Science Foundation of China (No. 61100106).

References
[1] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, et al., “Molecular classification of cancer:

class discovery and class prediction by gene expression monitoring,” Science, vol. 286, pp. 531-537, 1999.

111-8

[2] C-H. Zheng, L. Zhang, T. Yee Ng, S. C. K. Shiu, D-S. Huang, “Metasample-Based Sparse Representation for Tumor

Classification,” IEEE/ACM Trans. Comput. Biology Bioinform, vol. 8, no. 5, pp. 1273-1282, 2011.

[3] S. K. Pati and A. Kumar D., “Gene Selection and Classification Rule Generation for Microarray Dataset,” Advances in

Intelligent Systems and Computing, vol. 178, pp. 73-83, 2013.

[4] Z. Wang and V. Palade, “Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis,”

BMC Genomics, vol. 12, pp. S5, 2011.

[5] S. Ho, L. S. Shu, and J. H. Chen, “Intelligent Evolutionary Algorithms for Large Parameter Optimization Problems,”

IEEE Transactions on Evolutionary Computation, vol. 8, pp. 522-541, 2004.

[6] L. Ohno-Machado, S. Vinterbo, and G. Weber, “Classication of gene expression data using fuzzy logic,” Journal of

Intelligent and Fuzzy Systems, vol. 12, pp. 19-24, 2002.

[7] D. N. A. Tan, L. Xu, R. Winslow, and D. Geman, “Simple decision rules for classifying human cancers from gene

expression profiles,” Bioinformatics, vol. 21, pp. 3896-3904, 2005.

[8] K. H. Liu and C. G. Xu, “A genetic programming-based approach to the classification of multiclass microarray

datasets,” Bioinformatics, vol. 25, pp. 331-337, 2009.

[9] J. C. Chai, S. Park, H. Seo, S. Y. Cho, and Y. S. Lee, “Identification of cancer-specific biomarkers by using microarray

gene expression profiling”, BioChip, vol. 7, no. 1, pp. 57-62, 2013.

[10] B. Y. M. Fung, V. T. Y. Ng, “Meta-classification of Multi-type Cancer Gene Expression Data,” BIOKDD: 4th

Workshop on Data Mining in Bioinformatics, Seattle, WA, USA, August 22nd, pp. 31-39.

[11] Y. Tao, The Mathematical Principles of Natural Languages: The First Course in Physical Linguistics, volume 6 of

YangSky.com Monographs in Information Sciences, Tucson, AZ, Yang’s Scientific Press, 2007.

[12] Y. Tao, Lingua Naturalis Principia Mathematica(in Chinese), First Edition, Xiamen University Press, 2011.

[13] G. C. T. Pham, “Introduction to Fuzzy Systems,” in Chapman & Hall/CRC Mathematical and Computational Biology,

November 2005.

[14] Y. Tao, “Physical Linguistics: A Measuable Linguistics based on Computational Verb Theory,” in Fuzzy Theory and

Probability: Monographs in Information Sciences, vol. 5, Tucson: Yang's Scientific Press, 2004.

[15] M. Tong, “Extracting Dynamic Classification Rules from Microarray Data,” Master thesis, Xiamen University, 2012.

[16] G. L. M. Sokolova, “A systematic analysis of performance masures for classification tasks,” Inf Process Manag, vol.

45, pp. 423-437, 2009.

[17] A. A. Petricoin, B. A. Hitt, P.J. Levine, V.A Fusaro, S.M. Steinberg, G.B. Mills, C. Simone, D. A. Fishman, E. C.

Kohn, and L. A. Liotta, “Use of proteomic patterns in serum to identify ovarian cancer,” Lancet, vol. 359, pp. 572-

577, 2002.

[18] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, et al., “Broad patterns of gene expression revealed

by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays,” in Proceedings of the

National Academy of Sciences of the United States of America, Jun 8 1999, vol. 96, pp. 6745-6750.

[19] J. R. Gordon, L. L. Hsiao, S.R. Gullans, J. E. Blumenstock, S. Ramaswamy, W. G. Richards, D. J. Sugarbaker, and R.

Bueno, “Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in

lung cancer and mesothelioma,” Cancer Research, vol. 62, pp. 4963-4967, 2002.

[20] Y. Wang, I. V. Tetko, M. A. Hall, E. Frank, A. Facius, K. F. X. Mayer, et al., “Gene selection from microarray data

for cancer classification - a machine learning approach,” Computational Biology and Chemistry, vol. 29, pp. 37-46,

Feb 2005.

[21] S. L. Beer, C. C. Huang, T. J. Giordano, A. M. Levin, D. E. Misek, L. Lin, G. Chen, T. G. Gharib, D. G. Thomas, M.

L. Lizyness, R. Kuick, S. Hayasaka, J. M. G. Taylor, M. D. Iannettoni, M. B. Orringer, and S. Hanash, “Gene-

expression profiles predict survival of patients with lung adenocarcinoma,” Nat. Med., vol. 8, pp. 816-824, 2002.

[22] J. Khan, J. Wei, M. Ringner, L. Saal, M. Ladanyi, F. West-ermann, et al., “Classification and diagnostic prediction of

cancers using gene expression profiling and artificial neural networks,” Nature Medicine, vol. 7, pp. 673-679, 2001.

[23] Pedregosa et. al., “Scikit-learn: Machine Learning in Python,” JMLR 12, vol. 12, pp. 2825-2830, 2011.

[24] B. Ayerdi, M. Graña, “Hybrid extreme rotation forest,” vol. 52, pp. 33-42, 2014.

[25] B. Ayerdi. (2014, June 6). Adaptative Hybrid Extreme Rotation Forest [Online]. Available:

https://github.com/borjaayerdi/AdaHERF

http://dblp.uni-trier.de/db/journals/tcbb/tcbb8.html#ZhengZNSH11
http://link.springer.com/search?facet-creator=%22Soumen+Kumar+Pati%22
http://link.springer.com/search?facet-creator=%22Asit+Kumar+Das%22
http://link.springer.com/bookseries/11156
http://link.springer.com/bookseries/11156
http://www.sciencedirect.com/science/article/pii/S0893608014000045
http://www.sciencedirect.com/science/article/pii/S0893608014000045
http://www.sciencedirect.com/science/journal/08936080/52/supp/C

