
Proceedings of the 2nd International Conference on Computer and Information Science and Technology (CIST’16)
Ottawa, Canada - May 11 - 12 2016
Paper No. 116

Collaborated Beamforming for Bidirectional Relay Networks in the
Presence of Interference

Soheil Salari1, Mohammad Zaeri Amirani1, Il-Min Kim1, Dong In Kim2, Jun Yang3
1Faculty of Engineering and Applied Science, Queen’s University

19 Union Street, Walter Light Hall, Kingston, ON., Canada, K7L 3N6
soheil.salari@queensu.ca; zaeri.amirani@gmail.com; ilmin.kim@queensu.ca∗

2School of Information and Communication Engineering
Sungkyunkwan University (SKKU), Suwon, Korea

dikim@skku.ac.kr
3Department of Electrical and Computer Engineering, University of Toronto

Toronto, Canada
jun@utstat.toronto.edu

Abstract - In this paper, we obtain the beamforming vector as well as the users’ transmit powers for an amplify-and-forward (AF)-based
two-way relaying network in the presence of interference. To this end, the total transmit power consumed in the whole network is
minimized subject to two constraints on the users’ received signal-to-interference-plus-noise ratios (SINRs). Our technique is distinct
from the published works in the sense that we jointly obtain the optimal relay beamforming weights and user transmit powers under
the influence of interference, whereas the reported algorithms in the literature have not addressed the effect of interference. Numerical
experiments confirm efficiency of the proposed approach.
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1. Introduction
Two-way relaying methods (bidirectional communications) have received a lot of attention in recent years due to

their capability of supporting communications in two directions with improved spectral efficiency [1, 2]. The advantages
of two-way relaying networks can be achieved through collaborative (distributed) relay beamforming techniques, where a
set of relaying nodes cooperate to build a beam towards the intended receiver [3]. In particular, collaborative beamforming
techniques have been developed under the amplify-and-forward (AF) protocol.

The bidirectional relaying network might be employed in the presence of interference, where the interference may come
from the other transmitter(s) using the same frequency band and the interference typically exists in heterogeneous network
(HetNet). Specifically, all the proposed beamforming approaches in the literature; see [3, 4, 5, 6, 7] and the references
therein, were limited to an idealistic assumption of the network, where there is no interference. Recognizing the fact that
the interference can not be avoided in typical wireless networks for higher spectrum efficiency, this paper concentrates on
the important and general scenario where some or all of the two users and relays are affected by interference, and we design
optimal beamforming schemes for bidirectional networks. To the best of our knowledge, this is the first paper that addresses
the problem of network beamforming for two-way relaying scenario under the influence of interference.

Obtaining the optimal user transmit powers and beamforming coefficients of the relays represents the main focus of
this work. In particular, we aim to jointly design the optimal power allocation and beamforming technique such that the total
transmit power consumed in the whole network is minimized, subject to two constraints on the quality of service (QoS) at the
two users in terms of the signal-to-interference-plus-noise ratio (SINR). Our technique is distinct from the published works
in the sense that we jointly obtain the optimal relay beamforming weights and user transmit powers under the influence of
interference, whereas the reported algorithms in the literature have not addressed the effect of interference.

Notation: Throughout this paper, bold upper case symbols denote matrices and bold lower case symbols denote vectors.
Subscripts (·)∗, (·)T , and (·)H stand for complex conjugate, transpose, and Hermitian, respectively. Also, we use N (µ,σ2) to
denote complex Guassian distribution with mean µ and variance σ2. |z| and ]z represent the amplitude and the phase of the
complex number z = |z|e]z, respectively. Furthermore, diag(x) represents a diagonal matrix with the elements of the vector
x as its diagonal entries. Also, ‖x‖ stands for the Euclidean norm of the vector x. IN is an N×N identity matrix. We use xi
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and [A]i, j to denote the i-th element of the vector x and the (i, j) element of the matrix A, respectively. For two Hermitian
matrices A and B, A < B means that A−B is positive semi-definite. λmax(A) is used to represent the largest eigenvalue of

matrix A. We define δ (k) =
{ 1, k = 2

2, k = 1 .

2. System Model
Here, we consider a bidirectional relaying network which consists of two users and some relays, where each node is

equipped with a single antenna. Throughout the paper, U1, U2, and Rl stands for the first user, the second user, and the
l-th relay for l = 1, ...,L, respectively. It is also assumed that U1, U2, and relays are respectively affected by nA, nB, and
nC interferers. Throughout the paper, we use ζ1, j ( j = 1, ...,nA), ζ2,m (m = 1, ...,nB), and ζR,i (i = 1, ...,nC) to denote the
interferers affecting U1, U2, and relays, respectively. In addition, hl,k represents the fading coefficient of the channel between
Uk (k = 1,2) and Rl (l = 1, ...,L). It is assumed that that channel reciprocity holds for all user-relay links. Also, g1, j, g2,m, and
gRl ,i stand for the channel coefficients from ζ1, j ( j = 1, ...,nA) to U1, from ζ2,m (m= 1, ...,nB) to U2, and from ζR,i (i= 1, ...,nC)
to Rl (l = 1, ...,L), respectively. In this work, similar to related literature, it is assumed that the perfect channel knowledge is
available. However, in [8], we have considered the scenario where channel coefficients are subject to estimation errors.

For such a system, the total transmission consists of two consecutive equal-duration time-slots. In the first time-slot,
both users transmit their own signals to the relays. The resulting signal at the relay is then given by [8]

rR =
√

P1h1s1 +
√

P2h2s2 +
nC

∑
i=1

√
PξR,igR,iξR,i +ϑ R, (1)

where rR represents an L×1 vector whose l-th entry stands for the signal received by Rl . Also, the L×1 vector hk ,
[h1,k, h2,k, ..., hL,k]

T denotes the channel coefficients between Uk and relays and the L×1 vector gR,i , [gR1,i, gR2,i, ..., gRL,i]
T

represents the channel coefficients from ζR,i to relays. In addition, the L× 1 vector ϑ R = [ϑR1 ,ϑR2 , ...,ϑRL ]
T is the

additive white Gaussian noises at relays. Note that the elements of ϑ R are independently and identically distributed
(i.i.d.) as N (0,σ2

η). In (1), s1 and s2 represent the transmitted signals by U1 and U2, respectively. It is assumed that
E{|s1|2}= E{|s2|2}= 1. Also, ξR,i denotes the interference signal generated by ζR,i (i = 1, ...,nC), where E{|ξR,i|2}= 1. In
addition, we use P1 and P2 to represent the transmit powers of U1 and U2, respectively. Also, PξR,i denotes the power of the
interference signal ζR,i (i = 1, ...,nC).

During the second time-slot, the l-th relay first multiplies its received signal by a complex weight w∗l , and then transmits
the obtained signal to both users. The transmitted signals by all relays can be represented as an L×1 vector

z = WHrR, (2)

where W , diag(w) and w = [w1, w2, . . . ,wL]
T . Finally, the signal yk received by Uk, k = 1,2, can be expressed as

yk =
√

PkhT
k WHhksk +

√
Pδ (k)hT

k WHhδ (k)sδ (k)+
nC

∑
i=1

√
PξR,ih

T
k WHgR,iξR,i +gT

k ξ k +hT
k WH

ϑ R+ vk, k = 1,2, (3)

where the nA× 1 vector g1 , [g1,1, g1,2, ..., g1,nA ]
T stands for the channel coefficients from

{
ζ1, j
}nA

j=1 to U1 and the

nB×1 vector g2 , [g2,1, g2,2, ..., g2,nB ]
T denotes the channel coefficients from {ζ2,m}nB

m=1 to U2. Also, vk is the noise at Uk ∼
N (0,σ2

vk
). Note that ξ 1 , [

√
Pξ1,1ξ1,1, . . . ,

√
Pξ1,nA

ξ1,nA ]
T , where ξ1, j and Pξ1, j are the interference signal transmitted from

ζ1, j and its corresponding interference power, respectively. Similarly, ξ 2 , [
√

Pξ2,1ξ2,1, . . . ,
√

Pξ2,nB
ξ2,nB ]

T , where ξ2,m and

Pξ2,m represent the interference signal transmitted by ζ2,m and its corresponding interference power, respectively. Moreover,
we assume that E{|Pξ1, j |

2}= E{|Pξ2,m |
2}= 1 for all j = 1, ...,nA and m = 1, ...,nB.

It can be seen from (3) that the received signal at Uk includes the corresponding self-signal earlier transmitted to the
relays. Since Uk knows its own transmitted signal, sk, it can subtracts the resulting self-interference term

√
PkhT

k WHhksk from
the received signal. Accordingly, the remaining signal for Uk, k = 1,2, is

ỹk = ỹS,k + ỹI,k + ỹN,k, k = 1,2, (4)
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where ỹS,k, ỹI,k, and ỹN,k are respectively the intended signal component, interference component, and noise component
of ỹk. Considering the fact that W = diag(w) is a diagonal matrix, we have hT

k WH = wHdiag(hk), k = 1,2. Therefore, ỹS,k,
ỹI,k, and ỹN,k can be expressed as

ỹS,k =
√

Pδ (k)wHHkhδ (k)sδ (k), k = 1,2 (5)

ỹI,k =
nC

∑
i=1

√
PξR,iw

HHkgR,iξR,i +gT
k ξ k, k = 1,2 (6)

ỹN,k = wHHkϑ R + vk, k = 1,2, (7)

where Hk , diag(hk), k = 1,2.

3. Joint Power Allocation and Beamforming Design
Our problem is to minimize the total transmit power PT of the whole network while the received SINRs at U1 and

U2, which are respectively denoted as Γ1 and Γ2, are kept above pre-defined certain thresholds γ1 and γ2, respectively.
Mathematically, we aim to solve the following optimization problem:

min
P1, P2, w

PT

s. t. Γ1 ≥ γ1

Γ2 ≥ γ2. (8)

The total transmit power PT can be written as:

PT = PR +P1 +P2. (9)

The relay transmit power PR , E
{
|z|2
}

is given by

PR = wH

(
P1D1 +P2D2 +

nC

∑
i=1

PξR,iDξR,i +σ
2
ηIL

)
w, (10)

where Dk , HH
k Hk, k = 1,2, and DξR,i , diag(gR,i)

Hdiag(gR,i), i = 1, ...,nC. The received SINR at Uk, k = 1,2, can be
written as

Γk =
Pδ (k)wHffHw

wH

(
nC

∑
i=1

PξR,ifk,if
H
k,i +σ2

ηHkHH
k

)
w+gH

k Pξk
gk +σ2

vk

, (11)

where f , Hkhδ (k), k = 1,2, and fki , HkgR,i, k = 1,2 and i = 1, ...,nC. In addition, Pξ1 , diag
(
[Pξ1,1 , Pξ1,2 , . . . , Pξ1,nA

]
)

and Pξ2 , diag
(
[Pξ2,1 , Pξ2,2 , . . . , Pξ2,nB

]
)

.
Using (9), (10), and (11), the optimization problem in (8) can be rewritten as

min
P1,P2,w

P1+P2+wH
(

P1D1+P2D2+
nC

∑
i=1

PξR,iDξR,i+σ
2
ηIL

)
w

s. t.
P2wHffHw

wH
( nC

∑
i=1

PξR,if1,if
H
1,i+σ2

ηH1HH
1

)
w+gH

1 Pξ1g1+σ2
v1

≥γ1

P1wHffHw

wH
( nC

∑
i=1

PξR,if2,if
H
2,i+σ2

ηH2HH
2

)
w+gH

2 Pξ2g2+σ2
v2

≥γ2. (12)
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In this optimization problem, the design parameters include w as well as P1 and P2. This makes finding the global
minimum of (12) very challenging. In order to find the global solution to (12), we will develop a method which consists
of a two-dimensional search over a sufficiently fine grid that covers all possible values of P1 and P2 and an second-order
cone-programming (SOCP) problem over w. To that end, we first obtain the feasibility set of (12) in the following.

We rewrite the constraints of the optimization problem (12) as follows

wH
(

Pδ (k)ffH − γk

( nC

∑
i=1

PξR,ifk,if
H
k,i +σ

2
ηHkHH

k

))
w≥ γk

(
gH

k Pξk
gk +σ

2
vk

)
,k = 1,2. (13)

It is seen that the optimization problem (12) is infeasible if for a given value of Pδ (k), k = 1 or 2, the matrix(
Pδ (k)ffH − γk

(
∑

nc
i=1 PξR,ifk,if

H
k,i +σ2

ηHkHH
k

))
is negative definite for k = 1 or 2. In other words, the optimization problem

(12) is feasible if and only if for any given pair of P1 and P2, the matrixes
(

Pδ (k)ffH − γk

(
∑

nC
i=1 PξR,ifk,if

H
k,i +σ2

ηHkHH
k

))
are

non-negative definite for both k = 1 and 2. Defining

Rk ,

(
nC

∑
i=1

PξR,ifk,if
H
k,i +σ

2
ηHkHH

k

)
, k = 1,2, (14)

which can be shown to be a positive definite matrix, for k = 1 and 2, we have

Pδ (k)ffH − γkRk = R
1
2
k

(
Pδ (k)R

−1
2

k ffHR
−1
2

k − γkIL

)
R

1
2
k , (15)

where
(

Pδ (k)R
−1
2

k ffHR
−1
2

k − γkIL

)
, k = 1,2, can be shown to be a non-negative definite matrix. We conclude that the

optimization problem (12) is feasible if and only if for any given pair of P1 and P2

λmax

(
Pδ (k)R

−1
2

k ffHR
−1
2

k − γkIL

)
≥ 0, k = 1,2. (16)

Since R
−1
2

k ffHR
−1
2

k is a rank-one matrix, the largest eigen-value of the matrix
(

Pδ (k)R
−1
2

k ffHR
−1
2

k − γkIL

)
is

Pδ (k)fHR−1
k f− γk. Therefore, (16) can be equivalently rewritten as

Pδ (k) ≥
γk

fHR−1
k f

=
γk

fH
(

nC

∑
i=1

PξR,ifk,if
H
k,i +σ2

ηHkHH
k

)−1

f
, k = 1,2. (17)

It is worth mentioning that the two constraints in (17) are necessary and sufficient conditions for (12) to be feasible.
We now convert the joint power allocation and relay beamforming problem in (12) into two nested problems: i) over

P1 and P2, and ii) over w. To this end, without loss of optimality, we rewrite the objective function of (12) as follows

min
P1,P2

(
P1+P2

)
+min

w
wH
(

P1D1+P2D2+
nC

∑
i=1

PξR,iDξR,i+σ
2
ηIL

)
w. (18)

We also add the two conditions of (17) as the additional constraints, without loss of optimality. Then we have the
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following problem

min
P1,P2

P1+P2 + min
w

wH
(

P1D1+P2D2+
nC

∑
i=1

PξR,iDξR,i+σ
2
ηIL

)
w (19a)

s. t.
wHffHw

wH
(

∑
nC
i=1 PξR,if1,if

H
1,i +σ2

ηH1HH
1

)
w+gH

1 Pξ1g1 +σ2
v1

≥ γ1

P2
(19b)

wHffHw

wH
(

∑
nC
i=1 PξR,if2,if

H
2,i +σ2

ηH2HH
2

)
w+gH

2 Pξ2g2 +σ2
v2

≥ γ2

P1
(19c)

P1 ≥
γ2

fH
(

∑
nC
i=1 PξR,if2,if

H
2,i +σ2

ηH2HH
2

)−1
f

(19d)

P2 ≥
γ1

fH
(

∑
nC
i=1 PξR,if1,if

H
1,i +σ2

ηH1HH
1

)−1
f
. (19e)

Specifically, for any fixed pair of P1 and P2 satisfying (19d) and (19e), the inner minimization can be rewritten as

min
w

wH

(
P1D1 +P2D2 +

nC

∑
i=1

PξR,iDξR,i +σ
2
ηIL

)
w (20a)

s. t.
∣∣wHf

∣∣≥
√√√√ γ1

P2

(
wH

(
nC

∑
i=1

PξR,if1,if
H
1,i +σ2

ηH1HH
1

)
w+gH

1 Pξ1g1 +σ2
v1

)
(20b)

∣∣wHf
∣∣≥
√√√√ γ2

P1

(
wH

(
nC

∑
i=1

PξR,if2,if
H
2,i +σ2

ηH2HH
2

)
w+gH

2 Pξ2g2 +σ2
v2

)
. (20c)

It is easy to see from (20a)–(20c), if the optimal vector wopt is replaced with e jθ wopt , for any value of phase rotation
θ , the optimization problem (20a)–(20c) will not change. This means that the new vector e jθ wopt is also a solution to (20a)–
(20c). Hence, without loss of optimality, we can rotate the phase of w such that wHf is a real and positive number. Doing so,
we equivalently arrive at the following optimization problem

min
w

wH

(
P1D1 +P2D2 +

nC

∑
i=1

PξR,iDξR,i +σ
2
ηIL

)
w (21a)

s. t. ℜe
(
wHf

)
≥

√√√√ γ1

P2

(
wH

(
nC

∑
i=1

PξR,if1,if
H
1,i +σ2

ηH1HH
1

)
w+gH

1 Pξ1g1 +σ2
v1

)
(21b)

ℜe
(
wHf

)
≥

√√√√ γ2

P1

(
wH

(
nC

∑
i=1

PξR,if2,if
H
2,i +σ2

ηH2HH
2

)
w+gH

2 Pξ2g2 +σ2
v2

)
(21c)

ℑm
(
wHf

)
= 0. (21d)

One can easily show that for each feasible pair of (P1,P2), the optimization problem (21a)–(21d) is an SOCP problem
[9] which can be efficiently solved using interior point methods [10]. To find the solution to (19a)–(19e), adopting a similar
approach to the one employed in [7], we first discretize the feasibility set of (19a)–(19e) into a fine grid of (P1,P2) space.
Then, for each vertex of the obtained grid, the SOCP problem (21a)–(21d) is solved and the corresponding total transmit
power PT is calculated. The optimal solution to (19a)–(19e) corresponds to the pair of (P1,P2) that results in the smallest PT
value.
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4. Simulation Results
The goal of this section is to demonstrate the performance of the proposed beamformer and analyze its properties

through a set of Monte Carlo simulations. Throughout all simulations, we have considered a bidirectional network consisting
of L = 10 relay nodes. The results that we show are obtained by averaging the corresponding quantity over 1000 independent
simulation runs. In each simulation run, all the channel vectors h1 and h2 as well as the interferers CSI vectors ĝ1, ĝ2, and
ĝR,i (i = 1, ...,nC), are generated as complex zero-mean Gaussian random vectors with unit variances. Also, the noise power
at the relays and at the two users is assumed to be one. For convenience, it is assumed that the users have the same minimum
required SINR, i.e. γ , γ1 = γ2.

First, we study the effect of the interference on the two-way relaying network. Here, we denote the power of interferers
affecting U1, U2, and the relays by the sequences pζ 1

,
[
Pξ1,1 , ...,Pξ1,nA

]
, pζ 2

,
[
Pξ2,1 , ...,Pξ2,nB

]
, and pζ R

,
[
PξR,1 , ...,PξR,nC

]
,

respectively. In Figs. 1 and 2, we consider equal-power interference case under two scenarios: (1) when interferers only
affect U1, i.e. nA = 2, nB = 0, and nC = 0; (2) when interferers affect both U1 and U2, i.e. nA = 1, nB = 1, and nC = 0. To
investigate the effect of the interference power, we keep all other parameters fixed and only change the power of interferers
(Pξ1,1 and Pξ1,2 in the first scenario; and Pξ1,1 and Pξ2,1 in the second scenario) from 2 to 5. Specifically, the comparison for the
minimum total transmit power PT against γ is shown in Fig. 1. It is seen that the total transmit power PT becomes worse
with increasing the interferer powers. Fig. 2 illustrates the P1+P2

PR
ratio versus SINR. One can see that increasing the interferer

powers from 2 to 5 leads to higher PR consumption.
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Fig. 1: The average minimum total transmit power PT against γ = γ1 = γ2 of a bidirectional network under following scenarios: (A)
when interferers only affect U1; and (B) when interferers affect U1 and U2.
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Fig. 2: P1+P2
PR

ratio versus γ = γ1 = γ2 for a bidirectional network under following scenarios: (A) when interferers only affect U1; and (B)
when interferers affect U1 and U2.

Next, we compare the performance of our proposed method with that of the proposed scheme in [4]; see Fig. 3. In the
related simulations, we set nA = 0, nB = 0, pζ R

= [10,10]. As can be seen from Fig. 3, in the presence of interference, our
scheme significantly outperforms the proposed method in [4], which proves the efficiency of our proposed method.
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Fig. 3: Performance comparison of the proposed algorithm with that of proposed in [4].
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5. Conclusion
In this paper, we considered an AF-based bidirectional relaying network in which two users intend to exchange in-

formation with the help of relays. Assuming that both users and all relays are equipped with a single antenna, we studied
the problem of optimal beamforming and power allocation in the presence of interference. In contrast to previously reported
works, which are limited to the idealistic assumption of interference-free environment, we developed an optimal beamforming
and power allocation scheme for bidirectional relay networks in the presence of interference. Specifically, we calculated the
relay beamforming vector as well as user transmit powers via minimizing the total transmit power consumed in the whole
network subject to two constraints on the users received SINRs.
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