
Proceedings of the 2nd International Conference on Computer and Information Science and Technology (CIST’16)

Ottawa, Canada – May 11 – 12, 2016

Paper No. 132

132-1

Verifying Consistency of Process Communications between Design
and Implementation of Concurrent Systems

Ming Zhu1, Peter Grogono1, Olga Ormandjieva1, Kunsheng Zhao2
1Department of Computer Science and Software Engineering, Concordia University

1455 De Maisonneuve Blvd. W., Montreal, Canada

zhu_ming@encs.concordia.ca; grogono@cse.concordia.ca; ormandj@cse.concordia.ca
2School of Information Study, McGill University

3661 Rue Peel, Montreal, Canada

kunsheng.zhao@mail.mcgill.ca

Abstract - Category theory is considered to be a suitable means for verifying consistency of process communications between design

and implementation of concurrent systems. In this paper, certain features of a proposed categorical framework for the verification are

studied by using a Client/Server example. In particular, Communicating Sequential Processes (CSP), Erasmus, abstraction, and category

theory are used to verify the consistency of process communications between design and different implementations of the example.

Keywords: concurrent system; verification; category theory; CSP; Erasmus

1. Introduction
 Verifying consistency of process communications between design and implementation of concurrent systems is

considered as a difficulty [1], due to the different abstraction levels of design and implementation. Particularly, for those

concurrent systems designed in a process algebra and implemented in a process-oriented language, it is challenging to

manage the consistency between design phase and implementation phase. Research [2], [3] and [4] propose a categorical

framework to bridge the gap of inconsistency between design and implementation of concurrent systems. As a continuation,

the aim of this paper is to demonstrate the verification of consistency of process communications by using the framework.

 The rest of this paper is organized as follows: Section 2 provides background knowledge and related work on

Communicating Sequential Processes (CSP), the process-oriented programming language Erasmus, and the categorical

framework. Section 3 demonstrates the application of the categorical framework to different scenarios of a Client/Server

example. Section 4 concludes this paper and proposes directions for future research.

2. Background and Related Work
 In this section, the background and related work on our research are introduced.

2.1. Communicating Sequential Processes (CSP)
 CSP was proposed by Hoare as a process algebra towards specification-oriented [5], and then has been refined by

Roscoe [6]. Most of process-oriented programming languages are considered to be derived from CSP [7]. CSP specifies and

models processes in a concurrent system that communicate with their external environment. The construction of a process

depends on a set of all events that occur on the process. This set of all events is called an alphabet. A process in CSP can be

represented by failures [5]. Given a process P, a failure of P is of the form (s, X). It means that P can engage in the trace of

events s, and then refuse to do anything more, although its environment is prepared to engage in any of the events of X [5].

Also, there are several operations defined on process, which includes prefixing, recursion, deterministic choice, and

nondeterministic choice [6]. Processes can be assembled together as a system, where they can communicate with each other.

If one process needs to communicate to another process, a channel is required between them to receive inputs and send

outputs. The notion of parallel along with the symbol || is introduced to describe communications between processes.

132-2

 CSP is widely used and studied. For example, traces and failures are used to analyze the liveness and correctness of

processes [8]; semantics for revivals, stuckness and the hierarchy of CSP model are discussed [9]; and it is used for

understanding particular issues in concurrent and real-time systems [10].

2.2. Erasmus
 Several signs suggest that the next paradigm may be process-oriented programming [11]. Erasmus is a process-

oriented programming language based on the idea of CSP but with some differences [11]. An Erasmus program consists of

cells, processes, ports, protocols and channels. A cell, containing a collection of one or more processes or cells, provides the

structuring mechanism for an Erasmus program. A process is a self-contained entity which performs computations, and

communicates with other processes through its ports. A port, which is of a type of protocol, serves as an interface of a process

for sending and receiving messages. A protocol specifies the type and the orderings of messages that can be sent and received

by the ports of the type of this protocol. A channel, which is of a type of protocol, links two ports and so enables two processes

to communicate.

 Some research is proposed to study communications in Erasmus. It includes constructing a fair protocol that allows

arbitrary and nondeterministic communication between processes [12], and describing an alternative construct that allows a

process to nondeterministically choose between possible communications on several channels [13].

2.3. The Categorical Framework

 It is suggested that category theory can be helpful towards discovering and verifying connections in different areas,

while preserving structures in those areas [14]. In software engineering, category theory is proposed as an approach to

formalizing refinement from design to implementation [15]. Specifically, category theory is used to construct the categorical

framework for verifying consistency of process communications between design and implementation in research [3] and [4].

The categorical framework consists of 6 steps: (1). designing: design concurrent systems in CSP, and analyze failures of

processes together with communications, (2). implementing: implement concurrent systems in Erasmus with the design

refinement, (3). analyzing abstraction: abstract processes and communications out of the implementation, and analyze

failures of abstracted processes as well as communications, (4). categorizing design: construct categorical models for the

design with preserving structures of communications, (5). categorizing abstraction of implementation: construct categorical

models for the abstraction of implementation with preserving structures of communications, and (6). verifying: construct

functors to verify the categorical models of the design and the abstraction. With this categorical framework, it is able to

check whether the designed communication is captured by the implementation or not [4]. In this paper, we use the

Client/Server example to demonstrate the leverage of the framework.

3. Demonstrating the Categorical Framework

 To demonstrate the categorical framework, a Client/Server example is developed. In the example, there are a server

and a client. The server can provide two types of service, service A and service B. The client can request service A and service

B. In the beginning, the client lets the server know the type of service it requests. Then, the client sends the information

related to the requested service to the server. At last, the client receives the corresponding results from the server. The client

can repeatedly request service from server.

 According to the software development process, we develop the design in CSP based on the requirements specification

of the example, then we refine the design into the implementation in Erasmus. In this paper, we develop three different

scenarios in the implementation stage. In the first scenario, the server offers three types of service that are service A, service

B and service C. In the second scenario, the server offers only one type of service that is service A. In the third scenario, the

server offers exactly same services as the design. With the application of the categorical framework to the example, the

consistency of Client/Server communications between the design and the implementation can be verified automatically. Fig.1

illustrates the process of applying the framework to the design and a scenario of the implementation.

3.1. Designing the Example
 In the design stage, the server and the client are modeled as processes Server and Client respectively. As described in

the specification of the example, processes Server and Client communicate the following messages sequentially: (1). the

client sends a type of request, requestA or requestB, to the server, (2). the client sends a message with information of the

132-3

service, infoA or infoB, to the server, and (3). the server processes the service request, and sends the corresponding result,

resultA or resultB, to the client. According to CSP, communications of Client/Server are modeled and analyzed as follows:

𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡(𝑆𝑒𝑟𝑣𝑒𝑟||𝐶𝑙𝑖𝑒𝑛𝑡) = {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵}
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑆𝑒𝑟𝑣𝑒𝑟||𝐶𝑙𝑖𝑒𝑛𝑡) = {{(〈 〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵}},

{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐵}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴〉, 𝑋)|𝑋 ⊆ { 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵}},
… …}

Using CSP to design

processes based on the
specification of the

example

Categorizing communications
between server and clients in

the design

Using Erasmus to
implement a scenario of

the example

Abstracting
communications from the

implementation

Categorizing communications
between server and clients in

the abstraction of the
implementaiton

Constructing functors from
categories of design to

categories of abstraction of
implementation

Decision

Consistency

Inconsistency

Fig. 1: Process of applying the categorical framework to the example.

3.2. Implementing Scenario 1

 In the implementation stage, for this scenario, process Server is implemented to provide 3 types of service, and process

Client is implemented to request 3 types of service. The Erasmus code for the implementation is as follows:

Match = protocol {requestA|requestB|requestC|infoA|infoB|infoC|^resultA|^resultB|^resultC}

Server = process p: +Match{

 loop select{ ||p.requestA; p.infoA; p.resultA;

||p.requestB; p.infoB; p.resultB;

||p.requestC; p.infoC; p.resultC; }}

Client = process e: -Match{

 loop case{ ||e.requestA; e.infoA; e.resultA;

||e.requestB; e.infoB; e.resultB;

||e.requestC; e.infoC; e.resultC; }}

Main = cell{ m: Channel Match; Server(m); Client(m); }

3.3. Analyzing the Abstraction of the Implementation of Scenario 1
 According to research [3] and [4], the implementation of scenario 1 is abstracted as follows:

Server = loop{select{|p.requestA; p.infoA; p.resultA;

|p.requestB; p.infoB; p.resultB;

|p.requestC; p.infoC; p.resultC}}

Client = loop{case{ |e.requestA; e.infoA; e.resultA;

|e.requestB; e.infoB; e.resultB;

|e.requestC; e.infoC; e.resultC}}

 According to CSP and research [3] and [4], communications between Server and Client in the abstraction of the

implementation are modeled and analyzed as follows:

𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡(𝑆𝑒𝑟𝑣𝑒𝑟||𝐶𝑙𝑖𝑒𝑛𝑡) = {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶}
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑆𝑒𝑟𝑣𝑒𝑟||𝐶𝑙𝑖𝑒𝑛𝑡) =

{{(〈 〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶}},

132-4

{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴〉, 𝑋)|𝑋 ⊆ { 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶, 𝑖𝑛𝑓𝑜𝐶, 𝑟𝑒𝑠𝑢𝑙𝑡𝐶}},
… … }

3.4. Categorizing Communications and Verifying the Consistency for Scenario 1
 The implementation of scenario 1 not only provides serviceA and serviceB, but also offers serviceC. According to

Definition 4.1 and Proposition 1 in research [4], we can try to construct a functor from the category of the design to the

category of the abstraction of the implementation, in order to check whether the process communications in the

implementation are consistent with the process communications in the design.

Fig. 2: The functor form the category of the design to the category of the abstraction of the implementation (scenario 1).

 The successful construction of the functor indicates the consistency of process communications between the design

and the implementation (See Fig.2). Furthermore, it shows that the implementation offers more than the design.

3.5. Implementing Scenario 2

 In this scenario, process Server is implemented to provide only one type of service, and process Client is implemented

to request the service from Server. The Erasmus code for the implementation is as follows:

Match = protocol {requestA |infoA |^resultA}

Server = process p: +Match{

loop{ p.requestA; p.infoA; p.resultA; }}

Client = process e: -Match{

loop{ e.requestA; e.infoA; e.resultA; }}

Main = cell{m: Channel Match; Server(m); Client(m);}

3.6. Analyzing the Abstraction of the Implementation of Scenario 2
 According to research [3] and [4], the implementation of scenario 2 is abstracted as follows:

132-5

Server = loop{p.requestA; p.infoA; p.resultA}

Client = loop{e.requestA; e.infoA; e.resultA}

 According to CSP and research [3] and [4], communications between Server and Client in the abstraction of the

implementation are modeled and analyzed as follows:

𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡(𝑆𝑒𝑟𝑣𝑒𝑟||𝐶𝑙𝑖𝑒𝑛𝑡) = {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴}
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑆𝑒𝑟𝑣𝑒𝑟||𝐶𝑙𝑖𝑒𝑛𝑡) = {{(〈 〉, 𝑋)|𝑋 ⊆ { 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴}},

{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴〉, 𝑋)|𝑋 ⊆ { 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴}},
… … }

3.7. Categorizing Communications and Verifying the Consistency for Scenario 2
 The implementation of scenario 2 just provides serviceA. There is no serviceB in the implementation. According to

Definition 4.1 and Proposition 1 in research [4], we can try to construct a functor from the category of the design to the

category of the abstraction of the implementation, in order to check whether the process communications in the

implementation are consistent with the process communications in the design.

Fig. 3: the category of the abstraction of the implementation and the category of the design (scenario 2).

 Clearly, the functor cannot be constructed from the category of the design to the category of the abstraction of the

implementation (See Fig.3). It indicates that not all the communications of the design are captured in the implementation.

For this scenario, communications related to serviceB is not implemented. Namely, the process communications in the design

are inconsistent with the process communications in the implementation.

3.8. Implementing Scenario 3

 In this scenario, process Server provides serviceA and serviceB, and process Client requests both services from Server.

The Erasmus code for the implementation is as follows:

Match = protocol {requestA |requestB |infoA |infoB |^resultA |^resultB}

Server = process p: +Match{

loop select{ ||p.requestA; p.infoA; p.resultA;

||p.requestB; p.infoB; p.resultB;}}

Client = process e: -Match{

loop case{ ||e.requestA; e.infoA; e.resultA;

||e.requestB; e.infoB; e.resultB;}}

Main = cell{m: Channel Match; Server(m); Client(m);}

3.9. Analyzing the Abstraction of the Implementation of Scenario 3
 According to research [3] and [4], the implementation of scenario 3 is abstracted as follows:

132-6

Server = loop{select{|p.requestA; p.infoA; p.resultA

|p.requestB; p.infoB; p.resultB }}

Client = loop{case{ |e.requestA; e.infoA; e.resultA

|e.requestB; e.infoB; e.resultB }}

 According to CSP and research [3] and [4], communications between Server and Client in the abstraction of the

implementation are modeled and analyzed as follows:

𝐴𝑙𝑝ℎ𝑎𝑏𝑒𝑡(𝑆𝑒𝑟𝑣𝑒𝑟||𝐶𝑙𝑖𝑒𝑛𝑡) = {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵}
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑆𝑒𝑟𝑣𝑒𝑟||𝐶𝑙𝑖𝑒𝑛𝑡) = {{(〈 〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵}},

{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵}},

{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵}},
{(〈𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵〉, 𝑋)|𝑋 ⊆ {𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐴, 𝑟𝑒𝑠𝑢𝑙𝑡𝐴, 𝑖𝑛𝑓𝑜𝐴, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐵, 𝑖𝑛𝑓𝑜𝐵, 𝑟𝑒𝑠𝑢𝑙𝑡𝐵}},
… … }

3.10. Categorizing Communications and Verifying the Consistency for Scenario 3
 The implementation of scenario 3 contains both serviceA and serviceB. These two services are specified in the

example, and are designed as well. According to Definition 4.1 and Proposition 1 in research [4], we can try to construct a

functor from the category of the design to the category of the abstraction of the implementation, in order to check whether

the process communications in the implementation are consistent with the process communications in the design.

Fig. 4: The functor form the category of the design to the category of the abstraction of the implementation (scenario 3).

 It is obvious that the category of design is equivalent to the category of the abstraction of the implementation (See

Fig.4). The successful construction of the functor indicates the process communications in the design are consistent with the

process communications in the implementation.

4. Conclusion and Future Work
 As the continuation of our former research [2], [3] and [4], this paper uses the categorical framework to verify the

consistency of process communications. In this framework, the design of the system is modeled and analyzed by CSP; the

implementation of the system is developed in Erasmus, and then is abstracted; the categories of the design and of the

abstraction of the implementation are created; and by constructing functors, the consistency of process communications

between the design and the implementation is verified. By developing three different scenarios of the Client/Server example,

the application of the framework to those scenarios shows correct verification results as expected.

132-7

 In Future, more examples scale up to realistic systems will be analyzed by using this categorical framework. Besides,

the algorithms inside the framework for automatically analyzing CSP design, abstracting implementation, and constructing

categories and functors will be discussed.

References
[1] J. R. Kiniry and F. Fairmichael, “Ensuring consistency between designs, documentation, formal specifications, and

implementations,” in Proceedings of 12th International Symposium on Component-Based Software Engineering, 2009,

pp. 242-261.

[2] M. Zhu, P. Grogono, O. Ormandjieva, and P. Kamthan, “Using category theory and data flow analysis for modeling and

verifying properties of communications in the process-oriented language erasmus,” in Proceedings of the Seventh C*

Conference on Computer Science and Software Engineering, Montreal, 2014, pp. 24:1-24:4, 2014.

[3] M. Zhu, P. Grogono, and O. Ormandjieva, “Using category theory to verify implementation against design in concurrent

systems,” in The 6th International Conference on Ambient Systems, Networks and Technologies, London, 2015, pp.

530-537.

[4] M. Zhu, P. Grogono, O. Ormandjieva, and H. Kuang. (2016, March 23). Using Failures and Category Theory to Verify

Process Communications between Design and Implementation of Concurrent Systems [Online]. Available:

http://users.encs.concordia.ca/~zhu_ming/ant2016.pdf.

[5] C. A. R. Hoare, Communicating Sequential Processes. Englewood Cliffs, NJ: Prentice-Hall, 1985.

[6] A. W. Roscoe, Understanding Concurrent Systems. London, United Kingdom: Springer, 2010.

[7] A. T. Sampson, “Process-oriented patterns for concurrent software engineering,” in Ph.D. dissertation, University of

Kent, Kent, United Kingdom, 2008.

[8] P. Welch, “Life of occam-pi,” in Communicating Process Architectures 2013, Edinburgh, 2013, pp. 293-318

[9] A. W. Roscoe, “Revivals, stuckness and the hierarchy of CSP models,” The Journal of Logic and Algebraic

Programming, vol. 78, no. 3, pp. 163-190, 2009.

[10] S. Schneider, Concurrent and Real Time Systems: The CSP Approach. New York: John Wiley & Sons Inc., 1999.

[11] P. Grogono and B. Shearing, “Concurrent software engineering: Preparing for paradigm shift,” in Proceedings of the

First C* Conference on Computer Science and Software Engineering, 2008, pp. 99-108.

[12] P. Grogono and N. Jafroodi, “A fair protocol for non-deterministic message passing,” in Proceedings of the Third C*

Conference on Computer Science and Software Engineering, 2010, pp. 53-58.

[13] N. Jafroodi and P. Grogono, “Implementing generalized alternative construct for erasmus language,” in Proceedings of

the 16th International ACM Sigsoft Symposium on Component-based Software Engineering, 2013, pp. 101-110.

[14] S. Awodey, Category Theory. New York: The Clarendon Press, 2006.

[15] C. A. R. Hoare, “Notes on an approach to category theory for computer scientists,” Constructive Methods in Computing

Science, vol. 55, pp. 245-305, 1989.

