
Proceedings of the World Congress on Civil, Structural, and Environmental Engineering (CSEE’16)  

Prague, Czech Republic – March 30 – 31, 2016 

Paper No. ICSENM 107

DOI: 10.11159/icsenm16.107 

ICSENM 107-1 

 

Inelastic Stress Analysis of Curved Beams with Bending and Shear 

Coupling 
 

Yen-Po Wang1, Chien-Liang Lee2, Shih-Chiao Huang1 
1Dept. Civil Engineering/National Chiao-Tung University 

1001 Ta-Hsueh Road, Hsinchu, Taiwan 
ypwang@mail.nctu.edu.tw; joejoe9193.cv03g@mail.nctu.edu.tw 

2School of Civil Engineering and Architecture/Xiamen University of Technology 
No. 600 Ligong Road, Jimei District, Xiamen, 361024, Fujian Province, China 

cllee63@hotmail.com  
 

 
Abstract - The inelastic stress analysis of curved beams under pure bending has been extensively studied in the past few years. 

Nevertheless, the analysis for those under end shear, or moment and shear coupling, are not yet available. In this paper, the analytical 

model for inelastic stress analysis  of symmetrical curved beams with bending and shear coupling is derived. This problem arises from 

the investigation of the inelastic behaviour of an  in-p lane flexural damper consisting of a circular arch with two straight arms. In -plane 

lateral forces applying to the end of the arm makes the arch a circular cantilever subjected to moment and shear simultaneously. 

Extended from the classical theory of elasticity, the proposed computational model adopts the generalized Hook’s law in plane  stress 

with consideration of the plastic strains defined by the total deformation theory. The swift -type nonlinear hardening law is considered 

for the inelastic constitutive relations of the material with its behaviour governed by von Mises’ yield criterion. With the introduction 

of a certain form of Airy stress function that satisfies the compatibility equation in polar coordinates, the strain -compatib ility equation 

with the corresponding boundary conditions can be simplified  as a second -order ordinary differential equation of a properly  defined 

generalized stress function dependent on radius of the wide curved beam. Solution of this ODE equation becomes a boundary -valued 

problem that can be solved numerically in both elastic and inelastic stages. To validate the proposed mode l, a p reliminary numerical 

study of the stress analysis in the elastic stage has been conducted. Encouragingly, the numerical solution agrees perfectly with its 

analytical counterpart given by classical theory of elasticity.  
 
Keywords: inelastic stress analysis, elasticity, curved beam, total deformation theory, strain-compatibility, boundary-
valued problem 
 
 

1. Introduction 
 Supplemental energy-dissipative dampers have been widely adopted for earthquake-protection of building structures. 
Metallic yielding dampers such as ADAS[1], TADAS[2] or Pre-bent stripe[3] that utilize the strength and ductility of 
general steel plates are alternatives considered to be cost-effective among others. The aforementioned metallic dampers are 
in common designed to deform in an out-of-plane flexural mode by resisting the loading with their weak axis. As an effort 
to improve material utilization, seismic structural dampers designed to deform inelastically in an in-plane flexural mode 
have attracted serious attentions recently[4-7]. Preliminary component test of an arch-shaped damper suggests its potential 
in practical use with a drastic improvement in ultimate strength and ductility by considerably reducing the effect of 
warping and stress concentration. To get more insight of the elastic-plastic behaviour of the in-plane arch-shaped damper, a 
comprehensive inelastic stress analysis under monotonic load is desired for design purposes.  
 Eraslan and Arslan[8] proposed a concise analytical model for the elastic-plastic stress analysis of a strain hardening 
curved beam under pure bending with solutions for both plane stress and plane strain conditions according to Tresca’s 
yielding criterion. Eraslan and Arslan[9] conducted also a computational study on the inelastic stress analysis of nonlinear 
hardening curve beam under pure bending in plane stress using von Mises’ yielding criterion. With the loading restrained 
to pure bending only, their studies provide a sound and comprehensive framework for inelastic stress analysis of curved 
beams with strain hardening material. In-plane lateral forces applying to the end of the arch-shaped damper makes it a 
circular cantilever subjected to moment and shear simultaneously. Under these circumstances the model derived by Eraslan 
and Arslan[8,9]is no longer valid and the corresponding analytical models need to be developed. Extended from the 
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classical theory of elasticity, the proposed computational model adopts the generalized Hook’s law in plane stress with 
consideration of the plastic strains defined by the total deformation theory. The swift-type nonlinear hardening law is 
considered for the inelastic constitutive relations of the material with its behaviour governed by von Mises’ yield criterion. 
With the introduction of a certain form of Airy stress function that satisfies the compatibility equation in polar coordinates, 
the strain-compatibility equation with the corresponding boundary conditions can be simplified as a second-order ordinary 
differential equation of a properly defined generalized stress function dependent on radius of the wide curved beam. 
Solution of this ODE equation becomes a boundary-valued problem that can be solved numerically in both elastic and 
inelastic stages. To validate the proposed model inspired by the work of Eraslan and Arslan [8, 9], a preliminary numerical 
study of the stress analysis in the elastic stage has been conducted. Encouragingly, the numerical solution matches 
perfectly with its analytical counterpart given by classical theory of elasticity [10].   
 

2. Computational Model 
 An in-plane flexural damper under a load 2P at a distance l from the ends of the circular arch is illustrated in Fig. 
1(a).  The ends of the arch are subjected to a bending moment M=Pl and a shear P simultaneously, as indicated in Fig. 1(b). 
Taking advantage of symmetry with respect to the vertical axis, the task can be reduced as solving a problem of a circular 
cantilever subjected to coupling of shear and moment at its end, as indicated in Fig. 1(c). 
 

                            
(a) in-Plane Flexural Damper              (b) Free-body of the Circular  Arch                    (c) Circular Cantilever 

Fig. 1: The Damper and the Portion Considered in Analysis . 

 

 
(a) P-M Coupling                                        (b) End-Shear (P) only                                     (c) Pure Bending (M) 

Fig. 2:  Resolving Diagram of the Loads on the Circular Cantilever. 

 

2.1. Fundamental of Solid Mechanics 
 The curved beam with inner radius a and outer radius b is considered, as shown in Fig. 2. It is most convenient to 
start with the well-developed fundamentals of elasticity in polar coordinates [10]. For plane stress problems, the 

equilibrium equations of the curved beam with a constant thickness ( zt ) can be expressed as  
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 Where 
r ,  are respectively the normal stress in the radial and tangential directions, and  r  is the shear stress. 

These stress components can be further written in terms of an Airy stress function ),(  r as 
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 Which satisfy the equilibrium equation (1). The strains are related to the displacement fields (u, v) respectively for 
the radial and tangential displacements as 
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 where r ,   are respectively the normal strain in the radial and tangential directions, and  r  is the shear strain. 

The strain-compatibility equation according to [11] is expressed as  
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 And the compatibility can further be expressed in terms of the Airy stress function ),(  r as 
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 The von Mises’ yielding criterion adopted in this study is defined as 
 

yrrrvM    3
22

 (6) 

 
 And the material becomes partially plastic wherever the inequality holds. The generalized Hooke’s law is written in 
accordance with the total deformation theory [12] as 
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 where the plastic strains are defined by 
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 In which the equivalent plastic strain of a swift-type nonlinear hardening law is considered as 
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 Where parameters m and H characterize the post-yielding behaviour of the material. 
 

2.2. Pure Bending 
 Under the condition of pure bending, as indicated in Fig. 2(c), the shear stress vanishes and the equilibrium equation 
reduces to 
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 If a generalized stress function )(1 rY is defined, according to Eraslan and Arslan [9], as 
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 and, as a result 
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 Using the strain-displacement relations in eq.(3) and taking into account the fact of shear strain being zero, the 
strain-compatibility eq.(4) can be simplified as 



 

ICSENM 107-5 

Mrr
r

 



)(  (13) 

 

 where 
M  is an integration constant. Substitution of the generalized Hooke’s law (7) for the strains and expressing 

the stresses in terms of the generalized stress function, 
1Y , Eq.(13) can be written in the form of a second-order ordinary 

differential equation of 
1Y  as 
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 With the following boundary conditions 
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 The 4th-order Runge-Kutter algorithm is adopted for solving the ODE problem iteratively along with Newton’s 
method in the shooting process to accelerate convergence of the boundary-valued problem, as suggested by Eraslan and 

Arslan [9]. Once 1Y  is solved, the stress components can be found by eqs.(11) and (12) immediately. 

 

2.3. End Shear 
 With a shear force acting at the end of the curved beam, as indicated in Fig. 2(b), the condition becomes more 

complicated with the presence of shear stress and all the stress components are now dependent on both r  and  . However, 

if we loan of the Airy stress function ),(  r  in the form of 
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 From the classical theory of elasticity [10] for the very same problem to start with, then the stress components can be 
written as   
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 Let’s define another generalized stress function )(2 rY as 
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 Then the stress components in eq. (18) can be written in terms of )(2 rY to be 
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 As a result, the generalized Hooke’s law (7) can be modified as  
 

 sin)(
1 2

2
2











r

Y
Y

r

Y

E

P

rr  (21a) 

  sin
1 22

2 









r

Y

r

Y
Y

E

P
 (21b) 

  cos)(
1 2

r

Y

G

p

rr   (21c) 

 

 Upon substitution of eq. (21) for the strains into the strain-compatibility equation (4) and integrating it with 
respect to the radius r  leads to 
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 The same procedure as described in Section 2.2 can be adopted to solve the boundary-valued problem of eqs. (23)-

(24). Once 2Y  is solved, the stress components can be found by eqs.(20) immediately for a given cross-section at 

 . 

 
2.4. Bending and Shear Coupling 
 If the curved beam is subjected to the coupling of bending (M) and shear (P) at the end simultaneously, the stresses 
can be obtained by summing the results from pure bending and end shear derived independently as 
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2,1,     (25b) 
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 where the subscript 1 denotes those obtained from pure bending and subscript 2 from end shear. Note that under the 
coupling loading condition, the resultant stresses from eqs. (25) should be used in checking the yielding condition via the 
von Mises criterion (6).  
                

3. Numerical Verification 
 As an effort to validate the proposed model, a preliminary numerical study of the stress analysis has been conducted 
in the elastic stage where analytical solutions are available for comparison. An in-plane flexural steel damper in a U shape 
considered for component test earlier by the authors is adopted herein. The inner radius (a) of the circular arch of the 
damper is 45 mm and the outer radius (b) is 220 mm. The steel plate is 25 mm in thickness and the effective length (l) of 
the straight arm reads 235 mm. Parameters of the material are summarized in the following: Young’s modulus E=200 GPa, 

Poisson’s ratio 3.0  and the yield stress y =250 MPa. A compression force P is acting inwards from each end of the 

arms through pin connection resulting in a moment of Pl and an end shear of P simultaneously on the bottom of the arch, 

as indicated in Fig. 2(a). The yield strength yP =39.75kN determined by setting the normal stress ya   )2/,(  where 

initial yielding of the damper takes place is considered as the applied load. Stress components normalized with respect to 

the yield stress, y , are presented graphically for 2/   and 4/  in Figs. 4(a) and 4(b), respectively. The bar 

over the stress symbols in the figures indicates the normalized stress. The numerical solution agrees perfectly with its 

analytical counterpart given by classical theory of elasticity [10]. The normalized von Mises stress 1/  yvMvM   

occurs at the cross-section of 2/  on the inner surface r=a under yield load yP . 

  

 
Fig. 3:  Design Details of the in-Plane Flexural Damper Considered in the Numerical Example. 
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(a) θa)/2                                                                                          (b)θ=π/4 

Fig. 4: Comparison of Numerical Solution in the Elastic Stage with the Analytical Counterpart ( yPP  ). 

 

4. Conclusion 
 In this paper, the analytical model for inelastic stress analysis of symmetrical curved beams with bending and shear 
coupling represented in a second-order ordinary differential equation of a generalized stress function is derived. As an 
effort to validate the proposed model, a preliminary numerical study of the stress analysis in the elastic stage has been 
conducted. The numerical solution agrees perfectly with its analytical counterpart given by classical theory of elasticity. 
The model will be further used for the inelastic stress analysis of the in-plane flexural damper.  
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