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Abstract - Prediction of breach peak outflow and time of failure with appreciable level of accuracy is of substantial importance to 

avoiding potential life loss, minimising damage and consequently financial losses in the downstream floodplain. The damage is certain 

when a dam fails; however, the magnitude of it cannot be evaluated a head of time. This paper proposes the use of Artificial Neural 

Network (ANN) approach to predict the peak outflow and failure time of breached earthen dams. Several parameters such as the type 

of dam, height and volume of water behind the dam, erodibility of dam materials, and the mode of failure are used for the estimation 

purpose. Historical datasets of dam failures are employed in the training process of various ANN structures. The reliability of the 

proposed ANN approach was evaluated by means of Correlation coefficient (CC) and the Root Mean Square Error (RMSE). 

Subsequently, a comparison is drawn between ANN approach and popular regression models. The ANN approach is found to be 

considerably more reliable than regression analysis.   
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1. Introduction 
Dams and their associated engineering practice are considered to be a main part of the story of civilisation. The 

significant contribution which dams have made towards the rise of civilisations is documented in a number of records of 

ancient lands [1].  The cradles of civilisation in Babylonia, Egypt, India, Persia and the Far East are nothing but a 

compelling evidence of the substantial services which dams have been providing during the last 50 centuries. Essential 

benefits such as water supply, flood control, irrigation, and hydropower generation are some good examples of such 

contribution. 

Earthen dams are one of the oldest types of dams and their construction is still being warmly received in different parts 

of the world. The number of earthen dams in Iran for instance, is outnumbering those of other dams’ types. At the other 

end of the spectrum however, the possibility of failure to take place in earthen dams is appreciably higher than in other 

types [2]. Huge financial loss apart from deaths can be brought about, due to dam failure. The latter results in release of an 

immense volume of water, which in turn, creates huge waves in downstream. The causes of earthen dam failure are 

numerous, and the exact failure mode is sometimes difficult to determine. 

[3] reported that inadequate spillway capacity which causes overtopping of the dam, constitutes about one-third of 

earthen dam failures.  On the other hand, piping as a result of concentrated seepage have been crudely considered the cause 

of another one-third of earthen dam failures. The remaining third of dam failures are attributed to sliding of the 

embankment, foundation settlement, and inadequate measures of protection against wave action. Hence, prediction of dam 

failure and the subsequent danger is of high significance to avoid financial and more importantly life losses by means of 

proper design and preparation of good emergency action plans. 

Since 1970s the science of dam breach analysis has been evolving within the scope of minimising the potential 

damage and loss of life associated with dam failures. Hydraulic analysis of dam breach includes two main steps, the 

prediction of reservoir outflow hydrograph and the routing of that hydrograph through the downstream valley. The first 

step can further be subdivided into predicting the breach characteristics (e.g., shape, depth, width, rate of breach 

formation), and routing the reservoir storage and inflow through the breach [4].  
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Dam break analysis can be performed with the aid of a multitude of available tools. Refined estimates of certain 

geometric and temporal characteristics as inputs are required in dam-break analysis programs. The outputs of the model 

encompass water surface elevation, velocity of the flow, and flow depth. Such details may serve to evaluate the magnitude 

of the potential damage which the breach has brought about.  Models such as National Weather Service (NWS) Dam-

Break Flood Forecasting Model (DAMBRK), the U.S. Army Corps of Engineers Hydrologic Engineering Centre Flood 

Hydrograph Package (HEC-1), and the NWS Simplified Dam-Break Flood Forecasting Model (SMPDBK) are compared 

in a paper published by [5]. 

An alternative approach for estimation of the breach peak outflow is through developing regression relations as a 

function of dam geometric parameters based on case-study information [6]. A minimum figure of 16 regression 

expressions for estimation of breach peak outflow of earthen dams have been developed since 1977. Nonetheless, it should 

be pointed out that limited database of case studies was employed to derive these relationships, and therefore, they offer a 

moderate level of confidence. 

One of the most comprehensive databases of dam breach case studies was compiled by [7], [8]. His study reviewed 

regression expressions developed throughout 1977 to 1995. The focus of initial efforts was on determining height of dam 

and dam volume/storage relations. The database was then broadened by [9] who conducted a review of the available 

regression relations for estimating breach peak outflow [10].   

 

1.1. Artificial Neural Network 
 Artificial Neural Network (ANN) is one of the most powerful classifiers that describes input/output relationships. The 

role which the classifier was meant to serve is the imitation of the human brain acquisition of knowledge through learning 

within neuron connection strengths. Synaptic weights of ANN are usually trained so that a certain input leads to a specific 

targeted output. In other words, comparing the targeted and the actual output until the network output matches the targeted 

one. Should that happen, training and neural network weights may now be tested with new data Multi-layer Perceptron 

[11]. 

Considering the numerous restrictive assumptions of regression analysis, ANNs can be good alternative when the 

target is predicting peak outflow and time of failure of breached dams, due to the nonlinear nature of their structure along 

with the flexibility in their application. Hastie (2001) [12] demonstrated that ANNs are vastly succeeded approximators of 

multitude of complex functions.  

Some researchers investigated several ANN algorithms so as to settle upon the best one that results in the most 

accurate estimation of peak outflow. Hooshyaripor (2015) [13] used two algorithms to train the ANN networks and then 

developed and compared 20 different models with each other. They concluded that the least means square (LMS) training 

function resulted in the highest correlation coefficient and lowest RMSE [14].  

Technical publications which compare the performance of different ANN models with regression techniques are 

limited. Therefore, this paper is written within this scope. 

 

2. Methodology 
The objective of this paper is to develop a neural network model which has the ability to predict the breach peak 

outflow and the time of failure of earthen dams with appreciable accuracy over the conventional regression analysis. 

The process of predicting breach peak outflow and time of failure using Artificial Neural Network can be divided to 

three main stages: data acquisition, prediction using ANN model, and application of ANN.  Next, a comparison between 

the results obtained using ANN and those achieved by employing recent selected regression models will be drawn to assess 

the reliability of the proposed ANN approach. 

 

2.1. Data Acquisition (Stage 1) 
The database adopted for analysis was collected from the literature. Specifically from database reported by [9] and 

[15].  The former compiled database that contained hydrologic and geometric variables from 87 breach case studies, while 

the latter compiled his database from different sources [7], [16]–[19]. Tables 1 and 2 summarise the information and details 

of dam failure case studies which represent the analysis database used in this paper. 
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2.2. Artificial Neural Network Prediction (Stage 2) 
 
2.2.1. Multi-Layer Perceptrons 

Multi-Layer Perceptrons (MLPs) is one of the most common models of the artificial neural network. It implements the 

supervised training methods to train the network and is hierarchically structured of perceptrons. Layers which commonly 

form MLPs are input layer, hidden layer, and output layer. The complications associated with training such network with 

multiple layers is apparently higher than with a single perceptron. When an error is encountered, locating the error’s source 

is not easy due to the different nodes of each layer. Moreover, easiness does not lend itself to the process of adjusting the 

weights according to their contribution. Using the back-propagation algorithm which is a generalisation of the least-mean-

square (LMS) algorithm can solve all of the problems stated earlier. The algorithm finds the effect of the weights of the 

network. Various weights that use feed-forward connections link the nodes in the input and hidden layers. The mean square 

error (MSE) is computed using all training patterns of the calculated and target outputs as follows: 

 

𝑀𝑆𝐸 =
1

2
∑ ∑ (𝑇𝑖𝑗 − 𝑂𝑖𝑗)2𝑘

𝑖=1
𝑚
𝑗=1    (1) 

 

In order to minimise the total mean square error between the actual output and the targeted one, the back-propagation 

algorithm employs iterative gradient technique. Some random small weights are set to initialise the training process. 

Training data are repeatedly presented to the neural network and the weights are adjusted until a reduced acceptable value 

of MSE is reached [11]. The general concept of ANN discussed earlier is shown in Figure 1. 

 

 

Fig. 1: Systematic diagram of ANN and its error back propagation architecture [20]. 
 

2.2.2. Application of ANN  
In this stage, four models were created using historical database. The first model compares ANN technique with two 

recent regression approaches which are used to predict the breach peak outflow, [3] and [9] “Volume and height 

expression”. In this model the volume and the height of the water behind the dam were used as input data to ANN model, 

while the second Model used Dam factor (VH) as an input to fit a good relation to predict breach peak outflow. The third 

model was used to compare the breach peak outflow prediction using [15] regression model and ANN approach. [15] tried 

to enhance the prediction of all breach parameters by using multi-variable regression analysis. In addition, they used most 

of the failed dams’ characteristics. In this paper, the authors used the height of the dam, reservoir water volume, dam type, 

material erodibility, and failure mode. 

On the other hand, the fourth model constructed to evaluate the prediction of the time of failure. [15] formula which 

shows good correlation compared to the old methods was used for comparing results with the developed ANN model when 

estimating the time of failure. 
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2.3. Comparison of Relationships (Stage 3) 
The comparison between ANN model and other selected models is shown in Table 3. The comparison between 

prediction models was performed using two statistical parameters; Correlation coefficient (CC) and Root-mean-square 

Error (RMSE). The Correlation coefficient (CC) is usually used to describe the arrangement of the data and how datasets 

are correlated; however, Root-mean-square Error (RMSE) is used to describe the bias and error of observed data compared 

with predicted data. To have a good judgment, regression expressions and Artificial Neural Network approach (ANN) were 

applied on the same historical database which are shown in Tables 1 and 2. The Correlation coefficient (CC) and Root-

mean-square Error (RMSE) are found using the following equations: 

 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑋𝑖 − 𝑌𝑖)2𝑛

𝑖=1   

 

(2) 

𝑅2 =  
1

𝑛
∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)𝑛

𝑖=1

𝜎𝑥𝜎𝑦
  (3) 

 

3. Results and Discussion 
In order to have a better understanding of the results, two statistical measurements (R2 and RMSE) were applied to 

evaluate the reliability of the approach and compare between each model and the most popular prediction methods which 

are using the same parameters to estimate breach peak outflow and time of failure. Overall, the results have proven that 

ANN approach tends to have a better prediction than traditional regression models. All results and the parameters used to 

construct each model are illustrated in Table 3.  

The first model is constructed using Table 2 database, with water volume (V) and water height (hw) as input 

parameters. The correlation coefficient for ANN approach is found to be R2 = 0.944 while the other approaches Froehlich 

(1995) and Pierce et al. (2010) have R2 = 0.598 and 0.637, respectively (Figure 2). These results illustrate that the predicted 

results which were generated using ANN approach are more correlated to field measurements. In addition, the other 

parameter Root-mean-square Error (RMSE) supported the same conclusion. The RMSE for ANN approach is 2909 which 

is extremely less than the other two methods 8029 and 7511 for Froehlich (1995) and Pierce et al. (2010), respectively 

(Table 3).  

Similarly, the second and third model shows the same interpretation with correlation coefficient of 0.94 and 0.92, 

respectively. Moreover, RMSE shows less values than the other regression models as presented in Table 3. 

Figures 3 and 4 illustrate a comparison between the correlation coefficient of ANN and selected regression models for 

prediction of breach peak outflow. 

 

 

Fig. 2: Peak outflow prediction using ANNs (model-1) and its correlation coefficient in compare with Froehlich (1995) [3] and 

Pierce et al. (2010) [9] models. 
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Fig. 3: Peak outflow prediction using ANNs (model-2) and its correlation coefficient in compare with Pierce et al. (2010) [10] 

model. 

 

Finally, the fourth model was constructed using Xu and Zhang (2009) [15] database to predict the breach time of 

failure. This model has shown to be more correlated to measured data. Also, compared with Xu and Zhang (2009) [15], 

ANNs approach has proven its efficiency and reliability over the regression models. The results can be noticed in Figure 5 

and Table 3. The reader may notice that ANN approach has higher CC and low RMSE. 

 

 

Fig. 4: Peak outflow prediction using ANNs (model-3) and its correlation coefficient in comparison with Xu and Zhang, (2009) 

[15] model. 
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Fig. 5: Peak outflow prediction using ANNs (model-4) compared with Xu and Zhang (2009) [15] model. 

 

4. Conclusion 
Recently, ANNs techniques have made a major contribution towards data modelling, especially that deals with 

uncertain data estimation. Generally, ANNs models are more reliable in presenting the relationship between the variables 

and the target. In this study, three models for prediction of breach peak outflow and one model for prediction of time of 

failure were developed using ANNs. 

The reliability of the proposed ANNs technique was evaluated by means of two statistical parameters; Correlation 

coefficient (CC) and the Root Mean Square Error (RMSE). The results show that the correlation coefficients of all ANNs 

models are by far found to be higher than their counterparts from regression analysis. Moreover, RMSE of ANNs models 

estimated at appreciably lower values in comparison with the regression models. 

Based upon the previous discussion presented earlier, it can be concluded that utilisation of ANN in predicting breach 

peak outflow and time of failure is highly recommended. 

 

5. Recommendations 
Application of these theories have demonstrated their effectiveness in predicting earthen dams breach parameters and 

have given better results in dam break analysis studies. Saudi Arabia’s dams need to be assessed using this approach so as 

predict the peak outflow in order to study risk analysis for these dams. Additionally, predicting breach time of failure using 

this approach can enhance the emergency plans for large dams in the Kingdom, and subsequently, lead to save lives and 

property. 
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Table 1: Locations and dam’s characteristics (Pierce et al. 2010). 

 

No. Site 
H 

(m) 
V (m3) 

Dam 

factor VH 
Qp No. Site H (m) V (m3) 

Dam factor 

VH 
Qp 

1 

HR Wallingford 

Test 14, U.K. 
0.6 245 147 

0.28 31 

Upper Clear 

Boggy, Okla. 6.1 
863000 5264300 70.79 

2 

HR Wallingford 

Test 10, U.K. 
0.6 245 147 

0.31 32 Lily Lake, Colo. 3.35 
92500 309875 71 

3 

HR Wallingford 

Test 11, U.K. 
0.6 245 147 

0.34 33 

Field Test 2–2, 

Norway 5 
35900 179500 74 

4 

HR Wallingford 

Test 15, U.K. 
0.6 245 147 

0.35 34 Frankfurt, Germany 8.23 
352000 2896960 79 

5 

HR Wallingford 

Test 16, U.K. 
0.6 245 147 

0.43 35 Ireland No. 5, Colo. 3.81 
160000 609600 110 

6 

HR Wallingford 

Test 12, U.K. 
0.6 245 147 

0.53 36 

Field Test 1-2, 

Norway 5.9 
63000 371700 113 

7 

HR Wallingford 

Test 17, U.K. 
0.6 245 147 

0.61 37 Prospect, Colo. 1.68 
3540000 5947200 116 

8 

USDA-ARS Test 

#6, Okla. 
1.5 5190 7785 

1.3 38 

South Fork 

Tributary, Pa. 1.83 
3700 6771 122 

9 

USDA-ARS Test 

#3, Okla. 
2.29 4900 11221 

1.8 39 

Site Y-30–95, 

Miss. 7.47 
142000 1060740 144.42 

10 

Site Y-36–25, 

Miss. 
9.75 35800 349050 

2.12 40 

Lower Reservoir, 

Maine 9.6 
604000 5798400 157.44 

11 

USDA-ARS Test 

#4, Okla. 
1.5 5090 7635 

2.3 41 

Field Test 3-3, 

Norway 4.3 
22000 94600 170 

12 

USDA-ARS Test 

#7, Okla. 
2.13 4770 10160.1 

4.2 42 

Field Test 2-3, 

Norway 6 
67300 403800 174 

13 Peter Green, N.H. 
3.96 19700 78012 

4.42 43 

Field Test 1-1, 

Norway 6.1 
73000 445300 190 

14 

Stevens Dam, 

Mont. 
4.27 78900 336903 

5.92 44 

Field Test 1-3, 

Norway 5.9 
63000 371700 242 

15 

USDA-ARS Test 

#1, Okla. 
2.29 4900 11221 

6.5 45 Lake Latonka, Pa. 6.25 
4090000 25562500 290 

16 

Cherokee Sandy, 

Okla. 
5.18 444000 2299920 

8.5 46 

Horse Creek #2, 

Colo. 12.5 
4800000 60000000 311.49 

17 

Upper Red Rock, 

Okla. 
4.57 247000 1128790 

8.5 47 

Lower Latham, 

Colo. 5.79 
7080000 40993200 340 

18 Break Neck Run 7 49000 343000 9.2 48 Sandy Run, Pa. 8.53 56700 483651 435 

19 Colonial #4, Pa. 
9.91 38200 378562 

14.16 49 

Puddingstone, 

Calif. 15.2 
617000 9378400 480 

20 

Caney Coon 

Creek, Okla. 
4.57 1320000 6032400 

16.99 50 

Davis Reservoir, 

Calif. 11.58 
58000000 6.72E+08 510 

21 Murnion, Mont. 4.27 321000 1370670 17.5 51 Lawn Lake, Colo. 6.71 798000 5354580 510 

22 Haymaker, Mont. 4.88 370000 1805600 26.9 52 Goose Creek, S.C. 1.37 10600000 14522000 565 

23 North Branch, Pa. 
5.49 22200 121878 

29.4 53 

Wheatland 

Reservoir #1, Wyo. 12.19 
11500000 1.4E+08 566.34 

24 Owl Creek, Okla. 4.88 120000 585600 31.15 54 Fred Burr, Mont. 10.2 750000 7650000 654 

25 

Middle Clear 

Boggy, Okla. 
4.57 444000 2029080 

36.81 55 Kelly Barnes, Ga. 11.3 
777000 8780100 680 

26 

Site Y-31A-5, 

Miss. 
9.45 386000 3647700 

36.98 56 DMAD, Utah 8.8 
19700000 1.73E+08 793 

27 

Little Wewoka, 

Okla. 
9.45 987000 9327150 

42.48 57 Butler, Ariz. 7.16 
2380000 17040800 810 

28 

Dam Site #8, 

Miss. 
4.57 870000 3975900 

48.99 58 

French Landing, 

Mich. 8.53 
3870000 33011100 929 

29 Otto Run 
5.79 7400 42846 

60 59 

Euclides de Cunha, 

Brazil 58.22 
13600000 7.92E+08 1020 

30 Boydstown, Pa. 8.96 358000 3207680 65.13 60 Laurel Run, Pa. 14.1 555000 7825500 1050 
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Table 2: List of dam failure case studies (Xu and Zhang 2009). 

 

No. Dam name Location Type H Erodibility Mode Vw Hw Q tf 

1 Apishapa United States HD 34.1 HE P 22.2 28 6850 2.5 

2 Banqiao China DC 24.5 HE O 607.5 31 78100 5.5 

3 Bayi China HD 30 ME P 23 28 5000 — 

4 Castlewood United States DC 21.3 ME O 6.17 21.6 3570 — 

5 Chenying China HD 12 ME O 5 12 1200 1.83 

6 Danghe China DC 46 LE O 10.7 24.5 2500 3 

7 DavisReservior United States FD 11.9 ME P 58 11.58 510 — 

8 Dells United States — 18.3 HE O 13 18.3 5440 0.67 

9 Dongchuankou China HD 31 HE O 27 31 21000 — 

10 Elk City United States DC 9.1 ME O 1.18 9.44 — 0.83 

11 Frankfurt Germany HD 9.8 LE P 0.352 8.23 79 2.5 

12 French Landing United States HD 12.2 HE P 3.87 8.53 929 0.58 

13 Frenchman Dam United States HD 12.5 ME P 16 10.8 1420 3 

14 Frias Argentina FD 15 ME O 0.25 15 400 0.25 

15 Gouhou China FD 71 LE P 3.18 44 2050 2.33 

16 Grand Rapids United States DC 7.6 ME O 0.255 7.5 — 0.5 

17 Hatfield United States — 6.8 HE O 12.3 6.8 3400 2 

18 Hell Hole United States — 67.1 ME P 30.6 35.1 7360 — 

19 Horse Creek United States FD 12.2 ME P 12.8 7.01 3890 3 

20 Huqitang China HD 9.9 LE P 0.424 5.1 50 4 

21 Johnstown United States ZD 38.1 ME O 18.9 24.6 8500 — 

22 Kelly Barnes United States HD 11.6 HE O 0.777 11.3 680 0.5 

23 Kodaganar India HD 11.5 ME O 12.3 11.5 1280 — 

24 Lake Frances United States HD 15.2 ME P 0.789 14 — 1 

25 Lake Latonka United States HD 13 ME P 4.09 6.25 290 3 

26 Lijiaju China HD 25 ME O 1.14 25 2950 — 

27 Little Deer Creek United States HD 26.2 HE P 1.36 22.9 1330 0.33 

28 Liujiatai China DC 35.9 ME O 40.54 35.9 28000 — 

29 Lower Two Medicine United States HD 11.3 HE O 19.6 11.3 1800 — 

30 Mahe China HD 19.5 HE O 23.4 19.5 4950 — 

31 Mammoth United States DC 21.3 ME O 13.6 21.3 2520 3 

32 Martin Cooling Pond Dike United States — 10.4 HE P 136 8.53 3115 — 
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Table 3: Comparision results between ANN approch and selected regression models usin CC and RMSE. 

 

ANN Model No. Parameters used Methods in comparison  R2 RMSE 

Prediction of breach peak outflow 

1 

Volume of water 

Height of Water 

Froehlich (1995) 0.598 8029.087 

Pierce et al. (2010) 0.638 7511.656 

ANN model No. 1 0.944 2909.575 

2 
Dam Factor Pierce et al. (2010) 0.644 7891.123 

ANN model No. 2 0.944 3031.324 

3 
All dam Characteristics Xu and Zhang, (2009) 0.913 5183.012 

ANN model No. 3 0.942 4475.356 

Prediction of time of failure 

4 
All dam Characteristics Xu and Zhang, (2009) 0.415 1.717 

ANN model No. 4 0.899 0.550 
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